Simultaneous Adsorption of 4,6-Dimethyldibenzothiophene and Quinoline over Nickel and Boron Modified Gamma-Al2O3 Adsorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Adsorbents
2.2. Characterizations of the Adsorbents
2.3. Adsorption Experiments
2.4. Adsorption Kinetics
2.5. Kinetics Models
2.5.1. Yoon–Nelson Model
2.5.2. Yan Model
2.5.3. Thomas Model
3. Results and Discussion
3.1. Adsorption Tests
3.2. Adsorption Kinetics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Muzic, M.; Sertic-Bionda, K.; Gomzi, Z.; Podolski, S.; Telen, S. Study of diesel fuel desulfurization by adsorption. Chem. Eng. Res. Des. 2010, 88, 487–495. [Google Scholar] [CrossRef]
- Furimsky, E.; Massoth, F.E. Deactivation of hydroprocessing catalysts. Catal. Today 1999, 52, 381–495. [Google Scholar] [CrossRef]
- Peralta, C.; Camú, E.; Bassi, R.; Villarroel, M.; Ojeda, J.; Baeza, P. Denitrogenation by Adsorption of Pyridine on Ni / Support Adsorbents. J. Chil. Chem. Soc. 2016, 4, 3211–3213. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Ma, X.; Zhou, A.; Song, C. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism. Catal. Today 2006, 111, 74–83. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, D.; Xu, Y.; Liu, X. Adsorption of thiophene compounds on MoO3/γ-Al2O3 catalysts with different mesopore sizes. Microporous Mesoporous Mater. 2017, 238, 46–55. [Google Scholar] [CrossRef]
- Sarda, K.K.; Bhandari, A.; Pant, K.K.; Jain, S. Deep desulfurization of diesel fuel by selective adsorption over Ni/Al2O3 and Ni/ZSM-5 extrudates. Fuel 2012, 93, 86–91. [Google Scholar] [CrossRef]
- Hernández-Maldonado, A.J.; Yang, R.T. Desulfurization of diesel fuels via π-Complexation with Nickel(II)-exchanged X- and Y-Zeolites. Ind. Eng. Chem. Res. 2004, 43, 1081–1089. [Google Scholar] [CrossRef]
- Singh, S.B.; De, M. Room Temperature Adsorptive Removal of Thiophene over Zinc Oxide-Based Adsorbents. J. Mater. Eng. Perform. 2018, 27, 2661–2667. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Zhou, L.; Tang, M.; Li, X.; Yang, Y. A mullite etching route to tabular α-alumina crystals and application in adsorption desulfurization for dibenzothiophene. Fuel 2018, 216, 10–15. [Google Scholar] [CrossRef]
- Baia, L.V.; Souza, W.C.; De Souza, R.J.F.; Veloso, C.O.; Chiaro, S.S.X.; Figueiredo, M.A.G. Removal of Sulfur and Nitrogen Compounds from Diesel Oil by Adsorption Using Clays as Adsorbents. Energy Fuels 2017, 31, 11731–11742. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, Y.; Wang, H.; Liu, Y.; Liu, C. Ordered mesoporous Cu-ZnO-Al2O3 adsorbents for reactive adsorption desulfurization with enhanced sulfur saturation capacity. Chin. J. Catal. 2018, 39, 1543–1551. [Google Scholar] [CrossRef]
