Automatic Implementation of a Self-Adaption Non-Intrusive Load Monitoring Method Based on the Convolutional Neural Network
Abstract
:1. Introduction
- Automatic execution of the monitoring process. After constructing the load signature library for individual users in the early short running phase, the user-specific neural network model is trained based on the data in the library belonging to each user, and then the method of load online identification for each user is realized, which provides a feasible scheme for the automatic implementation of NILM. Moreover, it can solve the problems of weak universality and unsatisfactory identification accuracy of a pre-constructed signature library.
- More stable signatures. The convolutional neural network is used to extract the two-dimensional signatures of a load current, so as to reduce the influence of noise and harmonics on the one-dimensional signature data of a load, strengthen the stability of the extracted signatures, and further improve the accuracy of load identification.
2. Implementation Principle
2.1. Principle and Implementation Structure of Non-Intrusive Load Monitoring
2.2. Principle of Electrical Signal Separation
2.3. Construction Principle of Load Signature Library
2.4. Convolutional Neural Network Identification Model
3. Methodology
3.1. Adaptive Construction of a Load Signature Library
3.1.1. Event Detection and Load Separation
3.1.2. Category Determination of Unknown Load Waveform
3.2. Load Identification of the Convolutional Neural Network Based on the Signature Library
- The sampling point serial number and the current amplitude are taken as abscissa and ordinate, respectively. Connect each data point in turn and draw the binary image of load current waveform;
- A unified range of coordinate axes is selected for binary image, ensuring that the waveform images of different loads are displayed in the same range;
- Hide the axis in the binary image;
- An appropriate image resolution is selected to display the image clearly. The resolution of the binary image is adjusted to adapt to the input of the convolutional neural network.
4. Experiment and Analysis
4.1. Effectiveness Verification of Library Construction
4.2. Effectiveness Verification of Load Identification Based on the Convolutional Neural Network
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sheha, M.; Powell, K. Using real-time electricity prices to leverage electrical energy storage and flexible loads in a smart grid environment utilizing machine learning techniques. Processes 2019, 7, 870. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, R.; Anvari-Moghaddam, A.; Fathi, S.H.; Vahidinasab, V. A flexible responsive load economic model for industrial demands. Processes 2019, 7, 147. [Google Scholar] [CrossRef] [Green Version]
- Cominola, A.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A.E. A hybrid signature-based iterative disaggregation algorithm for non-intrusive load monitoring. Appl. Energy 2017, 185, 331–344. [Google Scholar] [CrossRef]
- Hart, G.W. Nonintrusive appliance load monitoring. Proc. IEEE 1992, 80, 1870–1891. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Tsai, M.-S. Development of an improved time-frequency analysis-based nonintrusive load monitor for load demand identification. IEEE Trans. Instrum. Meas. 2014, 63, 1470–1483. [Google Scholar] [CrossRef]
- Hong, Y.; Chou, J. Nonintrusive energy monitoring for microgrids using hybrid self-organizing feature-mapping networks. Energies 2012, 5, 2578–2593. [Google Scholar] [CrossRef]
