Characteristics and Treatment of Wastewater from the Mercaptan Oxidation Process: A Comprehensive Review
Abstract
:1. Introduction
2. SC Characteristics
- Strong odors of sulfides and mercaptans: the odor traces of these compounds are in the order of parts per billion. As is known, these compounds are highly toxic even at minimal concentrations.
- High phenol concentrations: phenol is a highly inhibiting compound of biological activity. Deficient concentrations of phenol have been shown to inhibit the biological removal of organic matter.
- High concentrations of bio-refractory material: the presence of cresylic and naphthenic acids, which are difficult to biodegrade, is another problem associated with SC. Naphthenic acids facilitate foaming formation.
3. Treatment Methods of SC
3.1. Initial Considerations
- The presence of phenols inhibits, at a specific concentration, the healthy metabolism of the microorganisms that operate in the biological process.
- Spent sodas contain some low biodegradable compounds, such as naphthenic acids.
- The presence of naphthenic acids may result in operational issues in aerobic processes through foam formation.
- The high COD concentration in SC makes impossible their direct treatment.
- They have a high pH, which is not adequate for the development of microorganisms.
3.2. Wet Air Oxidation (WAO)
3.3. Acid Neutralization
3.4. Advanced Oxidation Process (AOP)
3.4.1. Ozone and UV Radiation (O3/UV)
3.4.2. Hydrogen Peroxide and UV Radiation (H2O2/UV)
3.4.3. Ozone with Hydrogen Peroxide
3.4.4. Ozone, Hydrogen Peroxide and UV Radiation (O3/H2O2/UV)
3.4.5. Ozonation and Ultrasound
3.4.6. Fenton Reagent
3.5. Electrochemical Processes
3.6. Biological Processes
3.7. Other Processes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abolghasem, K.; Kharaji, A.G.; Mehrabani-Zeinabad, A.; Faizi, V.; Kazemi, J.; Shariati, A. Synergy between two natural gas sweetening processes. J. Unconv. Oil Gas Resour. 2016, 14, 6–11. [Google Scholar]
- Heidarinasab, A.; Hashemi, S.R. A study of biological treatment of spent sulfidic caustic. In Proceedings of the International Conference on Chemical, Ecology and Environmental Sciences (ICCEES’2011), Pattaya, Thailand, 17–18 December 2011. [Google Scholar]
- Hashemi, S.R.; Heidarinasab, A. Spent Caustic Bioregeneration by using Thiobacillus denitrificans Bacteria. World Acad. Sci. Eng. Technol. 2012, 67, 417–419. [Google Scholar]
- Hawari, A.; Ramadan, H.; Abu-Reesh, I.; Ouederni, M. A comparative study of the treatment of ethylene plant spent caustic by neutralization and classical and advanced oxidation. J. Environ. Manag. 2015, 151, 105–112. [Google Scholar] [CrossRef]
- De Graaff, M.; Klok, J.B.M.; Bijmans, M.F.M.; Muyzer, G.; Janssen, A.J.H. Application of a 2-step process for the biological treatment of sulfidic spent caustics. Water Res. 2012, 46, 723–730. [Google Scholar] [CrossRef]
- Conner, J.A.; Beitle, R.R.; Duncan, K.; Kolhatkar, R.; Sublette, K.L. Biotreatment of Refinery Spent-Sulfidic Caustic Using an Enrichment Culture Immobilized in a Novel Support Matrix. Appl. Biochem. Biotechnol. 2003, 84, 707–719. [Google Scholar]
- Nasr Esfahani, K.; Farhadian, M.; Solaimany Nazar, A.R. Interaction effects of various reaction parameters on the treatment of sulfidic spent caustic through electro-photo-Fenton. Int. J. Environ. Sci. Technol. 2019, 16, 7165–7174. [Google Scholar] [CrossRef]
