Enhanced Anaerobic Digestion by Stimulating DIET Reaction
Abstract
:1. Introduction
2. DIET-Caused Theoretical Advantages
3. CM as a Tool for DIET Pathway Stimulation
4. Electrical Energy Input as Tool for DIET Pathway Stimulation
5. Microbial Community Change after DIET Stimulation
6. Conclusions and Future Perspectives
- (a)
- Engineering perspectives
- (b)
- Scientific perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Im, S.; Petersen, S.; Lee, D.; Kim, D. Effects of storage temperature on CH4 emissions from cattle manure and subsequent biogas production potential. Waste Manag. 2020, 101, 35–43. [Google Scholar] [CrossRef]
- Shin, S.; Im, S.; Mostafa, A.; Lee, M.; Yun, Y.; Oh, S.; Kim, D. Effects of pig slurry acidification on methane emissions during storage and subsequent biogas production. Water Res. 2019, 152, 234–240. [Google Scholar] [CrossRef]
- Im, S.; Yun, Y.; Song, Y.; Kim, D. Enhanced anaerobic digestion of glycerol by promoting DIET reaction. Biochem. Eng. J. 2019, 142, 18–26. [Google Scholar] [CrossRef]
- Feng, Q.; Song, Y.; Kim, D.; Kim, M.; Kim, D. Influence of the temperature and hydraulic retention time in bioelectrochemical anaerobic digestion of sewage sludge. Int. J. Hydrog. Energy 2018, 44, 2170–2179. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, Q.; Wu, X.; Li, X.; Li, Q.; Wang, Y. Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors. Renew. Sustain. Energy Rev. 2016, 54, 1358–1367. [Google Scholar] [CrossRef]
- Meslé, M.; Dromart, G.; Oger, P. Microbial methanogenesis in subsurface oil and coal. Res. Microbiol. 2013, 164, 959–972. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; Quan, X.; Zhang, Y. Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials. Water Res. 2017, 115, 266–277. [Google Scholar] [CrossRef]
- Cazier, E.; Trably, E.; Steyer, J.; Escudie, R. Reversibility of hydrolysis inhibition at high hydrogen partial pressure in dry anaerobic digestion processes fed with wheat straw and inoculated with anaerobic granular sludge. Waste Manag. 2019, 85, 498–505. [Google Scholar] [CrossRef]
- Cazier, E.; Trably, E.; Steyer, J.; Escudie, R. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. Bioresour. Technol. 2015, 190, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Summers, Z.; Fogarty, H.; Leang, C.; Franks, A.; Malvankar, N.; Lovley, D. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 2010, 80, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Shi, L.; Gu, J. Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotechnol. Adv. 2018, 36, 1815–1827. [Google Scholar] [CrossRef]
- Rotaru, A.; Shrestha, P.; Liu, F.; Shrestha, M.; Shrestha, D.; Embree, M.; Zengler, K.; Wardman, C.; Nevin, K.; Lovley, D. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 2014, 7, 408–415. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, F.; Liu, J.; Li, J.; Zhang, Y.; Yu, J.; Wang, O. Nano-Fe3O4 particles accelerating electromethanogenesis on an hour-long timescale in wetland soil. Environ. Sci. Nano 2018, 5, 436–445. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, Y. Conductive Fe3O4 nanoparticles accelerate syntrophic methane production from butyrate oxidation in two different lake sediments. Front. Microbiol. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, J.; Lu, Y. Stimulation of carbon nanomaterials on syntrophic oxidation of butyrate in sediment enrichments and a defined coculture. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Li, H.; Chang, J.; Liu, P.; Fu, L.; Ding, D.; Lu, Y. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ. Microbiol. 2015, 17, 1533–1547. [Google Scholar] [CrossRef]
- Ye, J.; Hu, A.; Ren, G.; Chen, M.; Tang, J.; Zhang, P.; Zhou, S.; He, Z. Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud. Water Res. 2018, 134, 54–62. [Google Scholar] [CrossRef]
- Piao, D.; Song, Y.; Kim, D. Bioelectrochemical enhancement of biogenic methane conversion of coal. Energies 2018, 11, 2577. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Song, Y.; Yoo, K.; Kuppanan, N.; Subudhi, S.; Lal, B. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor. Chemosphere 2018, 204, 186–192. [Google Scholar] [CrossRef]
