Preparation of Nano-Porous Carbon-Silica Composites and Its Adsorption Capacity to Volatile Organic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Carbon-Silica Composites
2.2.2. Characterizing Methods
2.2.3. Oil Vapor Adsorption Property Evaluation Tests
2.2.4. Static Adsorption Tests
2.2.5. Dynamic Adsorption Tests
2.2.6. Regeneration Tests
3. Results
3.1. Silica Aerogel Preparation and Characterization
3.1.1. pH Value
3.1.2. Treating Time
3.1.3. Physicochemical Characteristics
3.2. Carbon-Silica Composites Preparation
3.2.1. Effect of the Carbon Content on Pore Structure
3.2.2. FTIR Analysis
3.3. Static Adsorption Properties
3.4. Dynamic Adsorption Properties
3.5. Regenerating Properties
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- Lhuissier, M.; Couvert, A.; Amrane, A.; Kane, A.; Audic, J. Characterization and selection of waste oils for the absorption and biodegradation of VOC of different hydrophobicities. Chem. Eng. Res. Des. 2018, 138, 482–489. [Google Scholar] [CrossRef]
- Huang, W.; Xu, J.; Tang, B.; Wang, H.; Tan, X.; Lv, A. Adsorption performance of hydrophobically modified silica gel for the vapors of n-hexane and water. Adsorpt. Sci. Technol. 2018, 36, 888–903. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Gao, B.; Creamer, A.E.; Cao, C.; Li, Y. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 338, 102–123. [Google Scholar] [CrossRef]
- Zhang, G.; Feizbakhshan, M.; Zheng, S.; Hashisho, Z.; Sun, Z.; Liu, Y. Effects of properties of minerals adsorbents for the adsorption and desorption of volatile organic compounds (VOC). Appl. Clay Sci. 2019, 173, 88–96. [Google Scholar] [CrossRef]
- Long, Y.; Wu, S.; Xiao, Y.; Cui, P.; Zhou, H. VOCs reduction and inhibition mechanisms of using active carbon filler in bituminous materials. J. Clean. Prod. 2018, 181, 784–793. [Google Scholar] [CrossRef]
- Giraudet, S.; Pré, P.; Tezel, H.; Le Cloirec, P. Estimation of adsorption energies using the physical characteristics of activated carbons and the molecular properties of volatile organic compounds. Carbon 2006, 44, 2413–2421. [Google Scholar] [CrossRef]
- Liu, F.; Dai, Y.; Zhang, S.; Li, J.; Zhao, C.; Wang, Y.; Liu, C.; Sun, J. Modification and application of mesoporous carbon adsorbent for removal of endocrine disruptor bisphenol A in aqueous solutions. J. Mater. Sci. 2018, 53, 2337–2350. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, S.; Yang, Y.; Li, X.; Li, J.; Li, Z. Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1). Chem. Eng. J. 2015, 259, 79–89. [Google Scholar] [CrossRef]
- Xu, J.; Huang, W.; Wang, Y.; Huang, F.; Zhao, S.; Hao, Q. Preparation of activated carbon from the desilication residue of rice husk and adsorption of oil vapor. New Chem. Mater. 2017, 45, 212–217. [Google Scholar]
- Tan, X.; Huang, W.; Wang, Y.; Huang, F.; Zhu, Y.; Xu, J.; Qin, X. Hydrophobic modification of silica-gel based on rice husk and its adsorption property for oil vapor. New Chem. Mater. 2017, 45, 236–238. [Google Scholar]
- Su, Z.; Pan, N.; Zhao, W.; Mo, J.; Xi, H. Preparation and properties of activated carbons with high thermal conductivity. Chem. Eng. N. Y. 2012, 40, 14–18. [Google Scholar]
- Gu, X.; Huang, Y. Preparation of activated carbons with high thermal conductivity and its microwave regeneration performance research. Henan Chem. Ind. 2018, 35, 24–26. [Google Scholar]
- Kuwagaki, H.; Meguro, T.; Tatami, J.; Tamura, K. An improvement of thermal conduction of activated carbon by adding graphite. J. Mater. Sci. 2003, 38, 3279–3284. [Google Scholar] [CrossRef]
- Menard, D.P.X.; Mazet, N. Activated carbon monolith of high thermal conductivity for adsorption processes improvement: Part A: Adsorption step. Chem. Eng. Process. 2005, 44, 1029–1038. [Google Scholar] [CrossRef]
- Pan, N.; Su, Z.; Mo, J.; Xi, H.; Xia, Q.; Li, Z. Preparation of novel composite activated carbon with high applicability to microwave and its regeneration under microwave radiation. Chin. J. Chem. Eng. 2011, 62, 111–118. [Google Scholar]
- Zhang, Y.; Jiang, C.; Zhang, H. Research of Absorbent Materials for Volatile Organic Compounds. Safe Health Environ. 2016, 16, 1–6. [Google Scholar]
- Walcarius, A.; Mercier, L. Mesoporous organosilica adsorbents: Nanoengineered materials for removal of organic and inorganic pollutants. J. Mater. Chem. 2010, 20, 4478–4511. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, W.; Lv, Y.; Wang, W.; Wang, Y. Investigation of modified hydrophobic silica gel for gasoline vapor adsorption and desorption. Chin. J. Environ. Eng. 2015, 9, 855–891. [Google Scholar]