- Karimi, A.; Fatehifar, E.; Alizadeh, R.; Ahadzadeh, I. Regeneration and treatment of sulfidic spent caustic using analytic hierarchy process. Environ. Heal. Eng. Manag. 2016, 3, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Park, J.J.; Seo, K.S.; Choi, G.C.; Lee, T.H. Simultaneous autotrophic & heterotrophic denitrification by the injection of reformed spent sulfidic caustic (SSC) in a pilot-scale sewage treatment plant. Korean J. Chem. Eng. 2013, 30, 139–144. [Google Scholar]
- Al Jabari, M. Spent Caustic Treatment Using Advanced Oxidation Processes. Master’s Thesis, University of Sharjah, Sharjah, UAE, 2012. [Google Scholar]
- Veerabhadraiah, G.; Mallika, N.; Jindal, S. Spent caustic management: Remediation review. Hydrocarb. Process. 2011, 90, 41–46. [Google Scholar]
- Park, J.J.; Byun, I.G.; Park, S.R.; Lee, J.H.; Park, S.H.; Park, T.J.; Lee, T.H. Use of spent sulfidic caustic for autotrophic denitrification in the biological nitrogen removal processes: Lab-scale and pilot-scale experiments. J. Ind. Eng. Chem. 2009, 15, 316–322. [Google Scholar] [CrossRef]
- Alnaizy, R. Economic analysis for wet oxidation processes for the treatment of mixed refinery spent caustic. Environ. Prog. 2008, 27, 295–301. [Google Scholar] [CrossRef]
- Duesel, B.F.; Gibbons, J.P.; Rutsch, M.J. Treatment of Spent Caustic Refinery Effluents. U.S. Patent 7,214,290, 8 May 2007. [Google Scholar]
- Sipma, J.; Svitelskaya, A.; Van Der Mark, B.; Hulshoff Pol, L.W.; Lettinga, G.; Buisman, C.J.N.; Janssen, A.J.H. Potentials of biological oxidation processes for the treatment of spent sulfidic caustics containing thiols. Water Res. 2004, 38, 4331–4340. [Google Scholar] [CrossRef] [PubMed]
- Sabri, M.A.; Ibrahim, T.H.; Khamis, M.I.; Nancarrow, P.; Hassan, M.F. Spent caustic treatment using hydrophobic room temperatures ionic liquids. J. Ind. Eng. Chem. 2018, 65, 325–333. [Google Scholar] [CrossRef]
- Ben Hariz, I.; Halleb, A.; Adhoum, N.; Monser, L. Treatment of petroleum refinery sulfidic spent caustic wastes by electrocoagulation. Sep. Purif. Technol. 2013, 107, 150–157. [Google Scholar] [CrossRef]
- Kumfer, B.; Felch, C.; Maugans, C. Wet air oxidation treatment of spent caustic in petroleum refineries. In Proceedings of the National Petroleum Refiners Association Conference, Phoenix, AZ, USA, 21–23 March 2010; Volume 23, pp. 49–67. [Google Scholar]
- Ahmad, W. Neutralization of Spent Caustic from LPG Plant at Preem AB Göteborg. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2010. [Google Scholar]
- Huaman, F.; Davila Villar, N. Disposal of Spent Caustic at the Repsol YPF Refinery in La Pampilla, Peru. In Proceedings of the Environmental Conference, Austin, TX, USA, 24–25 September 2007. [Google Scholar]
- Ellis, C.E. Wet air oxidation of refinery spent caustic. Environ. Prog. 1998, 17, 28–30. [Google Scholar] [CrossRef]
- Singh, S. Shikha Treatment and Recycling of Wastewater from Oil Refinery/Petroleum Industry. In Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future; Springer: Singapore, 2019; pp. 303–332. [Google Scholar]
- Tobiszewski, M.; Tsakovski, S.; Simeonov, V.; Namieśnik, J. Chlorinated solvents in a petrochemical wastewater treatment plant: An assessment of their removal using self-organising maps. Chemosphere 2012, 87, 962–968. [Google Scholar] [CrossRef]
- Hasan, D.B.; Abdul Aziz, A.R.; Daud, W.M.A.W. Oxidative mineralisation of petroleum refinery effluent using Fenton-like process. Chem. Eng. Res. Des. 2012, 90, 298–307. [Google Scholar] [CrossRef]
