Modified SPWM Control for a Single-Stage Differential Boost Inverter Applied in a BESS
Abstract
:1. Introduction
2. System Description of SSDBI
2.1. Steady-State Analysis of the SSDBI
2.2. Design Considerations of the Components
3. The Analysis of the Control
3.1. The Problem of Applying Traditional SPWM Control to the Proposed Inverter
3.2. The Proposed Modified SPWM Control
4. Experimental Results
4.1. Description of System Specifications
4.2. Results of the Simulation and Hardware Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, S.; Wang, X.; Liu, P.X. A Stochastic Stability Enhancement Method of Grid-Connected Distributed Energy Storage Systems. IEEE Trans. Smart Grid 2017, 8, 2062–2070. [Google Scholar] [CrossRef]
- Yeh, C.; Chen, C.; Lee, M.; Lai, J. A Hybrid Modulation Method for Single-Stage Soft-Switching inverter Based on Series Resonant Converter. IEEE Trans. Power Electron. 2020, 35, 5785–5796. [Google Scholar] [CrossRef]
- Lo, K.; Chen, Y.; Chang, Y. Bidirectional Single-Stage Grid-Connected inverter for a Battery Energy Storage System. IEEE Trans. Ind. Electron. 2017, 64, 4581–4590. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Guo, L.; Zhu, J.; Wang, Y.; Wang, C. Enhanced Dynamic Stability Control for Low-Inertia Hybrid AC/DC Microgrid With Distributed Energy Storage Systems. IEEE Access 2019, 7, 91234–91242. [Google Scholar] [CrossRef]
- Nguyen, N.; Oruganti, S.K.; Na, K.; Bien, F. An Adaptive Backward Control Battery Equalization System for Serially Connected Lithium-Ion Battery Packs. IEEE Trans. Veh. Technol. 2014, 63, 3651–3660. [Google Scholar] [CrossRef]
- Wang, L.Y.; Wang, C.; Yin, G.; Lin, F.; Polis, M.P.; Zhang, C.; Jiang, J. Balanced Control Strategies for Interconnected Heterogeneous Battery Systems. IEEE Trans. Sustain. Energy 2016, 7, 189–199. [Google Scholar] [CrossRef]
- Omariba, Z.B.; Zhang, L.; Sun, D. Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles. IEEE Access 2019, 7, 129335–129352. [Google Scholar] [CrossRef]
- Ding, G.; Gao, F.; Tian, H.; Ma, C.; Chen, M.; He, G.; Liu, Y. Adaptive DC-Link Voltage Control of Two-Stage Photovoltaic inverter During Low Voltage Ride-Through Operation. IEEE Trans. Power Electron. 2016, 31, 4182–4194. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, F.; Xu, D.; Sun, K.; Hao, Y.; Zhang, T. Two-Stage Transformerless Dual-Buck PV Grid-Connected inverters with High Efficiency. Chin. J. Electr. Eng. 2018, 4, 36–42. [Google Scholar]
- Thang, T.V.; Thao, N.M.; Jang, J.; Park, J. Analysis and Design of Grid-Connected Photovoltaic Systems With Multiple-Integrated Converters and a Pseudo-DC-Link inverter. IEEE Trans. Ind. Electron. 2014, 61, 3377–3386. [Google Scholar] [CrossRef]
- Abeywardana, D.B.W.; Hredzak, B.; Agelidis, V.G. A Rule-Based Controller to Mitigate DC-Side Second-Order Harmonic Current in a Single-Phase Boost inverter. IEEE Trans. Power Electron. 2016, 31, 1665–1679. [Google Scholar] [CrossRef]
- Huang, S.; Tang, F.; Xin, Z.; Xiao, Q.; Loh, P.C. Grid-Current Control of a Differential Boost inverter With Hidden LCL Filters. IEEE Trans. Power Electron. 2019, 34, 889–903. [Google Scholar] [CrossRef]