- Kato, S.; Hashimoto, K.; Watanabe, K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ. Microbiol. 2012, 14, 1646–1654. [Google Scholar] [CrossRef]
- Lovley, D.; Walker, D. Geobacter protein nanowires. Front. Microbiol. 2019, 10, 2078. [Google Scholar] [CrossRef] [Green Version]
- Ueki, T.; Walker, D.; Tremblay, P.; Nevin, K.; Ward, J.; Woodard, T.; Nonnenmann, S.; Lovley, D. Decorating the outer surface of microbially produced protein nanowires with peptides. ACS Synth. Biol. 2019, 8, 1809–1817. [Google Scholar] [CrossRef]
- Malvankar, N.; Lovley, D. Microbial nanowires for bioenergy applications. Curr. Opin. Biotechnol. 2014, 27, 88–95. [Google Scholar] [CrossRef]
- Tan, Y.; Adhikari, R.; Malvankar, N.; Ward, J.; Nevin, K.; Woodard, T.; Smith, J.; Snoeyenbos-West, O.; Franks, A.; Tuominen, M.; et al. The low conductivity of Geobacter uraniireducens pili suggests a diversity of extracellular electron transfer mechanisms in the genus Geobacter. Front. Microbiol. 2016, 7, 1–10. [Google Scholar] [CrossRef]
- Liu, F.; Rotaru, A.; Shrestha, P.; Malvankar, N.; Nevin, K.; Lovley, D. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ. Microbiol. 2015, 17, 648–655. [Google Scholar] [CrossRef]
- Li, J.; Xiao, L.; Zheng, S.; Zhang, Y.; Luo, M.; Tong, C.; Xu, H.; Tan, Y.; Liu, J.; Wang, O.; et al. A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil: Beneficial to acetoclastic methanogenesis instead of CO2 reduction. Sci. Total Environ. 2018, 643, 1024–1030. [Google Scholar] [CrossRef]
- Song, Y.; Joicy, A.; Jang, S. Direct interspecies electron transfer in bulk solution significantly contributes to bioelectrochemical nitrogen removal. Int. J. Hydrog. Energy 2018, 44, 1–11. [Google Scholar] [CrossRef]
- Feng, Q.; Song, Y.; Yoo, K.; Kuppanan, N.; Subudhi, S.; Lal, B. Bioelectrochemical enhancement of direct interspecies electron transfer in upflow anaerobic reactor with effluent recirculation for acidic distillery wastewater. Bioresour. Technol. 2017, 241, 171–180. [Google Scholar] [CrossRef]
- Mostafa, A.; Im, S.; Lee, M.; Song, Y.; Kim, D. Enhanced anaerobic digestion of phenol via electrical energy input. Chem. Eng. J. 2020, 389, 124501. [Google Scholar] [CrossRef]
- Ahn, Y.; Im, S.; Chung, J. Optimizing the operating temperature for microbial electrolysis cell treating sewage sludge. Int. J. Hydrog. Energy 2017, 42, 27784–27791. [Google Scholar] [CrossRef]
- Cheng, S.; Hamelers, H. Critical review microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 2008, 42, 8630–8640. [Google Scholar]
- Guo, X.; Liu, J.; Xiao, B. Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells. Int. J. Hydrog. Energy 2013, 38, 1342–1347. [Google Scholar] [CrossRef]
- Kyazze, G.; Popov, A.; Dinsdale, R.; Esteves, S.; Hawkes, F.; Premier, G.; Guwy, A. Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell. Int. J. Hydrog. Energy 2010, 35, 7716–7722. [Google Scholar] [CrossRef]
- Yin, Q.; Wu, G. Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction. Biotechnol. Adv. 2019, 37, 107443. [Google Scholar] [CrossRef]
- Baek, G.; Kim, J.; Kim, J.; Lee, C. Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies 2018, 11, 107. [Google Scholar] [CrossRef] [Green Version]
- Baniamerian, H.; Isfahani, P.G.; Tsapekos, P.; Alvarado-Morales, M.; Shahrokhi, M.; Vossoughi, M.; Angelidaki, I. Application of nano-structured materials in anaerobic digestion: Current status and perspectives. Chemosphere 2019, 229, 188–199. [Google Scholar] [CrossRef]
- Baek, G.; Kim, J.; Lee, C. A review of the effects of iron compounds on methanogenesis in anaerobic environments. Renew. Sustain. Energy Rev. 2019, 113, 109282. [Google Scholar] [CrossRef]
- Lovley, D.R. Reach out and touch someone: Potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev. Environ. Sci. Biotechnol. 2011, 10, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Viggi, C.; Rossetti, S.; Fazi, S.; Paiano, P.; Majone, M.; Aulenta, F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ. Sci. Technol. 2014, 48, 7536–7543. [Google Scholar] [CrossRef]
- Cheng, Q.; Call, D. Hardwiring microbes: Via direct interspecies electron transfer: Mechanisms and applications. Environ. Sci. Process. Impacts 2016, 18, 968–980. [Google Scholar] [CrossRef]