- Zhang, D.; Xue, L.; Xu, Y.; Song, L.; Liu, X. Adsorption of 4,6-dimethyldibenzothiophene and collidine over MoO3/γ-Al2O3 catalysts with different pore structures. J. Colloid Interface Sci. 2017, 493, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Latifi, S.M.; Azghandi, J.B.; Salehirad, A.; Parvini, M. A comparative study on H2S removal using Mg–Al spinel (MgAl2O4) and MgO/Al2O3 nanocomposites. Chin. J. Chem. Eng. 2017, 25, 1329–1334. [Google Scholar] [CrossRef]
- Sun, M.; Nicosia, D.; Prins, R. The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis. Catal. Today 2003, 86, 173–189. [Google Scholar] [CrossRef]
- Villarroel, M.; Baeza, P.; Gracia, F.; Escalona, N.; Avila, P.; Gil-Llambías, F.J. Phosphorus effect on Co//Mo and Ni//Mo synergism in hydrodesulphurization catalysts. Appl. Catal. A Gen. 2009, 364, 75–79. [Google Scholar] [CrossRef]
- Méndez, A.; Villarroel, M.; Camú, E.; Ávila, P.; Baeza, P. Effect of Fluorine in the Synergism Co-Mo Via Hydrogen Spillover on the HydrodesulPhurization Of Refractory Molecules. J. Chil. Chem. Soc. 2013, 4, 2067–2070. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, F.; Sasaki, T.; Rashidi, A.M.; Nemati Kharat, A.; Jozani, K.J. Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity. J. Catal. 2013, 299, 321–335. [Google Scholar] [CrossRef]
- Escobar, J.; Barrera, M.C.; Gutiérrez, A.W.; Terrazas, J.E. Benzothiophene hydrodesulfurization over NiMo/alumina catalysts modified by citric acid. Effect of addition stage of organic modifier. Fuel Process. Technol. 2017, 156, 33–42. [Google Scholar] [CrossRef]
- Escobar, J.; Barrera, M.C.; Gutiérrez, A.W.; Cortés-Jacome, M.A.; Angeles-Chávez, C.; Toledo, J.A.; Solís-Casados, D.A. Highly active P-doped sulfided NiMo/alumina HDS catalysts from Mo-blue by using saccharose as reducing agents precursor. Appl. Catal. B Environ. 2018, 237, 708–720. [Google Scholar] [CrossRef]
- van Haandel, L.; Bremmer, G.M.; Hensen, E.J.M.; Weber, T. The effect of organic additives and phosphoric acid on sulfidation and activity of (Co)Mo/Al2O3 hydrodesulfurization catalysts. J. Catal. 2017, 351, 95–106. [Google Scholar] [CrossRef]
- Han, W.; Nie, H.; Long, X.; Li, M.; Yang, Q.; Li, D. Effects of the support BrØnsted acidity on the hydrodesulfurization and hydrodenitrogention activity of sulfided NiMo/Al2O3 catalysts. Catal. Today 2017, 292, 58–66. [Google Scholar] [CrossRef]
- Mohammadian, M.; Khosravi-Nikou, M.R.; Shariati, A.; Aghajani, M. Model fuel desulfurization and denitrogenation using copper and cerium modified mesoporous material (MSU-S) through adsorption process. Clean Technol. Environ. Policy 2018, 20, 95–112. [Google Scholar] [CrossRef]
- Ma, X.; Sprague, M.; Song, C. Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications. Ind. Eng. Chem. Res. 2005, 44, 5768–5775. [Google Scholar] [CrossRef]
- Hernandez-Maldonado, A.J.; Stamatis, S.D.; Yang, R.T.; He, A.Z.; Cannella, W. New sorbents for desulfurization of diesel fuels via pi complexation: Layered beds and regeneration. Ind. Eng. Chem. Res. 2004, 43, 769–776. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, B.S.; Wang, W.S.; Wang, F. Mesoporous and Macroporous Alumina-Supported Nickel Adsorbents for Adsorptive Desulphurization of Commercial Diesel. Adsorpt. Sci. Technol. 2015, 33, 337–353. [Google Scholar] [CrossRef]
