Resource Allocation in Two-Patch Epidemic Model with State-Dependent Dispersal Behaviors Using Optimal Control
Abstract
:1. Introduction
- How does the disease spread in the different locations with intermixing populations?
- How does the disease outbreak affect the behavior of residents and visitors in both locations?
- How should preventive resources be optimally allocated in different locations to reduce the number infections?
2. A Two-Patch Sir Model with Virtual Dispersal
2.1. A Two-Patch Model with Virtual Dispersal
- For , and
- For .
- For , and
- For .
2.2. Basic Reproduction Number and Final Epidemic Size
2.3. Optimal Control Formulation
3. Numerical Results
3.1. Results in the Absence of Controls
3.2. Results in the Presence of Controls
3.3. Various Control Scenarios
- No control:
- One optimal control (two possibilities): or
- Maximum control:
4. Discussions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Arino, J.; Jordan, R.; Van den Driessche, P. Quarantine in a multi-speacies epidemic model with spatial dynamics. Math. Biosic. 2007, 206, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Asano, E.; Gross, L.J.; Lenhart, S.; Real, L.A. Optimal control of vaccine distribution in a rabies metapopulation model. Math. Biosci. Eng. 2008, 5, 219–238. [Google Scholar] [PubMed]
- Hsieh, Y.H.; Van den Driessche, P.; Wang, L. Impact of travel between patches for spatial spread of disease. Bul. Math. Biol. 2007, 69, 1355–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brauer, F.; Castillo-Chavez, C. Mathematical Models in Population Biology and Epidemiology; Springe: New York, NY, USA, 2000. [Google Scholar]
- Murray, J.D. Mathematical Biology. II: Spatial Models and Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Brauer, F. Epidemic models with heterogeneous mixing and treatment. Bull. Math. Biol. 2008, 70, 1869–1885. [Google Scholar] [CrossRef] [PubMed]
- Gudelj, I.; White, K.A.J. Spatial heterogeneity, social structure and disease dynamics of animal populations. Theor. Popul. Biol. 2004, 66, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Morrison, A.C.; Gray, K.; Getis, A.; Astete, H.; Sihuincha, M.; Focks, D.; Watts, D.; Stancil, J.D.; Olson, J.G.; Blair, P.; et al. Temporal and Geographic Patterns of Aedes Aegypti (Diptera: Culicidae) Production in Iquitos, Peru. J. Med. Entomol. 2004, 41, 1123–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, D.J.; Tores-Sorando, L. Models of infectious diseases in spatially heterogeneous environments. Bull. Math. Biol. 2008, 63, 547–571. [Google Scholar] [CrossRef] [PubMed]
- Rowthorn, R.E.; Laxminarayan, R.; Gilligan, C.A. Optimal control of epidemics in metapopulations. J. R. Soc. Interface 2008, 6, 1135–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattenspiel, L.; Simon, C. The spread and persistence of infectious diseases in structured populations. Math. Biosci. 1988, 128, 71–91. [Google Scholar] [CrossRef]
- Sattenspiel, L.; Dietz, K. A structured epidemic model incorporating geographic- mobility among regions. Math. Biosci. 1995, 128, 71–91. [Google Scholar] [CrossRef]
- Sattenspiel, L. The Geographic Spread of Infectious Disease; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Woolhouse, M.E.; Dye, C.; Etard, J.F.; Smith, T.; Charlwood, J.D.; Garnett, G.P.; Hagan, P.; Hii, J.L.K.; Ndhlovu, P.D.; Quinnell, R.J.; et al. Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proc. Natl. Acad. Sci. USA 1997, 94, 338–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bichara, D.; Kang, Y.; Castillo-Chavez, C.; Horan, R.; Perrings, C. SIS and SIR Epidemic Models Under Virtual Dispersal. Bull. Math. Biol. 2015, 77, 2004–2034. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Castillo-Chavez, C. The Role of Residence Times in Two-Patch Dengue Transmission Dynamics and Optimal Strategies. J. Theor. Biol. 2015, 374, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Camacho, E.T.; Lenhart, S.; Melara, L.A.; Villalobos, M.C.; Wirkus, S. Optimal control with MANF treatment of photoreceptor degeneration. Math. Med. Biol. A J. IMA 2020, 37, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wayne Drash, T. Doctors: Postpone or Move Olympics Due to Zika. CNN. 28 May 2016. Available online: http://www.cnn.com/2016/05/27/health/zika-virus-olympic-games-health-officials-postpone/ (accessed on 5 November 2018).
- Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Fleming, W.H.; Rishel, R.W. Deterministic and Stochastic Optimal Control; Springer: New York, NY, USA, 1975. [Google Scholar]
- Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes; John Wiley & Sons: New York, NY, USA, 1962. [Google Scholar]
- Lenhart, S.; Workman, J. Optimal Control Applied to Biological Models; Chapman and Hall/CRC Press: New York, NY, USA, 2007. [Google Scholar]
Dispersal Scenarios | Residence-Time Proportions |
---|---|
Polar | |
Symmetric | |
Asymmetric | |
High-mobility | |
Uni-directional 1 | |
Uni-directional 2 |
Parameter | Description | Value |
---|---|---|
Transmission rate in patch 1 (days) | 0.3–0.4 | |
Transmission rate in patch 2 (days) | 0.5–0.6 | |
Recovery rate in patch 1 (days) | ||
Recovery rate in patch 2 (days) | ||
Population size in patch 1 | 1000 | |
Population size in patch 2 | 1000 | |
The initial value of susceptible in patch 1 | 999 | |
The initial value of susceptible in patch 2 | 999 | |
The initial value of infected in patch 1 | 1 | |
The initial value of infected in patch 2 | 1 | |
The simulated duration (days) | 60 | |
b | The upper bound of control | |
Weight constant corresponding to control | 100–300 | |
Weight constant corresponding to control | 100–300 |
Objective Functional Value Reduction Percentage | ||||
---|---|---|---|---|
No Control | One Optimal Control | Max. Control | ||
Dispersal scenarios | ||||
Polar | % | % | % | % |
Symmetric | % | % | % | % |
Asymmetric | % | % | % | % |
High Mobility | % | % | % | % |
Uni-directional 1 | % | % | % | % |
Uni-directional 2 | % | % | % | % |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Baek, O.; Melara, L. Resource Allocation in Two-Patch Epidemic Model with State-Dependent Dispersal Behaviors Using Optimal Control. Processes 2020, 8, 1087. https://doi.org/10.3390/pr8091087
Lee S, Baek O, Melara L. Resource Allocation in Two-Patch Epidemic Model with State-Dependent Dispersal Behaviors Using Optimal Control. Processes. 2020; 8(9):1087. https://doi.org/10.3390/pr8091087
Chicago/Turabian StyleLee, Sunmi, Okbun Baek, and Luis Melara. 2020. "Resource Allocation in Two-Patch Epidemic Model with State-Dependent Dispersal Behaviors Using Optimal Control" Processes 8, no. 9: 1087. https://doi.org/10.3390/pr8091087
APA StyleLee, S., Baek, O., & Melara, L. (2020). Resource Allocation in Two-Patch Epidemic Model with State-Dependent Dispersal Behaviors Using Optimal Control. Processes, 8(9), 1087. https://doi.org/10.3390/pr8091087