- Storck, T.; Virdis, B.; Batstone, D. Modelling extracellular limitations for mediated versus direct interspecies electron transfer. ISME J. 2016, 10, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Lovley, D. Happy together: Microbial communities that hook up to swap electrons. ISME J. 2017, 11, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, A.; Im, S.; Song, Y.; Kang, S.; Kim, D. Enhanced anaerobic digestion of long chain fatty acid by adding magnetite and carbon nanotubes. Microorganisms 2020, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, J.; Liu, F.; Yan, H.; Li, J.; Zhang, X. Reduction of Gibbs free energy and enhancement of Methanosaeta by bicarbonate to promote anaerobic syntrophic butyrate oxidation. Bioresour. Technol. 2018, 267, 209–217. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Li, Y.; Dang, Y.; Zhu, T.; Quan, X. Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth. Chem. Eng. J. 2017, 313, 10–18. [Google Scholar] [CrossRef]
- Feng, Q.; Song, Y.; Yoo, K.; Kuppanan, N.; Subudhi, S.; Lal, B. Influence of neutralization in acidic distillery wastewater on direct interspecies electron transfer for methane production in an upflow anaerobic bioelectrochemical reactor. Int. J. Hydrog. Energy 2017, 42, 27774–27783. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Yang, Y.; Quan, X.; Zhao, Z. Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel. Bioresour. Technol. 2017, 234, 303–309. [Google Scholar] [CrossRef]
- Zhuang, L.; Ma, J.; Yu, Z.; Wang, Y.; Tang, J. Magnetite accelerates syntrophic acetate oxidation in methanogenic systems with high ammonia concentrations. Microb. Biotechnol. 2018, 11, 710–720. [Google Scholar] [CrossRef]
- Liu, F.; Rotaru, A.; Shrestha, P.; Malvankar, N.; Nevin, K.; Lovley, D. Promoting direct interspecies electron transfer with activated carbon. Energy Environ. Sci. 2012, 5, 8982–8989. [Google Scholar] [CrossRef] [Green Version]
- Rotaru, A.; Shrestha, P.; Liu, F.; Markovaite, B.; Chen, S.; Nevin, K.; Lovley, D. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 2014, 80, 4599–4605. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Rotaru, A.; Liu, F.; Philips, J.; Woodard, T.; Nevin, K.; Lovley, D. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour. Technol. 2014, 173, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Rotaru, A.; Shrestha, P.; Malvankar, N.; Liu, F.; Fan, W.; Nevin, K.; Lovley, D. Promoting interspecies electron transfer with biochar. Sci. Rep. 2014, 4, 5019. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Chang, J.; Lin, C.; Pan, Y.; Cui, K.; Zhang, X.; Liang, P.; Huang, X. Enhancement of methanogenesis via direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae conducted by granular activated carbon. Bioresour. Technol. 2017, 245, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Ueki, T.; Nevin, K.; Rotaru, A.; Wang, L.; Ward, J.; Woodard, T.; Lovley, D. Geobacter strains expressing poorly conductive pili reveal constraints on direct interspecies electron transfer mechanisms. mBio 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Shen, N.; Xiao, Y.; Chen, Y.; Sun, F.; Kumar Tyagi, V.; Zhou, Y. The role of conductive materials in the start-up period of thermophilic anaerobic system. Bioresour. Technol. 2017, 239, 336–344. [Google Scholar] [CrossRef]
- Yan, W.; Lu, D.; Liu, J.; Zhou, Y. The interactive effects of ammonia and carbon nanotube on anaerobic digestion. Chem. Eng. J. 2019, 372, 332–340. [Google Scholar] [CrossRef]
- Ye, J.; Hu, A.; Ren, G.; Zhou, T.; Zhang, G.; Zhou, S. Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity. Bioresour. Technol. 2018, 247, 131–137. [Google Scholar] [CrossRef]
- Baek, G.; Kim, J.; Cho, K.; Bae, H.; Lee, C. The biostimulation of anaerobic digestion with (semi) conductive ferric oxides: Their potential for enhanced biomethanation. Environ. Biotechnol. 2015, 99, 10355–10366. [Google Scholar] [CrossRef]
- Pérez, C.; DeGrandpre, M.; Lagos, N.; Saldías, G.; Cascales, E.; Vargas, C. Effect of ferrihydrite biomineralization on methanogenesis in an anaerobic incubation from paddy soil. J. Geophys. Res. Biogeosci. 2015, 120, 673–692. [Google Scholar] [CrossRef]
