Coal-Degrading Bacteria Display Characteristics Typical of Plant Growth Promoting Rhizobacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Culture Conditions
2.3. Extraction and PCR Amplification of Genomic DNA
2.4. Phylogenetic Analysis
2.5. Screening for Plant Growth Promoting Characteristics
2.5.1. Ammonium Production
2.5.2. Indole-3-Acetic Acid Production
2.5.3. Solubilisation of Insoluble Phosphate and Potassium
2.6. Effect of Coal Discard on Production of IAA
2.7. Statistical Analysis
3. Results
3.1. Bacterial Genomes and Their Identification
3.2. Nucleotide Sequence and Phylogenetic Analysis
3.3. Plant Growth Promoting Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fakoussa, R.M.; Hofrichter, M. Biotechnology and microbiology of coal degradation. Appl. Microbiol. Biotechnol. 1999, 52, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Machnikowska, H.; Pawelec, K.; Podgórska, A. Microbial degradation of low rank coals. Fuel Proc. Technol. 2002, 77, 17–23. [Google Scholar] [CrossRef]
- Jiang, F.; Li, Z.; Lv, Z.; Gao, T.; Yang, J.; Qin, Z.; Yuan, H. The biosolubilization of lignite by Bacillus sp. Y7 and characterization of the soluble products. Fuel 2013, 103, 639–645. [Google Scholar] [CrossRef]
- Speight, J.G. Handbook of Coal Analysis. In Chemical Analysis. A Series of Monographs on Analytical Chemistry and its Applications, 2nd ed.; Vitha, M.F., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2015; p. 368. [Google Scholar]
- Claassens, S.; Van Rensburg, P.J.; Van Rensburg, L. Soil microbial community structure of coal mine discard under rehabilitation. Water Air Soil Pollut. 2006, 174, 355–366. [Google Scholar] [CrossRef]
- Truter, W.J.; Rethman, N.F.G.; Potgieter, C.E.; Kruger, R.A. Re-vegetation of cover soils and coal discard material ameliorated with Class F fly ash. In Proceedings of the Collected Abstracts, 2009 World of Coal Ash (WOCA) Conference, Lexington, KY, USA, 4–7 May 2009; Available online: http://www.flyash.info/2009/110-truter2009.pdf (accessed on 10 July 2020).
- Sekhohola, M.L.; Igbinigie, E.E.; Cowan, A.K. Biological degradation and solubilisation of coal. Biodegradation 2013, 24, 305–318. [Google Scholar] [CrossRef]
- Cowan, A.K.; Lodewijks, H.M.; Sekhohola, L.M.; Edeki, O.G. In situ bioremediation of South African coal discard dumps. In Proceedings of the 11th International Conference on Mine Closure, Perth, Australia, 15–17 March 2016; Fourie, A.B., Tibbett, M., Eds.; Australian Centre for Geomechanics: Perth, Western Australia, 2016; pp. 501–509. [Google Scholar]
- Šourková, M.; Frouz, J.; Šantrucková, H. Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma 2005, 124, 203–214. [Google Scholar] [CrossRef]
- Vindušková, O.; Frouz, J. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: A quantitative review. Environ. Earth Sci. 2013, 69, 1685–1698. [Google Scholar] [CrossRef]
- Sekhohola, L.M.; Cowan, A.K. Biological conversion of low-grade coal discard to a humic substance-enriched soil-like material. Int. J. Coal Sci. Technol. 2017, 4, 183–190. [Google Scholar] [CrossRef]
- Ralph, J.P.; Catcheside, D.E.A. Transformations of low rank coal by Phanerochaete chrysosporium and other wood-rot fungi. Fuel Proc. Technol. 1997, 52, 79–93. [Google Scholar] [CrossRef]
