Equivalence Ratio Measurements in CH4/Air Gases Based on the Spatial Distribution of the Emission Intensity of Femtosecond Laser-Induced Filament
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Spatially Resolved Spectrum
3.2. Equivalence Ratio Measurements Based on the Emission Intensity Ratio between Two Species in the fs Laser-Induced Filament
3.3. Equivalence Ratio Measurements Based on the Spatial Distribution of the Emission Intensity of the fs Laser-Induced Filament
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, B.; Zhang, D.Y.; Liu, J.X.; Tian, Y.F.; Gao, Q.; Li, Z.S. A Review of Femtosecond Laser-Induced Emission Techniques for Combustion and Flow Field Diagnostics. Appl. Sci. 2019, 9, 1906. [Google Scholar] [CrossRef] [Green Version]
- Aldén, M.; Bood, J.; Li, Z.S.; Richter, M. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques. Proc. Combust. Inst. 2011, 33, 69–97. [Google Scholar] [CrossRef]
- Allison, P.M.; Frederickson, K.; Kirik, J.W.; Rockwell, R.D.; Goyne, C.P.; Lempert, W.R.; Sutton, J.A. Flame Structure and Dynamics in a Premixed Dual-Mode Scramjet Combustor from Fluorescence Imaging. J. Propuls. Power 2019, 35, 552–564. [Google Scholar] [CrossRef]
- Zhao, W.D.; Wang, W.G.; Li, H.Y. Numerical simulation and experimental investigation of the production of multiply charged ions by the ionization of benzene cluster with a moderate intensity laser. Acta Phys. Sin. 2014, 63, 103602. [Google Scholar]
- Richardson, D.R.; Jiang, N.; Blunck, D.L.; Gord, J.R.; Roy, S. Characterization of inverse diffusion flames in vitiated cross flows via two-photon planar laser-induced fluorescence of CO and 2-D thermometry. Combust. Flame 2016, 168, 270–285. [Google Scholar] [CrossRef]
- Chan, V.S.S.; Turner, J.T. Velocity measurement inside a motored internal combustion engine using three-component laser Doppler anemometry. Opt. Laser Technol. 2000, 32, 557–566. [Google Scholar] [CrossRef]
- Braun, A.; Korn, G.; Liu, X.; Du, D.; Mourou, G. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 1995, 20, 73–75. [Google Scholar] [CrossRef]
- Spence, D.E.; Kean, P.N.; Sibbett, W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 1991, 16, 42–44. [Google Scholar] [CrossRef]
- Chen, X.W.; Liu, J.; Zhu, Y.; Leng, Y.X.; Ge, X.C.; Li, R.X.; Xu, Z.Z. Self-compression of femtosecond pulses in argon with a power close to the self-focusing threshold. Chin. Phys. B 2008, 17, 1826–1832. [Google Scholar]
- Li, H.L.; Chu, W.; Xu, H.L.; Cheng, Y.; Chin, S.L.; Yamanouchi, K.; Sun, H.B. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing. Sci. Rep. 2016, 6, 27340. [Google Scholar] [CrossRef] [Green Version]
- Li, H.L.; Xu, H.L.; Yang, B.S.; Chen, Q.D.; Zhang, T.; Sun, H.B. Sensing combustion intermediates by femtosecond filament excitation. Opt. Lett. 2013, 38, 1250–1252. [Google Scholar] [CrossRef] [Green Version]
- Brodeur, A.; Chin, S.L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media. J. Opt. Soc. Am. B 1999, 16, 637–650. [Google Scholar] [CrossRef] [Green Version]
- Kosareva, O.G.; Kandidov, V.P.; Brodeur, A.; Chien, C.Y.; Chin, S.L. Conical emission from laser–plasma interactions in the filamentation of powerful ultrashort laser pulses in air. Opt. Lett. 1997, 22, 1332–1334. [Google Scholar] [CrossRef]