- Jing, Y.; Wan, J.; Angelidaki, I.; Zhang, S.; Luo, G. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite. Water Res. 2017, 108, 212–221. [Google Scholar] [CrossRef]
- Yamada, C.; Kato, S.; Ueno, Y.; Ishii, M.; Igarashi, Y. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. J. Biosci. Bioeng. 2015, 119, 678–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, G.; Kim, J.; Lee, C. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent—Enhancement in process performance and stability. Bioresour. Technol. 2016, 222, 344–354. [Google Scholar] [CrossRef]
- Li, L.; Tong, Z.; Fang, C.; Chu, J.; Yu, H. Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Res. 2015, 70, 1–8. [Google Scholar] [CrossRef]
- Ambuchi, J.; Zhang, Z.; Shan, L.; Liang, D.; Zhang, P.; Feng, Y. Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment. Water Res. 2017, 117, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Dang, Y.; Holmes, D.; Zhao, Z.; Woodard, T.; Zhang, Y.; Sun, D.; Wang, L.; Nevin, K.; Lovley, D. Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresour. Technol. 2016, 220, 516–522. [Google Scholar] [CrossRef]
- Dang, Y.; Sun, D.; Woodard, T.; Wang, L.; Nevin, K.; Holmes, D. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials. Bioresour. Technol. 2017, 238, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Sun, D.; Dang, Y.; Chen, H.; Zhao, Z.; Zhang, Y.; Holmes, D. Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth. Bioresour. Technol. 2016, 222, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Lovley, D. Syntrophy goes electric: Direct interspecies electron transfer. Annu. Rev. Microbiol. 2017, 71, 643–664. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Woodard, T.; Nevin, K.; Lovley, D. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour. Technol. 2015, 191, 140–145. [Google Scholar] [CrossRef]
- Barua, S.; Dhar, B. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresour. Technol. 2017, 244, 698–707. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.; Urgun-Demirtas, M.; Schoene, R.; Snyder, S. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal. Appl. Energy 2015, 158, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zhang, Y.; Yu, Q.; Dang, Y.; Li, Y.; Quan, X. Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate. Water Res. 2016, 102, 475–484. [Google Scholar] [CrossRef]
- Salvador, A.; Martins, G.; Melle-franco, M.; Serpa, R.; Stams, A.; Cavaleiro, A.; Pereira, M.; Alves, M. Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture. Environ. Microbiol. 2017, 19, 2727–2739. [Google Scholar] [CrossRef] [Green Version]
- Hirano, S.; Matsumoto, N.; Morita, M.; Sasaki, K.; Ohmura, N. Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus. Lett. Appl. Microbiol. 2013, 56, 315–321. [Google Scholar] [CrossRef]
- Gu, M.; Yin, Q.; Liu, Y.; Du, J.; Wu, G. New insights into the effect of direct interspecies electron transfer on syntrophic methanogenesis through thermodynamic analysis. Bioresour. Technol. Rep. 2019, 7, 100225. [Google Scholar] [CrossRef]
- Ishii, S.; Suzuki, S.; Tenney, A.; Nealson, K.; Bretschger, O. Comparative metatranscriptomics reveals extracellular electron transfer pathways conferring microbial adaptivity to surface redox potential changes. ISME J. 2018, 12, 2844–2863. [Google Scholar] [CrossRef]
- Ammar, Y.; Swailes, D.; Bridgens, B.; Chen, J. Influence of surface roughness on the initial formation of biofilm. Surf. Coat. Technol. 2015, 284, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Medilanski, E.; Kaufmann, K.; Wick, L.Y.; Wanner, O.; Harms, H. Influence of the surface topography of stainless steel on bacterial adhesion. Biofouling 2002, 18, 193–203. [Google Scholar] [CrossRef]
- Habouzit, F.; Gévaudan, G.; Hamelin, J.; Steyer, J.; Bernet, N. Influence of support material properties on the potential selection of Archaea during initial adhesion of a methanogenic consortium. Bioresour. Technol. 2011, 102, 4054–4060. [Google Scholar] [CrossRef]