- Park, S.; Seon, J.; Byun, I.; Cho, S.; Park, T.; Lee, T. Comparison of nitrogen removal and microbial distribution in wastewater treatment process under different electron donor conditions. Bioresour. Technol. 2010, 101, 2988–2995. [Google Scholar] [CrossRef]
- Al Zarooni, M.; Elshorbagy, W. Characterization and assessment of Al Ruwais refinery wastewater. J. Hazard. Mater. 2006, 136, 398–405. [Google Scholar] [CrossRef]
- Copa, W.M.; Momont, J.A. Wet air oxidation of energetics and chemical agent surrogates. J. Energy Mater. 1995, 13, 235–258. [Google Scholar] [CrossRef]
- DeAngelo, D.J.; Wilhelmi, A.R. Wet air oxidation of spent caustic liquors. Chem. Eng. Prog 1983, 79, 3. [Google Scholar]
- Copa, W. Wet air oxidation of spent caustics. Natl. Environ. J. 1994, 4, 16–19. [Google Scholar]
- Matthews, R. Performance update: Low pressure wet air oxidation unit at grangemouth, Scotland. Environ. Prog. 1997, 16, 9–12. [Google Scholar] [CrossRef]
- Ellis, C.; Maugans, C.B. WAO treats spent caustic liquor in Asia and Brazil. Water Wastewater Int. 2004, 19, 35–36. [Google Scholar]
- Huaman, F.D.; Villar, N.; Felch, C.; Maugans, C.; Olsen, S. A highly refined effort. Water Wastewater Int. 2009, 24, 28–32. [Google Scholar]
- Chang, C.J.; Lin, J.-C.; Chen, C.-K. Effects of temperature and Cu2+ catalyst on liquid-phase oxidation of industrial wastewaters. J. Chem. Technol. Biotechnol. 1993, 57, 355–361. [Google Scholar] [CrossRef]
- Jagushte, M.V.; Mahajani, V.V. Insight into spent caustic treatment: On wet oxidation of thiosulfate to sulfate. J. Chem. Technol. Biotechnol. 1999, 74, 437–444. [Google Scholar] [CrossRef]
- Debellefontaine, H.; Foussard, J.N. Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste Manag. 2000, 20, 15–25. [Google Scholar] [CrossRef]
- Seyedin, S.; Hassanzadeganroudsari, M. Evaluation of the Different Methods of Spent Caustic Treatment. Int. J. Adv. Res. Sci. Eng. Technol. 2018, 5, 5275–5283. [Google Scholar]
- De Haan, S.; Howdeshell, M.; Maugans, C. Update: Spent caustic treatment. Hydrocarb. Process. 2010, 9, 61. [Google Scholar]
- Kim, K.H.; Ihm, S.K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. J. Hazard. Mater. 2011, 186, 16–34. [Google Scholar] [CrossRef]
- Zhu, W.; Bin, Y.; Li, Z.; Jiang, Z.; Yin, T. Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater. Water Res. 2002, 36, 1947–1954. [Google Scholar] [CrossRef]
- Janssen, A.J.; Lettinga, G.; Bontsema, J.; Van Straten, G.; Kuenen, J.G.; De Zwart, J.M.M. Biological Treatment of Spent Caustic. U.S. Patent 6,045,695, 4 April 2000. [Google Scholar]
- Oliviero, L.; Barbier, J.; Duprez, D.; Guerrero-Ruiz, A.; Bachiller-Baeza, B.; Rodríguez-Ramos, I. Catalytic wet air oxidation of phenol and acrylic acid over Ru/C and Ru-CeO 2 /C catalysts. Appl. Catal. B Environ. 2000, 25, 267–275. [Google Scholar] [CrossRef]
- Lei, L.; Hu, X.; Chu, H.P.; Chen, G.; Yue, P.L. Catalytic wet air oxidation of dyeing and printing wastewater. Water Sci. Technol. 1997, 35, 311–319. [Google Scholar] [CrossRef]
- Núñez, F.; Del Angel, G.; Tzompantzi, F.; Navarrete, J. Catalytic Wet-Air Oxidation of p-Cresol on Ag/Al2O3−ZrO2 Catalysts. Ind. Eng. Chem. Res. 2011, 50, 2495–2500. [Google Scholar] [CrossRef]
- Zermeño-Montante, I.; Nieto-Delgado, C.; Sagredo-Puente, R.D.; Cárdenas-Galindo, M.G.; Handy, B.E. Catalytic Wet Air Oxidation of Sodium Sulfide Solutions. Effect of the Metal-Support and Acidity of the Catalysts. Top. Catal. 2011, 54, 579–586. [Google Scholar] [CrossRef]