- Huang, W.; Bai, J.; Shen, Y. Composites adsorbent of activated and hydrophobic silica gel for gasoline vapor recovery. Chem. Eng. N. Y. 2011, 39, 38–41. [Google Scholar]
- Nagata, T.; Tajima, H.; Yamasaki, A.; Kiyono, F.; Abe, Y. An analysis of gas separation processes of HFC-134a from gaseous mixtures with nitrogen—Comparison of two types of gas separation methods, liquefaction and hydrate-based methods, in terms of the equilibrium recovery ratio. Sep. Purif. Technol. 2009, 64, 351–356. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Huang, W.; Shen, F.; Xu, C.; Zhong, J.; Chen, R. Controllable synthesis of hollow silica spheres and their adsorption to VOCs. Mod. Chem. Ind. 2019, 39, 99–104. [Google Scholar]
- Mohammadi, A.; Moghaddas, J. Synthesis, adsorption and regeneration of nanoporous silica aerogel and silica aerogel-activated carbon compositess. Chem. Eng. Res. Des. 2015, 94, 475–484. [Google Scholar] [CrossRef]
- Lu, X.; He, J.; Xie, J.; Zhou, Y.; Liu, S.; Zhu, Q.; Lu, H. Preparation of hydrophobic hierarchical pore carbon–silica composites and its adsorption performance toward volatile organic compounds. J. Environ. Sci. China 2020, 87, 39–48. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Wang, Q.; Ren, M.; Zhu, G. Studies on the surface modification and thermal stability of silica aerogels. J. Jilin Norm. Univ. 2009, 30, 67–69. [Google Scholar]
- Li, X.; Huang, W.; Liu, X.; Bian, H. Graphene oxide assisted ZIF-90 composites with enhanced n-hexane vapor adsorption capacity, efficiency and rate. J. Solid State Chem. 2019, 278, 120–890. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, B.; Yu, X.; Zhang, J. Interpretation of BJH Method for Calculating Aperture Distribution Process. Univ. Chem. 2020, 35, 98–106. [Google Scholar]
- Ţălu, Ş. Micro and Nanoscale Characterization of Three Dimensional Surfaces: Basics and Applications; Napoca Star Publishing House: Cluj-Napoca, Romania, 2015; ISBN 978-60-6690-349-3. [Google Scholar]
- Rao, A.P.; Rao, A.V.; Pajonk, G.M. Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents. Appl. Surf. Sci. 2007, 253, 6032–6040. [Google Scholar] [CrossRef]
- Shi, F.; Wang, L.; Liu, J. Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater. Lett. 2006, 60, 3718–3722. [Google Scholar] [CrossRef]
pH Value | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) | Oil Vapor Adsorption Rate (%) |
---|---|---|---|---|
3.8 | 614 | 0.36 | 2.32 | 21.28 |
4.8 | 692 | 0.42 | 2.40 | 22.37 |
5.5 | 713 | 0.64 | 2.95 | 23.67 |
6.5 | 707 | 0.39 | 2.51 | 22.83 |
Treating Time (h) | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) | Oil Vapor Adsorption Rate (%) |
---|---|---|---|---|
0 | 251 | 0.13 | 2.02 | 12.19 |
2 | 649 | 0.56 | 2.58 | 22.33 |
26 | 675 | 0.57 | 2.54 | 22.47 |
50 | 724 | 0.70 | 3.80 | 26.83 |
62 | 715 | 0.42 | 2.43 | 23.41 |
Sample Name | Specific Surface Area (m2/g) | Average Pore Size (nm) | Volume of Micropore (cm3/g) | Specific Surface Area of Microporous (m2/g) | Volume of Total Pore (cm3/g) |
---|---|---|---|---|---|
SG/AC-0 | 724 | 3.8 | - | - | 0.70 |
SG/AC-2 | 725 | 3.5 | 0.05 | 101 | 0.67 |
SG/AC-4 | 718 | 3.4 | 0.06 | 109 | 0.65 |
AC | 925 | 2.1 | 0.32 | 710 | 0.51 |
Adsorbent | Dynamic Adsorption Capacities (mmol/g) |
---|---|
SG/AC-0 | 0.89 |
SG/AC-2 | 1.59 |
AC | 3.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Zhu, J.; Huang, W.; Fang, J.; Sun, X.; Wang, X.; Liao, K. Preparation of Nano-Porous Carbon-Silica Composites and Its Adsorption Capacity to Volatile Organic Compounds. Processes 2020, 8, 372. https://doi.org/10.3390/pr8030372
Fu L, Zhu J, Huang W, Fang J, Sun X, Wang X, Liao K. Preparation of Nano-Porous Carbon-Silica Composites and Its Adsorption Capacity to Volatile Organic Compounds. Processes. 2020; 8(3):372. https://doi.org/10.3390/pr8030372
Chicago/Turabian StyleFu, Lipei, Jiahui Zhu, Weiqiu Huang, Jie Fang, Xianhang Sun, Xinya Wang, and Kaili Liao. 2020. "Preparation of Nano-Porous Carbon-Silica Composites and Its Adsorption Capacity to Volatile Organic Compounds" Processes 8, no. 3: 372. https://doi.org/10.3390/pr8030372
APA StyleFu, L., Zhu, J., Huang, W., Fang, J., Sun, X., Wang, X., & Liao, K. (2020). Preparation of Nano-Porous Carbon-Silica Composites and Its Adsorption Capacity to Volatile Organic Compounds. Processes, 8(3), 372. https://doi.org/10.3390/pr8030372