- Martins, G.; Salvador, A.; Pereira, L.; Alves, M. Methane production and conductive materials: A critical review. Environ. Sci. Technol. 2018, 52, 10241–10253. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Guo, R.; Shi, X.; Wang, C.; Wang, L.; Dai, M. Magnetite nanoparticles enable a rapid conversion of volatile fatty acids to methane. RSC Adv. 2016, 6, 25662–25668. [Google Scholar] [CrossRef]
- Kondaveeti, S.; Min, B. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels. Water Res. 2015, 87, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Choi, O.; Sang, B.I. Extracellular electron transfer from cathode to microbes: Application for biofuel production. Biotechnol. Biofuels 2016, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Reddy, C.; Min, B. In situ integration of microbial electrochemical systems into anaerobic digestion to improve methane fermentation at different substrate concentrations. Int. J. Hydrog. Energy 2018, 44, 2–11. [Google Scholar] [CrossRef]
- Lee, B.; Park, J.G.; Shin, W.B.; Tian, D.J.; Jun, H.B. Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells. Bioresour. Technol. 2017, 234, 273–280. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Chen, S.; Quan, X. Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode. Chem. Eng. J. 2015, 259, 787–794. [Google Scholar] [CrossRef]
- Linji, X.; Wenzong, L.; Yining, W.; Aijie, W.; Shuai, L.; Wei, J. Optimizing external voltage for enhanced energy recovery from sludge fermentation liquid in microbial electrolysis cell. Int. J. Hydrog. Energy 2013, 38, 15801–15806. [Google Scholar] [CrossRef]
- Choi, K.; Kondaveeti, S.; Min, B. Bioelectrochemical methane (CH4) production in anaerobic digestion at different supplemental voltages. Bioresour. Technol. 2017, 245, 826–832. [Google Scholar] [CrossRef]
- De Vrieze, J.; Gildemyn, S.; Arends, J.; Vanwonterghem, I.; Verbeken, K.; Boon, N.; Verstraete, W.; Tyson, G.; Hennebel, T.; Rabaey, K. Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Res. 2014, 54, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Lee, C. Bioelectrochemical enhancement of methane production in anaerobic digestion of food waste. Int. J. Hydrog. Energy 2018, 44, 1–10. [Google Scholar] [CrossRef]
- Hagos, K.; Liu, C.; Lu, X. Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: Employing catalyzed stainless steel mesh cathode. Chin. J. Chem. Eng. 2018, 26, 574–582. [Google Scholar] [CrossRef]
- Liu, W.; Cai, W.; Guo, Z.; Wang, L.; Yang, C.; Varrone, C.; Wang, A. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production. Renew. Energy 2016, 91, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Lee, B.; Tian, D.; Jun, H. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell. Bioresour. Technol. 2018, 247, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Han, T.; Guo, Z.; Varrone, C.; Wang, A.; Liu, W. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis. Bioresour. Technol. 2016, 208, 13–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noori, M.; Vu, M.; Ali, R.; Min, B. Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion. Chem. Eng. J. 2019, 123689. [Google Scholar] [CrossRef]
- Deutzmann, J.; Sahin, M.; Spormann, A. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beese-Vasbender, P.; Grote, J.; Garrelfs, J.; Stratmann, M.; Mayrhofer, K. Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon. Bioelectrochemistry 2015, 102, 50–55. [Google Scholar] [CrossRef]
- Gregory, K.; Bond, D.; Lovley, D. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 2004, 6, 596–604. [Google Scholar] [CrossRef]
- Thrash, J.; Coates, J. Review: Direct and indirect electrical stimulation of microbial metabolism. Environ. Sci. Technol. 2008, 42, 3921–3931. [Google Scholar] [CrossRef]
- Wei, J.; Liang, P.; Huang, X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102, 9335–9344. [Google Scholar] [CrossRef]
- Guo, K.; Prévoteau, A.; Patil, S.; Rabaey, K. Engineering electrodes for microbial electrocatalysis. Curr. Opin. Biotechnol. 2015, 33, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Nelabhotla, A.; Dinamarca, C. Bioelectrochemical CO2 reduction to methane: MES integration in biogas production processes. Appl. Sci. 2019, 9, 1056. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Cheng, C.; Thomas, A. Carbon-based microbial-fuel-cell electrodes: From conductive supports to active catalysts. Adv. Mater. 2016, 29. [Google Scholar] [CrossRef] [PubMed]