- Liang, J.; Ng, S.K.; Kendall, G.; Cheng, J.W. Load signature study—Part I: Basic concept, structure, and methodology. IEEE Trans. Power Deliv. 2010, 25, 551–560. [Google Scholar] [CrossRef]
- Liang, J.; Ng, S.K.; Kendall, G.; Cheng, J.W. Load signature study—Part II: Disaggregation framework, simulation, and applications. IEEE Trans. Power Deliv. 2010, 25, 561–569. [Google Scholar] [CrossRef]
- He, D.; Du, L.; Yang, Y.; Harley, R.; Habetler, T. Front-end electronic circuit topology analysis for model-driven classification and monitoring of appliance loads in smart buildings. IEEE Trans. Smart Grid 2012, 3, 2286–2293. [Google Scholar] [CrossRef]
- Tsai, M.-S.; Lin, Y.-H. Modern development of an Adaptive Non-Intrusive Appliance Load Monitoring system in electricity energy conservation. Appl. Energy 2012, 96, 55–73. [Google Scholar] [CrossRef]
- Altrabalsi, H.; Stankovic, V.; Liao, J.; Stankovic, L. Low-complexity energy disaggregation using appliance load modeling. AIMS Energy 2016, 157, 1–21. [Google Scholar] [CrossRef]
- Wu, X.; Gao, Y.; Jiao, D. Multi-label classification based on random forest algorithm for non-intrusive load monitoring system. Processes 2019, 7, 337. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.H.; Lian, K.L.; Su, Y.C.; Lee, W.J. Power-spectrum-based wavelet transform for nonintrusive demand monitoring and load identification. IEEE Trans. Ind. Appl. 2014, 50, 2081–2089. [Google Scholar] [CrossRef]
- Ruzzelli, A.G.; Nicolas, C.; Schoofs, A.; O’Hare, G.M. Real-time recognition and profiling of appliances through a single electricity sensor. In Proceedings of the 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Boston, MA, USA, 21–25 June 2010; pp. 1–9. [Google Scholar]
- Lin, Y.-H.; Hu, Y.-C. Electrical energy management based on a hybrid artificial neural network-particle swarm optimization-integrated two-stage non-intrusive load monitoring process in smart homes. Processes 2018, 6, 236. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.H.; Chen, K.L.; Tsai, Y.P.; Lee, W.J. A new measurement method for power signatures of nonintrusive demand monitoring and load identification. IEEE Trans. Ind. Appl. 2012, 48, 764–771. [Google Scholar] [CrossRef]
- Chang, H.H.; Yang, H.T. Applying a non-intrusive energy-management system to economic dispatch for a cogeneration system and power utility. Appl. Energy 2009, 86, 2335–2343. [Google Scholar] [CrossRef]
- Chang, H.H. Genetic algorithms and non-intrusive energy management system based economic dispatch for cogeneration units. Energy 2011, 36, 181–190. [Google Scholar] [CrossRef]
- Chao, M.; Guo, W.; Zhao, Y.; Xiao, L.; Binrui, L. Non-intrusive load monitoring system based on convolution neural network and adaptive linear programming boosting. Energies 2019, 12, 2882. [Google Scholar]
- Wu, X.; Jiao, D.; You, L. Nonintrusive on-site load-monitoring method with self-adaption. Int. J. Electr. Power Energy Syst. 2020, 119, 105934. [Google Scholar] [CrossRef]
- Srinivasan, D.; Ng, W.S.; Liew, A.C. Neural-network-based signature recognition for harmonic source identification. IEEE Trans. Power Deliv. 2005, 21, 398–405. [Google Scholar] [CrossRef]
- Ahmadi, H.; Marti, J.R. Non-intrusive load disaggregation using graph signal processing. IEEE Trans. Power Syst. 2015, 30, 3425–3436. [Google Scholar] [CrossRef]
Experimental Parameters | Value | Experimental Parameters | Value |
---|---|---|---|
η | 0.1 | υ | 0.75 |
σ | 0.01 | ε | 0.05 |
α | 0.1 | λ | 0.025 |
Load | Category Number | Type | Load | Category Number | Type |
---|---|---|---|---|---|
Electric cooker | 1 | I | Set top box | 12 | III |
Electric kettle | 2 | I | Range hood | 13 | III |
Water heater | 3 | I | Air purifier | 14 | III |