- Gotz, K.E.; Fakoussa, R.M. Fungal biosolubilization of Rhenish brown coal monitored by Curie-point pyrolysis/gas chromatography/mass spectrometry using tetraethylammonium hydroxide. Appl. Microbiol. Biotechnol. 1999, 52, 41–48. [Google Scholar] [CrossRef]
- Gokcay, C.F.; Kolankaya, N.; Dilek, F.B. Microbial solubilization of lignites. Fuel 2001, 80, 1421–1433. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, J.; Chen, W. Production of alkaline materials, surfactants and enzymes by Penicillium decumbens strain P6 in association with lignite degradation/solubilization. Fuel 2006, 85, 1378–1382. [Google Scholar] [CrossRef]
- Haider, R.; Ghauri, M.A.; SanFilipo, J.R.; Jones, E.J.; Orem, W.H.; Tatu, C.A.; Akhtar, K.; Akhtar, N. Fungal degradation of coal as a pretreatment for methane production. Fuel 2013, 104, 717–725. [Google Scholar] [CrossRef]
- Kwiatos, N.; Jędrzejczak-Krzepkowska, M.; Krzemińska, A.; Delavari, A.; Paneth, P.; Bielecki, S. Evolved Fusarium oxysporum laccase expressed in Saccharomyces cerevisiae. Sci. Rep. 2020, 10, 3244. [Google Scholar] [CrossRef] [PubMed]
- Kwiatos, N.; Jędrzejczak- Krzepkowska, M.; Strzelecki, B.; Bielecki, S. Improvement of efficiency of brown coal biosolubilization by novel recombinant Fusarium oxysporum laccase. AMB Express 2018, 8, 133. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, J.; Li, B.; Wang, E.; Yuan, H. An esterase from Penicillium decumbens P6 involved in lignite depolymerization. Fuel 2018, 214, 416–422. [Google Scholar] [CrossRef]
- Gao, T.G.; Jiang, F.; Yang, J.S.; Li, B.Z.; Yuan, H.L. Biodegradation of Leonardite an alkali-producing bacterial community and characterization of the degraded products. Appl. Microbiol. Biotechnol. 2012, 93, 2581–2590. [Google Scholar] [CrossRef]
- David, Y.; Baylon, M.G.; Pamidimarri, S.D.V.N.; Baritugo, K.-A.; Chae, C.G.; Kim, Y.J.; Kim, T.W.; Kim, M.-S.; Na, J.G.; Par, S.J. Screening of microorganisms able to degrade low-rank coal in aerobic conditions: Potential coal biosolubilization mediators from coal to biochemicals. Biotechnol. Bioprocess Eng. 2017, 22, 178–185. [Google Scholar] [CrossRef]
- Akimbekov, N.; Digel, I.; Qiaoa, X.; Tastambeka, K.; Zhubanova, A. Lignite biosolubilization by Bacillus sp. RKB 2 and characterization of its products. Geomicrobiol. J. 2020, 37, 255–261. [Google Scholar] [CrossRef]
- Akimbekov, N.; Digel, I.; Abdieva, G.; Ualieva, P.; Tastambek, K. Lignite biosolubilization and bioconversion by Bacillus sp.: The collation of analytical data. Biofuels 2020. [Google Scholar] [CrossRef]
- Lyle, G.; Whyte, L.; Charles, W.G. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl. Environ. Microbiol. 1997, 63, 3719–3723. [Google Scholar]
- Jiang, B.; Zhou, Z.; Dong, Y.; Tao, W.; Wang, B.; Jiang, J.; Guan, X. Biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Comamonas sp. Appl. Biochem. Biotechnol. 2015, 176, 1700–1708. [Google Scholar] [CrossRef] [PubMed]