- Yee, M.; Snoeyenbos-west, O.; Thamdrup, B.; Ottosen, L.; Rotaru, A. Extracellular electron uptake by two methanosarcina species. Front. Energy Res. 2019, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kouzuma, A.; Kato, S.; Watanabe, K. Microbial interspecies interactions: Recent findings in syntrophic consortia. Front. Microbiol. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, P.; Rotaru, A.; Summers, Z.; Shrestha, M.; Liu, F.; Lovley, D. Transcriptomic and genetic analysis of direct interspecies electron transfer. Appl. Environ. Microbiol. 2013, 79, 2397–2404. [Google Scholar] [CrossRef] [Green Version]
- Rice, M.; Soils, P.; Holmes, D.; Shrestha, P.; Walker, D.; Dang, Y.; Nevin, K.; Woodard, T.; Lovley, D. Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils. Appl. Environ. Microbiol. 2017, 83, 1–11. [Google Scholar]
- Zhao, Z.; Zhang, Y.; Wang, L.; Quan, X. Potential for direct interspecies electron transfer in an electric- anaerobic system to increase methane production from sludge digestion. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef]
- Tian, T.; Qiao, S.; Yu, C.; Yang, Y.; Zhou, J. Low-temperature anaerobic digestion enhanced by bioelectrochemical systems equipped with graphene/PPy- and MnO2 nanoparticles/PPy-modified electrodes. Chemosphere 2019, 218, 119–127. [Google Scholar] [CrossRef]
- Tian, T.; Qiao, S.; Li, X.; Zhang, M.; Zhou, J. Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour. Technol. 2017, 224, 41–47. [Google Scholar] [CrossRef]
- Ziels, R.; Nobu, M.; Sousa, D. Elucidating syntrophic butyrate-degrading populations in anaerobic digesters using stable isotope-informed genome-resolved metagenomics. Msystems 2019, 4, 563387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, R.; Nobu, M.; Narihiro, T.; Yu, J.; Sathyagal, A.; Willman, E.; Liu, W. Novel Geobacter species and diverse methanogens contribute to enhanced methane production in media-added methanogenic reactors. Water Res. 2018, 147, 403–412. [Google Scholar] [CrossRef]
- Cruz Viggi, C.; Casale, S.; Chouchane, H.; Askri, R.; Fazi, S.; Cherif, A.; Zeppilli, M.; Aulenta, F. Magnetite nanoparticles enhance the bioelectrochemical treatment of municipal sewage by facilitating the syntrophic oxidation of volatile fatty acids. J. Chem. Technol. Biotechnol. 2019, 94, 3134–3146. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Li, Q.; Gao, X.; Wang, X. Sawdust-derived biochar much mitigates VFAs accumulation and improves microbial activities to enhance methane production in thermophilic anaerobic digestion. ACS Sustain. Chem. Eng. 2018, 7, 2141–2150. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Park, H. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresour. Technol. 2016, 205, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Yang, H.; Yang, H.; Wang, H.; Zheng, D.; Liu, Y.; Pu, X.; Deng, L. Improved biogas production of dry anaerobic digestion of swine manure. Bioresour. Technol. 2019, 294, 122188. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Han, R.; Zhang, Y.; He, C.; Liu, H. Differentiated stimulating effects of activated carbon on methanogenic degradation of acetate, propionate and butyrate. Waste Manag. 2018, 76, 394–403. [Google Scholar] [CrossRef]
- Ma, W.; Li, H.; Zhang, W.; Shen, C.; Wang, L.; Li, Y.; Li, Q.; Wang, Y. TiO2 nanoparticles accelerate methanogenesis in mangrove wetlands sediment. Sci. Total Environ. 2020, 713, 136602. [Google Scholar] [CrossRef]
- Lohner, S.; Deutzmann, J.; Logan, B.; Leigh, J.; Spormann, A. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J. 2014, 8, 1673–1681. [Google Scholar] [CrossRef] [Green Version]
- Mayer, F.; Enzmann, F.; Lopez, A.; Holtmann, D. Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide. Bioresour. Technol. 2019, 289, 121706. [Google Scholar] [CrossRef]