- Chen, W.; Maugé, F.; van Gestel, J.; Nie, H.; Li, D.; Long, X. Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts. J. Catal. 2013, 304, 47–62. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, Z.; Zheng, Y.; Ring, Z.; Chen, J. Effect of fluorine and boron modification on the HDS, HDN and HDA activity of hydrotreating catalysts. Appl. Catal. A Gen. 2006, 301, 241–250. [Google Scholar] [CrossRef]
- Ferdous, D.; Dalai, A.K.; Adjaye, J. A series of NiMo/Al2O3 catalysts containing boron and phosphorus. Appl. Catal. A Gen. 2004, 260, 137–151. [Google Scholar] [CrossRef]
- Usman, U.; Takaki, M.; Kubota, T.; Okamoto, Y. Effect of boron addition on a MoO3/Al2O3 catalyst. Appl. Catal. A Gen. 2005, 286, 148–154. [Google Scholar] [CrossRef]
- Curtin, T.; McMonagle, J.B.; Hodnett, B.K. Influence of boria loading on the acidity of B2O3/Al2O3 catalysts for the conversion of cyclohexanone oxime to caprolactam. Appl. Catal. A Gen. 1992, 93, 91–101. [Google Scholar] [CrossRef]
- Yoon, Y.H.E.E.; Nelson, J.H. Application of Gas Adsorption Kinetics—II. A Theoretical Model for Respirator Cartridge Service Life and Its Practical Applications. Am. Ind. Hyg. Assoc. J. 1984, 45, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Viraraghavan, T.; Chen, M. A New Model for Heavy Metal Removal in a Biosorption Column. Adsorpt. Sci. Technol. 2001, 19, 25–43. [Google Scholar] [CrossRef]
- Thomas, H.C. Chromatography: A problem in kinetics. Ann. N. Y. Acad. Sci. 1946, 36, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Cid, R.; Pecchi, G. Potentiometric Method for Determining the Number and Relative Strength of Acid Sites in Colored Catalysts. Appl. Catal. 1985, 14, 15–21. [Google Scholar] [CrossRef]
- Xu, Z.; Cai, J.; Pan, B. Mathematically modeling fixed-bed adsorption in aqueous systems. J. Zhejiang Univ. Sci. A 2013, 14, 155–176. [Google Scholar] [CrossRef] [Green Version]
- Engels, S.; Herold, E.; Lausch, H.; Mayr, H.; Meiners, H.W.; Wilde, M. Boron-An Acidity and Texture Modifier for Alumina Supported Catalysts. In Studies in Surface Science and Catalysis; Elsevier: Cambridge, MA, USA, 1993. [Google Scholar]
- Cordero, R.L.; Gil Llambías, F.J.; Palacios, J.M.; Fierro, J.L.G.; Agudo, A.L. Surface changes of alumina induced by phosphoric acid impregnation. Appl. Catal. 1989, 56, 197–206. [Google Scholar] [CrossRef]
- Barale, M.; Lefèvre, G.; Carrette, F.; Catalette, H.; Fédoroff, M.; Cote, G. Effect of the adsorption of lithium and borate species on the zeta potential of particles of cobalt ferrite, nickel ferrite, and magnetite. J. Colloid Interface Sci. 2008, 328, 34–40. [Google Scholar] [CrossRef]
- Laredo, G.C.; Vega-Merino, P.M.; Pérez-Romo, P.; Navarrete-Bolaños, J.; Trejo-Zárraga, F. Adsorption of nitrogen compounds from diesel fuels over alumina-based adsorbent towards ULSD production. Pet. Sci. Technol. 2017, 35, 392–398. [Google Scholar] [CrossRef]