- Truskewycz, A.; Gundry, T.D.; Khudur, L.S.; Kolobaric, A.; Taha, M.; Aburto-Medina, A.; Ball, A.S.; Shahsavari, E. Petroleum hydrocarbon contamination in terrestrial ecosystems—Fate and microbial responses. Molecules 2019, 24, 3400. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Lee, Y.; Jeon, C.O. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci. Rep. 2019, 9, 860. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Afzal, M.; Iqbal, S.; Khan, Q.M. Plant—Bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 2013, 90, 1317–1332. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Zhao, N.; Guo, J.; Xu, W.; Ma, M.; Li, X. Remediation of crude oil-polluted soil by the bacterial rhizosphere community of Suaeda Salsa revealed by 16S rRNA genes. Int. J. Environ. Res. Public Health 2020, 17, 1471. [Google Scholar] [CrossRef] [Green Version]
- Silva-Stenico, M.E.; Vengadajellum, C.J.; Janjua, H.A.; Harisson, S.T.L.; Burton, S.G.; Cowan, D.A. Degradation of low rank coal by Trichoderma atroviride ES11. J. Ind. Microbiol. Biotechnol. 2007, 34, 625–631. [Google Scholar] [CrossRef]
- Romanowska, I.; Strzelecki, B.; Bielecki, S. Biosolubilization of Polish brown coal by Gordonia alkanivorans S7 and Bacillus mycoides NS1020. Fuel Proc. Technol. 2015, 131, 430–436. [Google Scholar] [CrossRef]
- Valero, N.; Gómez, L.; Pantoja, M.; Ramírez, R. Production of humic substances through coal-solubilizing bacteria. Braz. J. Microbiol. 2014, 45, 911–918. [Google Scholar] [CrossRef] [Green Version]
- Strąpoć, D.; Mastalerz, M.; Dawson, K.; Macalady, J.; Callaghan, A.V.; Wawrik, B.; Turich, C.; Ashby, M. Biogeochemistry of microbial coal-bed methane. Annu. Rev. Earth Pl. Sci. 2011, 39, 617–656. [Google Scholar] [CrossRef]
- Huang, Z.; Urynowicz, M.A.; Colberg, P.J.S. Bioassay of chemically treated subbituminous coal derivatives using Pseudomonas putida F1. Int. J. Coal Geol. 2013, 115, 97–105. [Google Scholar] [CrossRef]
- Jones, E.J.P.; Voytek, M.A.; Warwick, P.D.; Corum, M.D.; Cohn, A.; Bunnel, J.E.; Clark, A.C.; Orem, W.H. Bioassay for estimating the biogenic methane generating potential of coal samples. Int. J. Coal Geol. 2008, 76, 138–150. [Google Scholar] [CrossRef]
- Yin, S.; Tao, X.; Shi, K.; Tan, Z. Biosolubilisation of Chinese lignite. Energy 2009, 34, 775–781. [Google Scholar] [CrossRef]
- Barboza, N.R.; Amorim, S.S.; Santos, P.A.; Reis, F.D.; Cordeiro, M.M.; Guerra-Sá, R.; Leão, V.A. Indirect manganese removal by Stenotrophomonas sp. and Lysinibacillus sp. isolated from Brazilian mine water. Biomed. Res. Int. 2015, 2015, 925972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barboza, N.R.; Morais, M.M.C.A.; Queiroz, P.S.; Amorim, S.S.; Guerra-Sá, R.; Leão, V.A. High manganese tolerance and biooxidation ability of Serratia marcescens isolated from manganese mine water in Minas Gerais, Brazil. Front. Microbiol. 2017, 8, 1946. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.M.M. Biodegradation of used engine oil by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 isolated from oil-contaminated soil. 3 Biotech. 2016, 6, 226. [Google Scholar] [CrossRef] [Green Version]
- Olawale, J.T.; Edeki, O.G.; Cowan, A.K. Bacterial degradation of coal discard and geologically weathered coal. Int. J. Coal Sci. Technol. 2020, 7, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Santoyo, G.; Moreno-Hagelsieb, G.; del Carmen Orozco-Mosqued, M.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Turner, S.J.; Pryer, K.M.; Miao, V.P.M.; Palmer, J.D. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 1999, 46, 327–338. [Google Scholar] [CrossRef]
- Technelysium (Chromas). Available online: http://www.technelysium.com.auu/chromas.html (accessed on 18 May 2019).
