Development of a Freeze-Drying Stage for In-Situ µ-CT Measurements
Abstract
:1. Introduction
2. Approach and Development
2.1. µ-CT Unit
2.2. Development of the Freeze-Drying Unit
3. Experiments
3.1. Validation Experiments
3.2. D and 3D Visualization of the Freeze-Drying Process
3.2.1. Freeze-Drying of Solutions
3.2.2. Freeze-Drying of Frozen Particles
3.3. Image Acquisition and Processing
4. Results
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liapis, A.; Bruttini, R. Freeze Drying. In Handbook of Industrial Drying, 4th ed.; Mujumdar, A., Ed.; CRC Press Inc.: Boca Raton, FL, USA, 2014. [Google Scholar]
- Gruber, S.; Vorhauer, N.; Schulz, M.; Hilmer, M.; Peters, J.; Tsotsas, E.; Foerst, P. Estimation of the local sublimation front velocities from neutron radiography and tomography of particulate matter. Chem. Eng. Sci. 2020, 211, 115268. [Google Scholar] [CrossRef]
- Pikal, M.J.; Shah, S.; Senior, D.; Lang, J.E. Physical chemistry of freeze-drying: Measurement of sublimation rates for frozen aqueous solutions by a microbalance technique. J. Pharm. Sci. 1983, 72, 635–650. [Google Scholar] [CrossRef] [PubMed]
- Siebert, T.; Zuber, M.; Engelhardt, S.; Baumbach, T.; Karbstein, H.P.; Gaukel, V. Visualization of crust formation during hot-air-drying via micro-CT. Dry. Technol. 2019, 37, 1881–1890. [Google Scholar] [CrossRef]
- Siebert, T.; Zuber, M.; Hamann, E.; Baumbach, T.; Karbstein, H.P.; Gaukel, V. Micro-CT visualization of structure development during freeze-drying processes. Dry. Technol. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Trelea, I.C.; Passot, S.; Marin, M.; Fonseca, F. Model for heat and mass transfer in freeze-drying of pellets. J. Biomech. Eng. 2009, 131, 74501. [Google Scholar] [CrossRef] [PubMed]
- Chitu, T.; Vessot, S.; Peczalski, R.; Andrieu, J.; Woinet, B.; Françon, A. Influence of Operating Conditions on the Freeze-Drying of Frozen Particles in a Fixed Bed and Modeling Data. Dry. Technol. 2015, 33, 1892–1898. [Google Scholar] [CrossRef]
- Liapis, A.I.; Bruttini, R. A mathematical model for the spray freeze drying process: The drying of frozen particles in trays and in vials on trays. Int. J. Heat Mass Transf. 2009, 52, 100–111. [Google Scholar] [CrossRef]
- Nakagawa, K.; Tamiya, S.; Sakamoto, S.; Do, G.; Kono, S. Observation of Microstructure Formation During Freeze-Drying of Dextrin Solution by in-situ X-ray Computed Tomography. Front. Chem. 2018, 6, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slade, L.; Levine, H. Non-equilibrium behavior of small carbohydrate-water systems. Pure Appl. Chem. 1988, 60, 1841–1864. [Google Scholar] [CrossRef]
- Kurtz, S.M. Chemical and Radiation Stability of PEEK. In PEEK Biomaterials Handbook; Elsevier: Amsterdam, The Netherlands, 2012; pp. 75–79. [Google Scholar]
- Hendee, W.R.; Ritenour, E.R. Medical Imaging Physics, 4th ed.; Wiley-Liss: New York, NY, USA, 2010. [Google Scholar]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical cone-beam algorithm. J. Opt. Soc. Am. A 1984, 1, 612. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Jiang, J. Image Processing Basics. In Digital Signal Processing: Fundamentals and Applications; Tan, L., Jiang, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 649–726. [Google Scholar]
- Chantler, C.T. Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-Ray (Z = 30–36, Z = 60–89, E = 0.1 keV–10 keV), Addressing Convergence Issues of Earlier Work. J. Phys. Chem. Ref. Data 2000, 29, 597–1056. [Google Scholar] [CrossRef]
- Schillinger, B.; Calzada, E.; Mühlbauer, M.; Schulz, M. Neutronenbilder zeigen was Röntgenstrahlen nicht sehen können. In Proceedings of the ICT 2008 2nd Conference on Industrial Computed Tomography (ICT), Wels, Austria, 26–28 February 2008. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hilmer, M.; Gruber, S.; Foerst, P. Development of a Freeze-Drying Stage for In-Situ µ-CT Measurements. Processes 2020, 8, 869. https://doi.org/10.3390/pr8070869
Hilmer M, Gruber S, Foerst P. Development of a Freeze-Drying Stage for In-Situ µ-CT Measurements. Processes. 2020; 8(7):869. https://doi.org/10.3390/pr8070869
Chicago/Turabian StyleHilmer, Mathias, Sebastian Gruber, and Petra Foerst. 2020. "Development of a Freeze-Drying Stage for In-Situ µ-CT Measurements" Processes 8, no. 7: 869. https://doi.org/10.3390/pr8070869
APA StyleHilmer, M., Gruber, S., & Foerst, P. (2020). Development of a Freeze-Drying Stage for In-Situ µ-CT Measurements. Processes, 8(7), 869. https://doi.org/10.3390/pr8070869