- Xu, H.; Sun, X.; Yu, Y.; Liu, G.; Ma, L.; Huang, G. Removal of quinoline using various particle sizes anthracite: Adsorption kinetics and adsorption isotherms. Physicochem. Probl. Miner. Process. 2019, 55, 196–207. [Google Scholar]
- Helmy, A.K.; De Bussetti, S.G.; Ferreiro, E.A. Adsorption of quinoline from aqueous solutions by some clays and oxides. Clays Clay Miner. 1983, 31, 29–36. [Google Scholar] [CrossRef]
- Aparicio, F.; Camú, E.; Villarroel, M.; Escalona, N.; Baeza, P. Deep desulfurization by adsorption of 4,6-dimethyldibenzothiophene, study of adsorption on different transition metal oxides and supports. J. Chil. Chem. Soc. 2013, 58, 2057–2060. [Google Scholar] [CrossRef]
- Flego, C. Characterization of γ-alumina and borated alumina catalysts. Appl. Catal. A Gen. 1999, 185, 137–152. [Google Scholar] [CrossRef]
- Li, D.; Sato, T.; Imamura, M.; Shimada, H.; Nishijima, A. Spectroscopic Characterization of Ni-Mo/γ-Al2O3-B2O3 Catalysts for Hydrodesulfurization of Dibenzothiophene. J. Catal. 1997, 170, 357–365. [Google Scholar] [CrossRef]
- Graff, A.; Barrez, E.; Baranek, P.; Bachet, M.; Bénézeth, P. Complexation of Nickel Ions by Boric Acid or (Poly)borates. J. Solution Chem. 2017, 46, 25–43. [Google Scholar] [CrossRef] [Green Version]
- Velu, S.; Ma, X.; Song, C. Selective Adsorption for Removing Sulfur from Jet Fuel over Zeolite-Based Adsorbents. Ind. Eng. Chem. Res. 2003, 42, 5293–5304. [Google Scholar] [CrossRef]
- Xue, M.; Chitrakar, R.; Sakane, K.; Hirotsu, T.; Ooi, K.; Yoshimura, Y.; Feng, Q.; Sumida, N. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium. J. Colloid Interface Sci. 2005, 285, 487–492. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Chen, C.; Ahn, W.S. Chromium terephthalate metal-organic framework MIL-101: Synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv. 2014, 4, 52500–52525. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Yang, F.H.; Yang, R.T. Desulfurization of high-sulfur jet fuel by mesoporous π-complexation adsorbents. Chem. Eng. Sci. 2009, 64, 5240–5246. [Google Scholar] [CrossRef]
- Meng, C.; Fang, Y.; Jin, L.; Hu, H. Deep desulfurization of model gasoline by selective adsorption on Ag+/Al-MSU-S. Catal. Today 2010, 149, 138–142. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Wang, R.; Yu, H. Selective Removal of Nitrogen-Containing Heterocyclic Compounds from Transportation Diesel Fuels with Reactive Adsorbent. Chin. J. Chem. Eng. 2013, 21, 558–563. [Google Scholar] [CrossRef]
- Song, H.; Chang, Y.; Wan, X.; Dai, M.; Song, H.; Jin, Z. Equilibrium, Kinetic, and Thermodynamic Studies on Adsorptive Desulfurization onto CuICeIVY Zeolite. Ind. Eng. Chem. Res. 2014, 53, 5701–5708. [Google Scholar] [CrossRef]
- Thaligari, S.K.; Srivastava, V.C.; Prasad, B. Simultaneous Adsorptive Desulfurization and Denitrogenation by Zinc Loaded Activated Carbon: Optimization of Parameters. Pet. Sci. Technol. 2015, 33, 1667–1675. [Google Scholar] [CrossRef]