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, K.; Kumar, S. Molecular evolutionary genetic analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, H.; Park, J.; Kim, H. Determination of NH4+ in environmental water with interfering substances using the modified Nessler method. J. Chem. 2013, e359217. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S.A.; Weber, R.P. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951, 26, 192–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glickmann, E.; Dessaux, Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 1995, 61, 793–796. [Google Scholar] [CrossRef] [Green Version]
- Majeed, A.; Abbasi, M.K.; Hameed, S.; Imran, A.; Rahim, N. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front. Microbiol. 2015, 6, 198. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilising microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef] [Green Version]
- Saha, M.; Maurya, B.R.; Meena, V.S.; Bahadur, I.; Kumar, A. Identification and characterisation of potassium solubilising bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal. Agric. Biotechnol. 2016, 7, 202–209. [Google Scholar] [CrossRef]
- Pflaum, R.T.; Howick, L.C. Spectrophotometric determination of potassium with sodium tetraphenyl-borate. Anal. Chem. 1956, 28, 1542–1544. [Google Scholar] [CrossRef]
- Bechtaoui, N.; Raklami, A.; Tahiri, A.-I.; Benidire, L.; El Alaoui, A.; Meddich, A.; Gottfert, M.; Oufdou, K. Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biol. Open 2019, 8, bio043968. [Google Scholar] [CrossRef] [Green Version]
- Patten, C.L.; Blakney, A.J.C.; Coulson, T.J.D. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit. Rev. Microbiol. 2013, 39, 395–415. [Google Scholar] [CrossRef]
- Tien, T.M.; Gaskins, M.H.; Hubbell, D.H. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 1979, 37, 1016–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marappa, N.; Ramachandran, L.; Dharumadurai, D.; Nooruddin, T. Plant growth-promoting active metabolites from Frankia spp. of Actinorhizal Casuarina spp. Appl. Biochem. Biotechnol. 2020, 191, 74–91. [Google Scholar] [CrossRef] [PubMed]
- Throbäck, I.N.; Enwall, K.; Jarvis, A.; Hallin, S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 2004, 49, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, K.A.; Surridge, A.K.J. Ash microbiology: A molecular study. In Proceedings of the Collected Abstracts, 2009 World of Coal Ash (WOCA) Conference, Lexington, KY, USA, 4–7 May 2009; Available online: http://www.flyash.info/2009/031-surridge2009.pdf (accessed on 10 July 2020).
- Chen, Y.P.; Rekha, P.D.; Arun, A.B.; Shen, F.T.; Lai, W.A.; Young, C.C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 2006, 34, 33–41. [Google Scholar] [CrossRef]
- Farhat, M.B.; Farhat, A.; Bejar, W.; Kammoun, R.; Bouchaala, K.; Fourati, A.; Antoun, H.; Bejar, S.; Chouayekh, H. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Arch. Microbiol. 2009, 191, 815–824. [Google Scholar] [CrossRef]
- Mursyida, E.; Mubarik, N.R.; Tjahjoleksono, A. Selection and identification of phosphate-potassium solubilizing bacteria from the area around the limestone mining in Cirebon Quarry. Res. J. Microbiol. 2015, 10, 270–279. [Google Scholar]
- Borgi, M.A.; Saidi, I.; Moula, A.; Rhimi, S.; Rhimi, M. The attractive Serratia plymuthica BMA1 strain with high rock phosphate-solubilizing activity and its effect on the growth and phosphorus uptake by Vicia faba L. plants. Geomicrobiol. J. 2020, 37, 437–445. [Google Scholar] [CrossRef]
- Wichner, S.; Libbert, E. Interactions between plants and epiphytic bacteria regarding their auxin metabolism. I. Detection of IAA-producing epiphytic bacteria and their role in long duration experiments on tryptophan metabolism in plant homogenates. Physiol. Plant. 1968, 21, 227–241. [Google Scholar] [CrossRef]
- Fett, W.F.; Osman, S.F.; Dunn, M.F. Auxin production by plant-pathogenic Pseudomonads and Xanthomonads. Appl. Environ. Microbiol. 1987, 53, 1839–1845. [Google Scholar] [CrossRef] [Green Version]