- Luo, Q.; Liu, W.; Chin, S.L. Lasing action in air induced by ultra-fast laser filamentation. Appl. Phys. B Lasers Opt. 2003, 76, 337–340. [Google Scholar] [CrossRef]
- Couairon, A.; Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 2007, 441, 47–189. [Google Scholar] [CrossRef]
- Li, H.L.; Xu, H.L. Ultrafast strong laser filamentation and applications in high-temperature combustion field. Chin. Sci. Bull. 2017, 62, 2876–2885. [Google Scholar] [CrossRef] [Green Version]
- Li, H.L.; Wei, X.Y.; Xu, H.L.; Chin, S.L.; Yamanouchi, K.; Sun, H.B. Femtosecond laser filamentation for sensing combustion intermediates: A comparative study. Sens. Actuators B Chem. 2014, 203, 887–890. [Google Scholar] [CrossRef]
- Li, B.; Tian, Y.F.; Gao, Q.; Zhang, D.Y.; Li, X.F.; Zhu, Z.F.; Li, Z.S. Filamentary anemometry using femtosecond laser-extended electric discharge—FALED. Opt Express. 2018, 26, 21132–21140. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhang, D.Y.; Gao, Q.; Li, B.; He, Y.; Wang, Z.H. Temperature measurement in combustion flow field with femtosecond laser-induced filament. Acta Phys. Sin. 2020, 69, 234207. [Google Scholar]
- Li, Y.; Gao, W.; Zhang, P.; Fu, Z.; Cao, X. Influence of the equivalence ratio on the knock and performance of a hydrogen direct injection internal combustion engine under different compression ratios. Int. J. Hydrog. Energy 2021, 46, 11982–11993. [Google Scholar] [CrossRef]
- Wang, X.; Jin, T.; Luo, K.H. Response of heat release to equivalence ratio variations in high karlovitz premixed H2/air flames at 20 atm. Int. J. Hydrog. Energy 2019, 44, 3195–3207. [Google Scholar] [CrossRef]
- Al-Farayedhi, A.A.; Antar, M.A.; Khan, A. Effect of the equivalence ratio on the concentration of CH4/NO2/O2 combustion products. Int. J. Energy Res. 2015, 23, 1165–1175. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Gao, Q.; Li, B.; Zhu, Z.F.; Li, Z.S. Instantaneous one-dimensional equivalence ratio measurements in methane/air mixtures using femtosecond laser-induced plasma spectroscopy. Opt. Express. 2019, 27, 2160. [Google Scholar] [CrossRef]
- Kasparian, J.; Wolf, J.P. Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express. 2008, 16, 466–493. [Google Scholar] [CrossRef] [Green Version]
- Zang, H.W.; Yao, D.W.; Wang, S.Q.; Fu, Y.; Zhang, W.; Chen, S.M.; Li, H.L.; Xu, H.L. In situ determination of the equivalence ratio in a methane/air flow field by femtosecond filament excitation. Laser Phys. 2020, 30, 035402. [Google Scholar] [CrossRef]
- Simek, M.; Babický, V.; Clupek, M.; Sunka, P. Observation of the N2 Herman infrared system in pulsed positive streamer induced emission at atmospheric pressure. J. Phys. D Appl. Phys. 2001, 34, 3185–3190. [Google Scholar] [CrossRef]
- Keith, S.; Martin, S. CH and C2 Measurements Imply a Radical Pool within a Pool in Acetylene Flames. J. Phys. Chem. A 2007, 111, 2098–2114. [Google Scholar]
- Xu, H.L.; Azarm, A.; Bernhardt, J.; Kamali, Y.; Chin, S.L. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chem. Phys. 2009, 360, 171–175. [Google Scholar] [CrossRef]
- Kong, F.; Luo, Q.; Xu, H.L.; Sharifi, M.; Song, D.; Chin, S.L. Explosive photodissociation of methane induced by ultrafast intense laser. J. Chem. Phys. 2006, 125, 133320. [Google Scholar] [CrossRef] [PubMed]