- Barge, A.S.; Vaidya, P.D. Kinetics of wet air oxidation of sodium sulfide over heterogeneous iron catalyst. Int. J. Chem. Kinet. 2019, 52, 92–98. [Google Scholar] [CrossRef]
- Barge, A.S.; Vaidya, P.D. Wet air oxidation of cresylic spent caustic—A model compound study over graphene oxide (GO) and ruthenium/GO catalysts. J. Environ. Manag. 2018, 212, 479–489. [Google Scholar] [CrossRef]
- Sheu, S.H.; Weng, H.S. Treatment of olefin plant spent caustic by combination of neutralization and fenton reaction. Water Res. 2001, 35, 2017–2021. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Zhang, M. Reduction of Ammineruthenium(III) by Sulfide Enables In Vivo Electrochemical Monitoring of Free Endogenous Hydrogen Sulfide. Anal. Chem. 2017, 89, 5382–5388. [Google Scholar] [CrossRef]
- Nuñez, P.; Hansen, H.K.; Rodriguez, N.; Guzman, J.; Gutierrez, C. Electrochemical Generation of Fenton’s Reagent to Treat Spent Caustic Wastewater. Sep. Sci. Technol. 2009, 44, 2223–2233. [Google Scholar] [CrossRef]
- Oprea, F.; Fendu, E.-M.; Nicolae, M.; Pantea, O.; Dunka, M. Experimental studies concerning treatment of the spent caustic solutions from refineries MEROX and EXOMER units. Rev. Chim. 2010, 61, 608–661. [Google Scholar]
- Poyatos, J.M.; Muñio, M.M.; Almecija, M.C.; Torres, J.C.; Hontoria, E.; Osorio, F. Advanced oxidation processes for wastewater treatment: State of the art. Water Air Soil Pollut. 2010, 205, 187–204. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S.; Sánchez-Pérez, J.A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Sci. Total Environ. 2011, 409, 4141–4166. [Google Scholar] [CrossRef]
- Shon, H.K.; Vigneswaran, S.; Snyder, S.A. Effluent organic matter (EfOM) in wastewater: Constituents, effects, and treatment. Crit. Rev. Environ. Sci. Technol. 2006, 36, 327–374. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Mabury, S. Hydroxyl Radical in Natural Waters. Ph.D. Thesis, University of California, Davis, CA, USA, 1993. [Google Scholar]
- Gurol, M.D.; Vatistas, R. Oxidation of phenolic compounds by ozone and ozone + u.v. radiation: A comparative study. Water Res. 1987, 21, 895–900. [Google Scholar] [CrossRef]
- Yu, Z.-Z.; Sun, D.-Z.; Li, C.-H.; Shi, P.-F.; Duan, X.-D.; Sun, G.-R.; Liu, J.-X. UV-catalytic treatment of spent caustic from ethene plant with hydrogen peroxide and ozone oxidation. J. Environ. Sci. 2004, 16, 272–275. [Google Scholar]
- Alaton, I.A.; Balcioglu, I.A.; Bahnemann, D.W. Advanced oxidation of a reactive dyebath effluent: Comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Res. 2002, 36, 1143–1154. [Google Scholar] [CrossRef]
- Gottschalk, C.; Libra, J.A.; Saupe, A. Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and Its Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9783527613342. [Google Scholar]
- Hernández, F.; Geissler, G. Photooxidative Treatment of Sulfurous Water for Its Potabilization. Photochem. Photobiol. 2005, 81, 636. [Google Scholar]
- Glaze, W.H.; Kang, J.W.; Chapin, D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987, 9, 335–352. [Google Scholar] [CrossRef]
- Yonar, T.; Yonar, G.K.; Kestioglu, K.; Azbar, N. Decolorisation of textile effluent using homogeneous photochemical oxidation processes. Color. Technol. 2005, 121, 258–264. [Google Scholar] [CrossRef]
- Shemer, H.; Narkis, N. Trihalomethanes aqueous solutions sono-oxidation. Water Res. 2005, 39, 2704–2710. [Google Scholar] [CrossRef]
- Fan, X.; Hao, H.; Shen, X.; Chen, F.; Zhang, J. Removal and degradation pathway study of sulfasalazine with Fenton-like reaction. J. Hazard. Mater. 2011, 190, 493–500. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, 98, 33–50. [Google Scholar] [CrossRef]