- Kracke, F.; Wong, A.B.; Maegaard, K.; Deutzmann, J.; Hubert, M.; Hahn, C.; Jaramillo, T.; Spormann, A. Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis. Commun. Chem. 2019, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ketep, S.; Bergel, A.; Calmet, A.; Erable, B. Stainless steel foam increases the current produced by microbial bioanodes in bioelectrochemical systems. Energy Environ. Sci. 2014, 7, 1633–1637. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Nie, H.; Bain, T.; Lu, H.; Cui, M.; Snoeyenbos-West, O.; Franks, A.; Nevin, K.; Russell, T.; Lovley, D. Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 2013, 6, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Catania, C.; Bazan, G.; Du, J.; Catania, C.; Bazan, G. Modification of abiotic-biotic interfaces with small molecules and nanomaterials for improved bioelectronics modification of abiotic-biotic interfaces with small molecules and nanomaterials for improved bioelectronics. Chem. Mater. 2013, 26, 686–697. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, L.; Wang, L.; Liu, W.; Wang, A. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow bio film reactor with conductive granular graphite fillers. Front. Environ. Sci. Eng. 2018, 12, 13. [Google Scholar] [CrossRef]
- Cerrillo, M.; Viñas, M.; Bonmatí, A. Unravelling the active microbial community in a thermophilic anaerobic digester-microbial electrolysis cell coupled system under different conditions. Water Res. 2017, 110, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; He, C.; Luo, L.; Lü, F.; He, P.; Cui, L. Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. Bioresour. Technol. 2015, 196, 606–612. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Li, Y.; Zhu, T.; Yu, Q.; Wang, T.; Liang, S.; Zhang, Y. Why do DIETers like drinking: Metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol. Water Res. 2019, 171, 115425. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, Z.; Zhang, Y. Using straw as a bio-ethanol source to promote anaerobic digestion of waste activated sludge. Bioresour. Technol. 2019, 286, 121388. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; He, J.; Zhang, Y. Establishing direct interspecies electron transfer during laboratory-scale anaerobic digestion of waste activated sludge via biological ethanol-type fermentation pretreatment. ACS Sustain. Chem. Eng. 2018, 6, 13066–13077. [Google Scholar] [CrossRef]
- Yee, M.; Deutzmann, J.; Spormann, A.; Rotaru, A. Cultivating electroactive microbes—From field to bench. Nanotechnology 2020, 31, 1–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Steendam, C.; Smets, I.; Skerlos, S.; Raskin, L. Improving anaerobic digestion via direct interspecies electron transfer requires development of suitable characterization methods. Curr. Opin. Biotechnol. 2019, 57, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Neu, J.; Yi, S.; Gu, Y.; O’Brien, J.; Srikanth, V.; Vu, D.; Schmuttenmaer, C.; Malvankar, N. Terahertz-conductivity in biological nanowire-networks. In Proceedings of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar]
- Malvankar, N.; Vargas, M.; Nevin, K.; Franks, A.; Leang, C.; Kim, B.; Inoue, K.; Mester, T.; Covalla, S.; Johnson, J.; et al. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 2011, 6, 573–579. [Google Scholar] [CrossRef]
- Shrestha, P.; Rotaru, A.; Comolli, L.; Berkeley, L. Plugging in or going wireless: Strategies for interspecies electron transfer. Front. Microbiol. 2014, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gu, Y.; O’Brien, J.; Yi, S.; Yalcin, S.; Srikanth, V.; Shen, C.; Vu, D.; Ing, N.; Hochbaum, A.; et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 2019, 177, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Gao, H.; Ward, J.; Xiaorong, L.; Yin, B.; Fu, T.; Chen, J.; Lovley, D.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 577, 1–5. [Google Scholar] [CrossRef]
Reaction | Type of Reaction | Equation | ∆G0 (kJ/mol) | Reference | |
---|---|---|---|---|---|
Ethanol to CH4 | IIET | CH3CH2OH + H2O | → CH3COO− + H+ + 2H2 | +9.7 | [40] |
DIET | CH3CH2OH + H2O | → CH3COO− + 5H+ + 4e− | −149.6 | [40] | |
Propionate to CH4 | IIET | CH3CH2COO− + 3H2O | → CH3COO− + HCO3− + H+ + 3H2 | +76.5 | [40] |
DIET | CH3CH2COO− + 3H2O | → CH3COO− + HCO3− + 7H+ + 6e− | −162.5 | [40] | |
CH4 oxidation | IIET | CH4 + 3H2O | → HCO3− + H+ + 4H2 | +135.6 | [40] |