- Patten, C.L.; Glick, B.R. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 1996, 42, 207–220. [Google Scholar] [CrossRef]
- Zarkan, A.; Liu, J.; Matuszewska, M.; Gaimster, H.; Summer, D.K. Local and universal action: The paradoxes of indole signalling in bacteria. Trends Microbiol. 2020, 28, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Duca, D.; Lorv, J.; Patten, C.L.; Rose, D.; Glick, B.R. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 2014, 106, 85–125. [Google Scholar] [CrossRef] [PubMed]
- Normanly, J.; Cohen, J.D.; Fink, G.R. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc. Natl. Acad. Sci. USA 1993, 90, 10355–10359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taupp, M.; Harmsen, D.; Heckel, F.; Schreier, P. Production of natural methyl anthranilate by microbial N-demethylation of N-methyl methyl anthranilate by the topsoil-isolated bacterium Bacillus megaterium. J. Agric. Food Chem. 2005, 53, 9586–9589. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.W.; Cho, J.S.; Lee, S.Y. Microbial production of methyl anthranilate, a grape flavor compound. Proc. Natl. Acad. Sci. USA 2019, 116, 10749–10756. [Google Scholar] [CrossRef] [Green Version]
- Kölling, G. Products of coal (coke, tar, gas) and their analysis. Pure Appl. Chem. 1977, 49, 1475–1482. [Google Scholar] [CrossRef]
- Stefanova, M.; Gonsalvesh, L.; Marinov, S.P.; Czech, J.; Carleer, R.; Yperman, J. Reductive pyrolysis of leonardite humic acids. Bulg. Chem. Commun. 2014, 46, 123–128. [Google Scholar]
- Grimont, P.A.D.; Grimont, F. The genus Serratia. Annu. Rev. Microbiol. 1978, 32, 221–248. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE 2016, 11, e0155026. [Google Scholar] [CrossRef]
- Khan, A.R.; Park, G.-S.; Asaf, S.; Hong, S.-J.; Jung, B.K.; Shin, S.-H. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLoS ONE 2017, 12, e0171534. [Google Scholar] [CrossRef] [Green Version]
- Matteoli, F.P.; Passarelli-Araujo, H.; Reis, R.J.A.; da Rocha, L.O.; de Souza, E.M.; Aravind, L.; Olivares, F.L.; Venancio, T.M. Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. BMC Genom. 2018, 19, 750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smułek, W.; Sydow, M.; Zabielska-Matejuk, J.; Kaczorek, E. Bacteria involved in biodegradation of creosote PAH—A case study of long-term contaminated industrial area. Ecotox. Environ. Saf. 2020, 187, 109843. [Google Scholar] [CrossRef] [PubMed]
- Das, A.C.; Mukherjee, D. Soil application of insecticides influences microorganisms and plant nutrients. Appl. Soil Ecol. 2000, 14, 55–62. [Google Scholar] [CrossRef]
- Das, A.C.; Chakravarty, A.; Sukul, P.; Mukherjee, D. Insecticides: Their effect on microorganisms and persistence in rice soil. Microbiol. Res. 1995, 150, 187–194. [Google Scholar] [CrossRef]
- Das, A.C.; Chakravarty, A.; Sukul, P.; Mukherjee, D. Influence and persistence of phorate and carbofuran insecticides on microorganisms in rice field. Chemosphere 2003, 53, 1033–1037. [Google Scholar] [CrossRef]
- Rau, N.; Mishra, V.; Sharma, M.; Das, M.K.; Ahaluwalia, K.; Sharma, R.S. Evaluation of functional diversity in Rhizobacterial taxa of a wild grass (Saccharum ravennae) colonizing abandoned fly ash dumps in Delhi urban ecosystem. Soil Biol. Biochem. 2009, 41, 813–821. [Google Scholar] [CrossRef]
- Yu, S.M.; Lee, Y.H. Plant growth promoting rhizobacterium Proteus vulgaris JBLS202 stimulates the seedling growth of Chinese cabbage through indole emission. Plant Soil 2013, 370, 485–495. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Garladinne, M.; Lee, Y.H. Volatile indole produced by rhizobacterium Proteus vulgaris JBLS202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways. J. Plant Growth Regul. 2015, 34, 158–168. [Google Scholar] [CrossRef]
- Lu, H.; Wang, X.; Zhang, K.; Lu, Y.; Zhou, L.; Li, G. Identification and nematicidal activity of bacteria isolated from cow dung. Ann. Microbiol. 2014, 64, 407–411. [Google Scholar] [CrossRef]