Adsorbent | Specific Surface Area (m2 g−1) | Pore Diameter (nm) | Acid Strength (mV) | Isoelectric Point (pH) |
---|---|---|---|---|
γ-Al2O3 | 213 | 6.8 | −61.7 | 8.02 |
B(0.4) γ-Al2O3 | 170 | 8.2 | −33.1 | 7.93 |
Ni(4.0) γ-Al2O3 | 209 | 6.9 | −6.8 | 6.80 |
Ni(4.0) B(0.4) γ-Al2O3 | 197 | 10.8 | −27.5 | 7.25 |
Adsorbent | qe(4,6-DMDBT) (mg g−1) | αi-n (4,6-DMDBT) | qe(QN) (mg g−1) | αi-n (QN) |
---|---|---|---|---|
γ-Al2O3 | 7.02 | 1.00 | 22.29 | 3.17 |
B(0.4) γ-Al2O3 | 8.72 | 1.00 | 23.69 | 2.72 |
Ni(4.0) γ-Al2O3 | 9.77 | 1.00 | 32.67 | 3.34 |
Ni(4.0) B(0.4) γ-Al2O3 | 6.51 | 1.00 | 21.02 | 3.23 |
Adsorbent | Exp | Yoon-Nelson | Yan | Thomas | ||||||
---|---|---|---|---|---|---|---|---|---|---|
qe | kyn | tau | r2 | a | qe | r2 | kth | qe | r2 | |
γ-Al2O3 | 7.02 | 0.10 | 41.39 | 0.9981 | 3.91 | 6.76 | 0.9952 | 0.57 | 7.13 | 0.9981 |
B(0.4) γ-Al2O3 | 8.72 | 0.07 | 51.04 | 0.9977 | 3.58 | 8.31 | 0.9927 | 0.40 | 8.80 | 0.9977 |
Ni(4.0) γ-Al2O3 | 9.77 | 0.06 | 60.07 | 0.9987 | 3.51 | 9.88 | 0,9904 | 0.33 | 10.35 | 0.9987 |
Ni(4.0) B(0.4) γ-Al2O3 | 6.51 | 0.09 | 37.50 | 0.9970 | 3.40 | 6.07 | 0.9897 | 0.51 | 6.46 | 0.9970 |
Adsorbent | Exp | Yoon-Nelson | Yan | Thomas | ||||||
---|---|---|---|---|---|---|---|---|---|---|
qe | kyn | tau | r2 | a | qe | r2 | kth | qe | r2 | |
γ-Al2O3 | 22.29 | 0.04 | 129.89 | 0.9948 | 4.96 | 21.82 | 0.9938 | 0.22 | 22.37 | 0.9981 |
B(0.4) γ-Al2O3 | 23.69 | 0.03 | 140.28 | 0.9888 | 4.75 | 23.49 | 0.9759 | 0.20 | 24.19 | 0.9888 |
Ni(4.0) γ-Al2O3 | 32.67 | 0.03 | 183.08 | 0.9962 | 4.84 | 30.72 | 0.9971 | 0.16 | 31.55 | 0.9962 |
Ni(4.0) B(0.4) γ-Al2O3 | 21.02 | 0.05 | 125.46 | 0.9882 | 7.24 | 21.40 | 0.9778 | 0.33 | 21.61 | 0.9881 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camu, E.; Pasten, B.; Matus, C.; Ramirez, F.; Ojeda, J.; Aguila, G.; Baeza, P. Simultaneous Adsorption of 4,6-Dimethyldibenzothiophene and Quinoline over Nickel and Boron Modified Gamma-Al2O3 Adsorbent. Processes 2020, 8, 419. https://doi.org/10.3390/pr8040419
Camu E, Pasten B, Matus C, Ramirez F, Ojeda J, Aguila G, Baeza P. Simultaneous Adsorption of 4,6-Dimethyldibenzothiophene and Quinoline over Nickel and Boron Modified Gamma-Al2O3 Adsorbent. Processes. 2020; 8(4):419. https://doi.org/10.3390/pr8040419
Chicago/Turabian StyleCamu, Esteban, Barbara Pasten, Camila Matus, Fernanda Ramirez, Juan Ojeda, Gonzalo Aguila, and Patricio Baeza. 2020. "Simultaneous Adsorption of 4,6-Dimethyldibenzothiophene and Quinoline over Nickel and Boron Modified Gamma-Al2O3 Adsorbent" Processes 8, no. 4: 419. https://doi.org/10.3390/pr8040419
APA StyleCamu, E., Pasten, B., Matus, C., Ramirez, F., Ojeda, J., Aguila, G., & Baeza, P. (2020). Simultaneous Adsorption of 4,6-Dimethyldibenzothiophene and Quinoline over Nickel and Boron Modified Gamma-Al2O3 Adsorbent. Processes, 8(4), 419. https://doi.org/10.3390/pr8040419