DIET | CH4 +3H2O | → HCO3− + 9H+ + 8e− | −183.1 | [40] | |
Phenol to CH4 | IIET | C6H5OH + 5H2O | → 3C2H4O2 + 2H2 | +150.5 | [29] |
DIET | C6H5OH + 5H2O | → 3C2H4O2 + 4H+ + 4e− | −9.0 | [29] | |
Oleate to CH4 | IIET | C18H33O2− + 16H2O | → 9C2H3O2− + 15H2 + 8H+ | +340.9 | [43] |
DIET | C18H33O2− + 16H2O | → 9C2H3O2− + 38H+ + 30e− | −641.1 | [43] |
Conductive Material | Particle Size (μm) | Concentration | Substrate | Operation | Improvement/Deterioration (%) a | Reference |
---|---|---|---|---|---|---|
Granular activated carbon | 1220–1430 | 10 g/L | Glucose | Batch | +168 (CH4 production rate) | [55] |
Single wall carbon nanotubes | 0.001–0.002 | 1 g/L | Glucose | Batch | +92 (CH4 production rate) | [55] |
Sucrose | Continuous | – −2 (CH4 production) | [63] | |||
Carbon nanotubes | 0.001–0.002 | 5 g/L | Glucose | Batch | +2 (CH4 yield) | [56] |
Stainless steel | 500–2000 | 26 g/L | Sodium lactate | Continuous | +8–+25 (CH4 production) | [47] |
Red mud | - | 20 g/L | Waste activated sludge | Batch | +36 (CH4 production) | [57] |
Ferric oxyhydroxide | - | 20 mM Fe | Whey | Batch | +173 (CH4 production Rate) | [58] |
Ferrihydrite | - | 25 mM | Acetate | Batch | +15 (CH4 production) | [59] |
Magnetite | 0.05–0.70 | 5–25 mM | Whey, propionate, acetate, butyrate | Batch | +36–+203 (CH4 production rate) −4–+44 (CH4 production) | [48,58,60,61,62] |
Electrode Type | Applied Voltage (V vs. SHE) | Electrode Surface Area (cm2) | Substrate | CH4 Production Improvement (%) | Reference |
---|---|---|---|---|---|
Carbon felt | −0.5 | 60 | Waste activated sludge + Molasses | 50 | [89] |
Carbon fiber brush | −1.0 | ND a | Glucose | 36 | [84] |
−1.1 | ND a | Glucose | 30 | [88] | |
Carbon nanotubes | −1.1 | ND a | Food waste | 20 | [90] |
Carbon cloth + Cobalt phosphorous catalyst | −0.8 | 12 | Mixture of glucose, starch granule, beef extract, xylose, and cellulose | 48 | [91] |
Ti/Ru alloy mesh plates | −1.8 | 20 | Sewage sludge | 1360 | [32] |
Carbon cloth + Pt | −0.8 | 162 | Waste activated sludge | 200 | [92] |
Fe tube + Graphite pillar | −0.3 | 45 | Waste activated sludge | 22 | [86] |
Graphite carbon + Ni | −0.3 | ND a | Food waste | 70 | [93] |
Titanium mesh | −0.3 | 40 | Glycerol | 60 | [3] |
Stainless steel | −0.8 | ND a | Glycose | 52 | [94] |
Main Carbon Source | DIET Stimulator | Enriched Methanogens | Metabolic | Reference |
---|---|---|---|---|
Butyrate, propionate, and acetate | Magnetite nanoparticles | Methanobacterium sp. | Hydrogentrophic | [113] |
Glucose | Bioelectrochemical system with graphene/polypyrrole | Methanoregula sp. | Hydrogentrophic | [109] |
Food waste and Sewage sludge | Sawdust-derived biochar | Methanothermobacter sp. | Hydrogentrophic | [114] |
Glucose | Magnetite | Methanobacterium sp. | Hydrogentrophic | [7] |
Acetic acid | Granular active carbon | Methanospirillaceae sp. | Hydrogentrophic | [115] |
Glycerol | Magnetite | Methanomassiliicoccus sp. | Hydrogentrophic | [3] |
Swine manure | Granular active carbon | Methanosaeta sp. | Acetoclastic | [116] |
Glucose | Nano-graphene | Methanosaeta sp. | Acetoclastic | [110] |
Ethanol and glucose | Powered activated carbon | Methanosarcina sp. | Acetoclastic | [117] |
Sodium acetate, sodium propionate, and sodium butyrate | TiO2 nanoparticles | Methanobacterium sp. and Methanosarcina sp. | Hydrogentrophic and acetoclastic | [118] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, A.; Im, S.; Song, Y.-C.; Ahn, Y.; Kim, D.-H. Enhanced Anaerobic Digestion by Stimulating DIET Reaction. Processes 2020, 8, 424. https://doi.org/10.3390/pr8040424
Mostafa A, Im S, Song Y-C, Ahn Y, Kim D-H. Enhanced Anaerobic Digestion by Stimulating DIET Reaction. Processes. 2020; 8(4):424. https://doi.org/10.3390/pr8040424
Chicago/Turabian StyleMostafa, Alsayed, Seongwon Im, Young-Chae Song, Yongtae Ahn, and Dong-Hoon Kim. 2020. "Enhanced Anaerobic Digestion by Stimulating DIET Reaction" Processes 8, no. 4: 424. https://doi.org/10.3390/pr8040424
APA StyleMostafa, A., Im, S., Song, Y. -C., Ahn, Y., & Kim, D. -H. (2020). Enhanced Anaerobic Digestion by Stimulating DIET Reaction. Processes, 8(4), 424. https://doi.org/10.3390/pr8040424