- Bianco, B.; De Michelis, I.; Vegliò, F. Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method. J. Hazard. Mater. 2011, 186, 1733–1738. [Google Scholar] [CrossRef]
- Isarain-Chávez, E.; Rodríguez, R.M.; Garrido, J.A.; Arias, C.; Centellas, F.; Cabot, P.L.; Brillas, E. Degradation of the beta-blocker propranolol by electrochemical advanced oxidation processes based on Fenton’s reaction chemistry using a boron-doped diamond anode. Electrochim. Acta 2010, 56, 215–221. [Google Scholar] [CrossRef]
- Lipczynska-Kochany, E.; Sprah, G.; Harms, S. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 1995, 30, 9–20. [Google Scholar] [CrossRef]
- Vilve, M.; Hirvonen, A.; Sillanpää, M. Effects of reaction conditions on nuclear laundry water treatment in Fenton process. J. Hazard. Mater. 2009, 164, 1468–1473. [Google Scholar] [CrossRef]
- Kulik, N.; Trapido, M.; Goi, A.; Veressinina, Y.; Munter, R. Combined chemical treatment of pharmaceutical effluents from medical ointment production. Chemosphere 2008, 70, 1525–1531. [Google Scholar] [CrossRef]
- Kang, Y.W.; Hwang, K.-Y. Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Res. 2000, 34, 2786–2790. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Al-Zuhair, S.; Al-Lobaney, A.; Makhlouf, S. Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. J. Environ. Manag. 2009, 91, 180–185. [Google Scholar] [CrossRef]
- Tezcan Un, U.; Koparal, A.S.; Bakir Ogutveren, U. Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes. J. Environ. Manag. 2009, 90, 428–433. [Google Scholar] [CrossRef]
- Vepsalainen, M.; Selin, J.; Rantala, P.; Pulliainen, M.; Sarkka, H.; Kuhmonen, K.; Bhatnagar, A.; Sillanpaa, M. Precipitation of dissolved sulphide in pulp and paper mill wastewater by electrocoagulation. Environ. Technol. 2011, 32, 1393–1400. [Google Scholar] [CrossRef]
- Asselin, M.; Drogui, P.; Brar, S.K.; Benmoussa, H.; Blais, J.-F. Organics removal in oily bilgewater by electrocoagulation process. J. Hazard. Mater. 2008, 151, 446–455. [Google Scholar] [CrossRef]
- Moreno-Casillas, H.A.; Cocke, D.L.; Gomes, J.A.G.; Morkovsky, P.; Parga, J.R.; Peterson, E. Electrocoagulation mechanism for COD removal. Sep. Purif. Technol. 2007, 56, 204–211. [Google Scholar] [CrossRef]
- Kabay, N.; Demircioglu, M.; Ersöz, E.; Kurucaovali, I. Removal of calcium and magnesium hardness by electrodialysis. Desalination 2002, 149, 343–349. [Google Scholar] [CrossRef]
- Kumar, M.; Tripathi, B.P.; Saxena, A.; Shahi, V.K. Electrochemical membrane reactor: Synthesis of quaternary ammonium hydroxide from its halide by in situ ion substitution. Electrochim. Acta 2009, 54, 1630–1637. [Google Scholar] [CrossRef]
- Feng, H.; Huang, C.; Xu, T. Production of Tetramethyl Ammonium Hydroxide Using Bipolar Membrane Electrodialysis. Ind. Eng. Chem. Res. 2008, 47, 7552–7557. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, Y.; Zhang, X.; Xu, T. Comparative study on regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED) and electro-electrodialysis (EED). Sep. Purif. Technol. 2013, 118, 1–5. [Google Scholar] [CrossRef]
- Kubo, D.; Kawase, Y. Hydroxyl radical generation in electro-Fenton process with in situ electro-chemical production of Fenton reagents by gas-diffusion-electrode cathode and sacrificial iron anode. J. Clean. Prod. 2018, 203, 685–695. [Google Scholar] [CrossRef]