- Abeywardana, D.B.W.; Hredzak, B.; Agelidis, V.G. An Input Current Feedback Method to Mitigate the DC-Side Low-Frequency Ripple Current in a Single-Phase Boost inverter. IEEE Trans. Power Electron. 2016, 31, 4594–4603. [Google Scholar] [CrossRef]
- Chen, W.; Yang, C.; Lin, C.; Xu, M.; Chen, K. Voltage Modulation and Current Control of Boost inverters for Stand-Alone or Grid-Tied Operation. IEEE Trans. Power Electron. 2020, 35, 8726–8736. [Google Scholar] [CrossRef]
- Lopez-Caiza, D.; Flores-Bahamonde, F.; Kouro, S.; Santana, V.; Müller, N.; Chub, A. Sliding Mode Based Control of Dual Boost inverter for Grid Connection. Energies 2019, 12, 4241. [Google Scholar] [CrossRef] [Green Version]
- López-Santos, O.; García, G. Double Sliding-Surface Multiloop Control Reducing Semiconductor Voltage Stress on the Boost inverter. Appl. Sci. 2020, 10, 4912. [Google Scholar] [CrossRef]
- Jha, K.; Mishra, S.; Joshi, A. High-Quality Sine Wave Generation Using a Differential Boost inverter at Higher Operating Frequency. IEEE Trans. Ind. Appl. 2015, 51, 373–384. [Google Scholar] [CrossRef]
- Mwinyiwiwa, B.; Wolanski, Z.; Ooi, B.T. Microprocessor-Implemented SPWM for Multiconverters with Phase-Shifted Triangle Carriers. IEEE Trans. Ind. Appl. 1998, 34, 487–494. [Google Scholar] [CrossRef]
- Langella, R.; Testa, A.; Alii, E. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems; IEEE Std 519-2014 Revision IEEE Std 519-1992; IEEE: New York, NY, USA, 2014; pp. 1–29. [Google Scholar]
vAC | Mode | Status of Switch | Status of Converter |
---|---|---|---|
>0 | Mode 1 [t0~t1] | S1, S3 on S2, S4 off | |
Mode 2 [t1~t2] | S2, S4 on S1, S3 off | ||
<0 | Mode 3 [t2~t3] | S2, S4 on S1, S3 off | Converter 2: Boost (Charge C2) |
Mode 4 [t3~t4] | S1, S3 on S2, S4 off | Converter 2: Boost (Charge C2) |
Item | Value |
---|---|
Battery module (voltage range) | 33.6–58.4 Vdc |
Battery module (voltage rated) | 52.8 Vdc |
AC output voltage | 110 Vrms |
Power | 1000 W |
Switching frequency | 21.6 kHz |
Inductor | 120 μH, 120 μH |
ESR of Inductor | 0.2 Ω, 0.2 Ω |
Capacitor | 12 μF, 12 μF |
ESR of Capacitor | 0.02 Ω, 0.02 Ω |
Results | THD | ||
---|---|---|---|
250 W | 500 W | 1000 W | |
Simulation (traditional) | 9.12% | 8.64% | 6.83% |
Simulation (modified) | 3.47% | 3.33% | 4.24% |
Hardware experiment (traditional) | 9.20% | 8.78% | 7.00% |
Hardware experiment (modified) | 3.66% | 3.50% | 4.29% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-L.; Chen, K.-F.; Pai, K.-J.; Lin, C.-H.; Cheng, Y.-H. Modified SPWM Control for a Single-Stage Differential Boost Inverter Applied in a BESS. Processes 2021, 9, 1861. https://doi.org/10.3390/pr9111861
Lee Y-L, Chen K-F, Pai K-J, Lin C-H, Cheng Y-H. Modified SPWM Control for a Single-Stage Differential Boost Inverter Applied in a BESS. Processes. 2021; 9(11):1861. https://doi.org/10.3390/pr9111861
Chicago/Turabian StyleLee, Yu-Lin, Kun-Feng Chen, Kai-Jun Pai, Chang-Hua Lin, and Yuan-Hong Cheng. 2021. "Modified SPWM Control for a Single-Stage Differential Boost Inverter Applied in a BESS" Processes 9, no. 11: 1861. https://doi.org/10.3390/pr9111861
APA StyleLee, Y. -L., Chen, K. -F., Pai, K. -J., Lin, C. -H., & Cheng, Y. -H. (2021). Modified SPWM Control for a Single-Stage Differential Boost Inverter Applied in a BESS. Processes, 9(11), 1861. https://doi.org/10.3390/pr9111861