- Hernandez-Rivera, M.A.; Ojeda-Morales, M.E.; Martinez-Vazquez, J.G.; Villegas-Cornelio, V.M.; Cordova-Bautista, Y. Optimal parameters for in vitro development of the hydrocarbonoclastic microorganism Proteus sp. J. Soil Sci. Plant Nutr. 2011, 11, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.L.; Ijah, U.J.J.; Manga, S.B.; Bilbis, L.S.; Umar, S. Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int. Biodeterior. Biodegrad. 2013, 81, 28–34. [Google Scholar] [CrossRef]
- Obayori, O.S.; Salam, L.B.; Oyetibo, G.O.; Idowu, M.; Amund, O.O. Biodegradation potentials of polyaromatic hydrocarbon (pyrene and phenanthrene) by Proteus mirabilis isolated from an animal charcoal polluted site. Biocatal. Agric. Biotechnol. 2017, 12, 78–84. [Google Scholar] [CrossRef]
- Hassen, A.; Saidi, N.; Cherif, M.; Boudabous, A. Resistance of environmental bacteria to heavy metals. Bioresour. Technol. 1998, 64, 7–15. [Google Scholar] [CrossRef]
- Ge, S.; Dong, X.; Zhou, J.; Ge, S. Comparative evaluations on bio-treatment of hexavalent chromate by resting cells of Pseudochrobactrum sp. and Proteus sp. in wastewater. J. Environ. Manag. 2013, 126, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Yasmeen, T.; Riaz, M.; Arif, M.S.; Ali, S.; Raza, S.H. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol. Environ. Saf. 2014, 110, 143–152. [Google Scholar] [CrossRef]
- Olukanni, O.D.; Osuntoki, A.A.; Kalyani, D.C.; Gbenle, G.O.; Govindw, S.P. Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. J. Hazard Mater. 2010, 184, 290–298. [Google Scholar] [CrossRef]
- Pino, N.J.; Dominguez, M.C.; Peňuela, G.A. Isolation of a selected microbial consortium capable of degrading methyl parathion and p-nitrophenol from a contaminated soil site. J. Environ. Sci. Heal. B 2011, 46, 173–180. [Google Scholar] [CrossRef]
- Wang, L.; Nie, Y.; Tang, Y.-Q.; Song, X.-M.; Cao, K.; Sun, L.-Z.; Wang, Z.-J.; Wu, X.-L. Diverse bacteria with lignin degrading potentials isolated from two ranks of coal. Front. Microbiol. 2016, 7, 1428. [Google Scholar] [CrossRef]
Source | Bacterial Isolates and Assigned Strain Number | Identity (%) | Microbial Culture Collection No. | GenBank Accession No. | Length (bp) |
---|---|---|---|---|---|
CS | Citrobacter strain ECCN 19b | 99 | MCC0033 | KC700328 | 372 |
CS | Escherichia strain ECCN 25b | 99 | MCC0041 | KC700329 | 382 |
CS | Bacillus strain ECCN 26b | 99 | MCC0062 | KC700330 | 450 |
DCS | Bacillus strain ECCN 18b | 98 | MCC0034 | KC620473 | 560 |
DCS | Proteus strain ECCN 20b | 94 | MCC0027 | KC620475 | 553 |
DCS | Exiguobacterium strain ECCN 21b | 99 | MCC0016 | KC620476 | 551 |
DCS | Microbacterium strain ECCN 22b | 99 | MCC0042 | KC620477 | 543 |
DCS | Proteus strain ECCN 23b | 91 | MCC0022 | KC620478 | 439 |
DCS | Serratia strain ECCN 24b | 99 | MCC0021 | KC620474 | 525 |
DCS | Bacillus strain ECCN 41b | 99 | MCC0039 | KC758162 | 392 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titilawo, Y.; Masudi, W.L.; Olawale, J.T.; Sekhohola-Dlamini, L.M.; Cowan, A.K. Coal-Degrading Bacteria Display Characteristics Typical of Plant Growth Promoting Rhizobacteria. Processes 2020, 8, 1111. https://doi.org/10.3390/pr8091111
Titilawo Y, Masudi WL, Olawale JT, Sekhohola-Dlamini LM, Cowan AK. Coal-Degrading Bacteria Display Characteristics Typical of Plant Growth Promoting Rhizobacteria. Processes. 2020; 8(9):1111. https://doi.org/10.3390/pr8091111
Chicago/Turabian StyleTitilawo, Yinka, Wiya L. Masudi, Jacob T. Olawale, Lerato M. Sekhohola-Dlamini, and A. Keith Cowan. 2020. "Coal-Degrading Bacteria Display Characteristics Typical of Plant Growth Promoting Rhizobacteria" Processes 8, no. 9: 1111. https://doi.org/10.3390/pr8091111
APA StyleTitilawo, Y., Masudi, W. L., Olawale, J. T., Sekhohola-Dlamini, L. M., & Cowan, A. K. (2020). Coal-Degrading Bacteria Display Characteristics Typical of Plant Growth Promoting Rhizobacteria. Processes, 8(9), 1111. https://doi.org/10.3390/pr8091111