- Davarnejad, R.; Bakhshandeh, M. Olefin plant spent caustic wastewater treatment using electro-Fenton technique. Egypt. J. Pet. 2018, 27, 573–581. [Google Scholar] [CrossRef]
- Guerrero, L.; Montalvo, S.; Huiliñir, C.; Campos, J.L.; Barahona, A.; Borja, R. Advances in the biological removal of sulphides from aqueous phase in anaerobic processes: A review. Environ. Rev. 2015, 24, 84–100. [Google Scholar] [CrossRef] [Green Version]
- Sawasdee, V.; Pisutpaisal, N. Simultaneous pollution treatment and electricity generation of tannery wastewater in air-cathode single chamber MFC. Int. J. Hydrogen Energy 2016, 41, 15632–15637. [Google Scholar] [CrossRef]
- Logan, B.E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337, 686–690. [Google Scholar] [CrossRef] [Green Version]
- Fazli, N.; Mutamim, N.S.A.; Jafri, N.M.A.; Ramli, N.A.M. Microbial Fuel Cell (MFC) in treating spent caustic wastewater: Varies in Hydraulic Retention Time (HRT) and Mixed Liquor Suspended Solid (MLSS). J. Environ. Chem. Eng. 2018, 6, 4339–4346. [Google Scholar] [CrossRef]
- Keramati, N.; Moheb, A.; Ehsani, M.R. Effect of operating parameters on NaOH recovery from waste stream of Merox tower using membrane systems: Electrodialysis and electrodeionization processes. Desalination 2010, 259, 97–102. [Google Scholar] [CrossRef]
- Delgado Vela, J.; Dick, G.J.; Love, N.G. Sulfide inhibition of nitrite oxidation in activated sludge depends on microbial community composition. Water Res. 2018, 138, 241–249. [Google Scholar] [CrossRef] [Green Version]
- De Graaff, M.; Bijmans, M.F.M.; Abbas, B.; Euverink, G.-J.W.; Muyzer, G.; Janssen, A.J.H. Biological treatment of refinery spent caustics under halo-alkaline conditions. Bioresour. Technol. 2011, 102, 7257–7264. [Google Scholar] [CrossRef] [Green Version]
- Rajganesh, B.; Sublette, K.L.; Camp, C.; Richardson, M.R. Biotreatment of Refinery Spent Sulfidic Caustics. Biotechnol. Prog. 1995, 11, 228–230. [Google Scholar] [CrossRef]
- Gholipour, S.; Mehrkesh, P.; Azin, E.; Nouri, H.; Rouhollahi, A.A.; Moghimi, H. Biological treatment of toxic refinery spent sulfidic caustic at low dilution by sulfur-oxidizing fungi. J. Environ. Chem. Eng. 2018, 6, 2762–2767. [Google Scholar] [CrossRef]
- Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2084. [Google Scholar] [CrossRef] [PubMed]
- Abulhassani, J.; Manzoori, J.L.; Amjadi, M. Hollow fiber based-liquid phase microextraction using ionic liquid solvent for preconcentration of lead and nickel from environmental and biological samples prior to determination by electrothermal atomic absorption spectrometry. J. Hazard. Mater. 2010, 176, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Paulino, J.F.; Afonso, J.C. New strategies for treatment and reuse of spent sulfidic caustic stream from petroleum industry. Química Nov. 2012, 35, 1447–1452. [Google Scholar] [CrossRef] [Green Version]
Parameters | SMC | Sulfidic | Cresylic | Naphtenic | Reference |
---|---|---|---|---|---|
pH | - | 11–12.5 | - | - | [7] |
- | 12–13.5 | - | - | [8] | |
- | 13.1–13.5 | - | - | [9] | |
7.5–13 | - | - | - | [10] | |
- | 11.2 -13 | - | - | [5] | |
- | 12–14 | 12–14 | 12–14 | [11] | |
- | 13.1–13.5 | - | - | [12] | |
- | 13–14 | 12–14 | 12–14 | [13] | |
- | 13–14 | 12–14 | 12–14 | [14] | |
- | 11.6–12.5 | - | - | [15] | |
COD (g O2/L) | - | 7.5–60 | - | - | [7] |
60.3–68.1 | - | - | [16] | ||
100–200 | - | - | [8] | ||
20–60 | - | - | [17] | ||
13.1–98.8 | - | - | - | [10] | |
- | 62.7 | - | - | [18] | |
49.3 1 | - | - | - | [18] | |