Electric oven | 4 | I | Air conditioner | 15 | III |
Disinfection cabinet | 5 | I | Vacuum cleaner | 16 | III |
Water dispenser | 6 | I | Dehumidifier | 17 | III |
Electromagnetic furnace | 7 | II | Refrigerator | 18 | IV |
Electric hair dryer | 8 | III | Microwave oven | 19 | IV |
Laptop | 9 | III | Washing machine | 20 | V |
Electric fan | 10 | III | Other loads | 21 | VI |
TV | 11 | III |
Load | Identification Number | Load | Identification Number |
---|---|---|---|
Laptop | 0 | Air conditioner 2 | 6 |
Refrigerator | 1 | Air conditioner 3 | 7 |
Electric cooker | 2 | Water heater | 8 |
Electric kettle | 3 | Microwave oven | 9 |
TV | 4 | Vacuum cleaner | 10 |
Air conditioner 1 | 5 | Water dispenser | 11 |
Kernel | Sizes | Numbers |
---|---|---|
1 | 3 × 3 | 20 |
2 | 5 × 5 | 20 |
3 | 12 × 12 | 100 |
Parameter | Epoch Times | ||||
---|---|---|---|---|---|
100 | 200 | 300 | 400 | 500 | |
bias_c1 | −0.188066 | −0.182839 | −0.180615 | −0.178961 | −0.178071 |
bias_f1 | 0.046807 | 0.046743 | 0.045898 | 0.044920 | 0.044646 |
kernel_f1 | −0.384234 | −0.384602 | −0.386321 | −0.388277 | −0.388930 |
kernel_c1 | 17.850862 | 20.656326 | 22.131949 | 23.217981 | 23.901392 |
weight_f1 | −0.331889 | −0.344194 | −0.348489 | −0.350513 | −0.352352 |
weight output | 0.089298 | 0.099996 | 0.105751 | 0.109533 | 0.111763 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.9985 | 0.0005 | 0.0003 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
1 | 0.0125 | 0.7754 | 0.0743 | 0.0013 | 0.1231 | 0.0002 | 0.0002 | 0.0003 | 0.0018 | 0.0009 | 0.0021 | 0.0079 |
2 | 0.0003 | 0.0017 | 0.9949 | 0.0000 | 0.0009 | 0.0010 | 0.0000 | 0.0002 | 0.0000 | 0.0001 | 0.0000 | 0.0010 |
3 | 0.0002 | 0.0000 | 0.0000 | 0.9914 | 0.0001 | 0.0000 | 0.0023 | 0.0000 | 0.0019 | 0.0000 | 0.0039 | 0.0001 |
4 | 0.0023 | 0.1265 | 0.0059 | 0.0003 | 0.8620 | 0.0001 | 0.0003 | 0.0004 | 0.0007 | 0.0003 | 0.0005 | 0.0008 |
5 | 0.0000 | 0.0000 | 0.0004 | 0.0000 | 0.0000 | 0.9974 | 0.0003 | 0.0010 | 0.0001 | 0.0005 | 0.0000 | 0.0002 |
6 | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0000 | 0.0001 | 0.9977 | 0.0001 | 0.0002 | 0.0000 | 0.0014 | 0.0000 |
7 | 0.0002 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0005 | 0.0000 | 0.9984 | 0.0002 | 0.0002 | 0.0001 | 0.0001 |
8 | 0.0005 | 0.0001 | 0.0002 | 0.0062 | 0.0003 | 0.0003 | 0.0009 | 0.0005 | 0.9867 | 0.0000 | 0.0039 | 0.0004 |
9 | 0.0000 | 0.0002 | 0.0001 | 0.0005 | 0.0000 | 0.0000 | 0.0012 | 0.0000 | 0.0000 | 0.9977 | 0.0001 | 0.0006 |
10 | 0.0006 | 0.0003 | 0.0007 | 0.0095 | 0.0010 | 0.0005 | 0.0301 | 0.0005 | 0.0071 | 0.0040 | 0.9435 | 0.0023 |
11 | 0.0000 | 0.0001 | 0.0005 | 0.0000 | 0.0020 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0003 | 0.0001 | 0.9967 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Jiao, D.; Du, Y. Automatic Implementation of a Self-Adaption Non-Intrusive Load Monitoring Method Based on the Convolutional Neural Network. Processes 2020, 8, 704. https://doi.org/10.3390/pr8060704
Wu X, Jiao D, Du Y. Automatic Implementation of a Self-Adaption Non-Intrusive Load Monitoring Method Based on the Convolutional Neural Network. Processes. 2020; 8(6):704. https://doi.org/10.3390/pr8060704
Chicago/Turabian StyleWu, Xin, Dian Jiao, and Yu Du. 2020. "Automatic Implementation of a Self-Adaption Non-Intrusive Load Monitoring Method Based on the Convolutional Neural Network" Processes 8, no. 6: 704. https://doi.org/10.3390/pr8060704
APA StyleWu, X., Jiao, D., & Du, Y. (2020). Automatic Implementation of a Self-Adaption Non-Intrusive Load Monitoring Method Based on the Convolutional Neural Network. Processes, 8(6), 704. https://doi.org/10.3390/pr8060704