74 | - | - | - | [18] | |
261 | - | - | - | [19] | |
- | 5–90 | 50–100 | 150–240 | [20] | |
- | 66.7–156.5 | - | - | [15] | |
114 | - | - | - | [21] | |
TOC (g C/L) | - | 6–20 | - | - | [17] |
1.6–23.6 | - | - | - | [10] | |
92 | - | - | - | [19] | |
- | 7.6 | - | - | [18] | |
- | 1–1.6 | - | - | [12] | |
- | 2–3 | 24–60 | 10–24 | [20] | |
BOD5 (mg O2 /L) | - | 5000–10,000 | - | - | [17] |
- | 18,100 | - | - | [18] | |
20,100 1 | - | - | - | [18] | |
Sulfides (mg/L) | - | 5000–20,000 | - | - | [7] |
- | 80–90 | - | - | [8] | |
34,500 | - | - | [17] | ||
6500–22,500 | - | - | - | [10] | |
- | 5100–7700 | - | - | [7] | |
- | 17,800 | - | - | [18] | |
8040 | - | - | - | [18] | |
- | 15,200–17,600 | - | - | [12] | |
- | 2000–52,000 | 0–63 | <1 | [20] | |
- | 0–1 | 0.1 | [14] | ||
30,600–66,800 | - | - | [15] | ||
24,000 | - | - | - | [21] | |
Sulfides (% w/w) | - | 1–4 | - | - | [17] |
- | 0.5–4 | 0–1 | 0–0.1 | [11] | |
1.4 | - | - | - | [19] | |
- | 0.5–4 | 0–4 | 0–0.1 | [4] | |
- | 0.5–4 | - | - | [14] | |
- | 0–5 | - | - | [7] | |
- | 2–300 | - | - | [8] | |
- | 0–2000 | - | - | [17] | |
1.6–20 | - | - | - | [10] | |
Phenols (mg/L) | 1990 1 | - | - | - | [18] |
6110 | - | - | - | [18] | |
- | 1.8–33.8 | - | - | [12] | |
540 | - | - | - | [21] | |
- | 0–30,000 | - | - | [8] | |
Mercaptans (mg/L) (% w/w) a | - | 0.1–4 a | - | - | [17] |
- | 9800 | - | - | [18] | |
1800 | - | - | - | [18] | |
- | 0–30,000 | 0–5400 | <30 | [20] | |
Benzene (mg/L) | - | 47–780 | - | - | [7] |
- | 7.8–63.1 | - | - | [12] | |
- | 600 | - | - | [15] | |
Toluene (mg/L) | - | 0.2–7.8 | - | - | [12] |
- | 360 | - | - | [15] | |
Cresylic acids (% w/w) | - | - | 10–25 | 0–3 | [11] |
- | 0–4 | 2–25 | 0–3 | [4] | |
- | - | 2–25 | 0–3 | [14] | |
Napthenic acids (% w/w) (mg/L) b | - | - | - | 2–15 | [11] |
19,700 1,b | - | - | - | [18] | |
- | - | - | 2–15 | [4] | |
- | - | - | 2–15 | [14] | |
NaOH (% w/w) | - | 4–5 | - | - | [8] |
- | 7.5 | - | - | [17] | |
2–2.9 | - | - | - | [10] | |
- | 11.1 | - | - | [3] | |
- | 2–10 | 10–15 | 1–4 | [11] | |
- | 2–10 | 1–15 | 1–4 | [4] | |
- | 2–10 | 1–15 | 1–4 | [14] | |
Carbonates (% w/w) | 2–2.9 | - | - | - | [10] |
- | 0–4 | 0–0.5 | - | [11] | |
- | - | 0–0.5 | - | [4] | |
- | 0–4 | 0–0.5 | - | [14] |
Parameters | Supply | Effluent |
---|---|---|
Residence time (h) | - | 1 |
Oxidation temperature (K) | - | 533 |
COD (g/L) | 114 | ≈23 |
Sulfides (g/L) | ≈24 | <0.001 |
Total phenols (g/L) | ≈0.45 | <0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pino-Cortés, E.; Montalvo, S.; Huiliñir, C.; Cubillos, F.; Gacitúa, J. Characteristics and Treatment of Wastewater from the Mercaptan Oxidation Process: A Comprehensive Review. Processes 2020, 8, 425. https://doi.org/10.3390/pr8040425
Pino-Cortés E, Montalvo S, Huiliñir C, Cubillos F, Gacitúa J. Characteristics and Treatment of Wastewater from the Mercaptan Oxidation Process: A Comprehensive Review. Processes. 2020; 8(4):425. https://doi.org/10.3390/pr8040425
Chicago/Turabian StylePino-Cortés, Ernesto, Silvio Montalvo, César Huiliñir, Francisco Cubillos, and Juan Gacitúa. 2020. "Characteristics and Treatment of Wastewater from the Mercaptan Oxidation Process: A Comprehensive Review" Processes 8, no. 4: 425. https://doi.org/10.3390/pr8040425
APA StylePino-Cortés, E., Montalvo, S., Huiliñir, C., Cubillos, F., & Gacitúa, J. (2020). Characteristics and Treatment of Wastewater from the Mercaptan Oxidation Process: A Comprehensive Review. Processes, 8(4), 425. https://doi.org/10.3390/pr8040425