- Pintassilgo, C.D.; Cernogora, G.; Loureiro, J. Spectroscopy study and modelling of an afterglow created by a low-pressure pulsed discharge in N2–CH4. Plasma Sources Sci. Technol. 2001, 10, 147–161. [Google Scholar] [CrossRef]
- Li, B.; Zhang, D.Y.; Li, X.F.; Gao, Q.; Zhu, Z.F.; Li, Z.S. Femtosecond laser-induced cyano chemiluminescence in methane-seeded nitrogen gas flows for near-wall velocimetry. J. Phys. D Appl. Phys. 2018, 51, 295102. [Google Scholar] [CrossRef]
- Zimmer, L.; Tachibana, S. Laser induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment. Proc. Combust. Inst. 2007, 31, 737–745. [Google Scholar] [CrossRef]
- Joshi, S.; Olsen, D.B.; Dumitrescu, C.; Puzinauskas, P.V.; Yalin, A.P. Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines. Appl. Spectrosc. 2009, 63, 549–554. [Google Scholar] [CrossRef]
- Zhang, S.H.; Yu, X.L.; Li, F.; Kang, G.J.; Chen, L.H.; Zhang, X.Y. Laser induced breakdown spectroscopy for local equivalence ratio measurement of kerosene/air mixture at elevated pressure. Opt. Lasers Eng. 2012, 50, 877–882. [Google Scholar] [CrossRef] [Green Version]
- Kammermann, T.; Merotto, L.; Bleiner, D.; Soltic, P. Spark-induced breakdown spectroscopy for fuel-air equivalence ratio measurements at internal combustion engine-relevant conditions. Spectrochim. Acta Part B At. Spectrosc. 2019, 155, 79–89. [Google Scholar] [CrossRef]
- Liu, W.; Chin, S.L. Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air. Opt. Express 2005, 13, 5750–5755. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Chu, W.; Zang, H.W.; Xu, H.L.; Cheng, Y.; Chin, S.L. Critical power and clamping intensity inside a filament in a flame. Opt. Express 2016, 24, 3424–3431. [Google Scholar] [CrossRef] [PubMed]
- Loriot, V.; Hertz, E.; Faucher, O.; Lavorel, B. Measurement of high order Kerr refractive index of major air components: Erratum. Opt. Express 2010, 18, 3011–3012. [Google Scholar] [CrossRef] [Green Version]
- Shaw, M.J.; Hooker, C.J.; Wilson, D.C. Measurement of the nonlinear refractive index of air and other gases at 248 nm. Opt. Commun. 1993, 103, 153–160. [Google Scholar] [CrossRef]
- Wu, J.B.; Wu, Z.Y.; Chen, T.; Zhang, H.; Zhang, Y.F.; Zhang, Y.; Lin, S.; Cai, X.M.; Chen, A.M.; Jiang, Y.F.; et al. Spatial distribution of the fluorescence induced by femtosecond laser filamentation in ambient air. Opt. Laser Technol. 2020, 131, 106417. [Google Scholar] [CrossRef]
Case | Equivalence Ratio | CH4 Flow Rate (10−4 m3/s) | Air Flow Rate (10−4 m3/s) | Total Flow Rate (10−4 m3/s) |
---|---|---|---|---|
1 | 0.6 | 0.98 | 3.26 | 4.24 |
2 | 0.8 | 1.21 | 3.03 | 4.24 |
3 | 1 | 1.41 | 2.83 | 4.24 |
4 | 1.2 | 1.59 | 2.65 | 4.24 |
5 | 1.4 | 1.75 | 2.49 | 4.24 |
6 | 1.6 | 1.88 | 2.36 | 4.24 |
Component | Wavelength | Transition |
---|---|---|
CH | ~314 nm | C2Σ+−X2Π (0, 0) |
N2 | ~337 nm | C3Πu−B3Πg (0, 0) |
N2 | ~357 nm | C3Πu−B3Πg (0, 1) |
CN | ~388 nm | B2Σ+−Χ2Σ+ (0, 0) |
CH | ~388 nm | B2Σ−−Χ2Π (0, 0) |
CH | ~431 nm | A2Δ−Χ2Π (0, 0) |
C2 | ~516.5 nm | d3Πg−a3Πu (0, 0) |
H | ~656 nm | 3p2P−2s2S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Gu, J.; Zhang, D.; Gao, Q.; Li, B. Equivalence Ratio Measurements in CH4/Air Gases Based on the Spatial Distribution of the Emission Intensity of Femtosecond Laser-Induced Filament. Processes 2021, 9, 2022. https://doi.org/10.3390/pr9112022
Li M, Gu J, Zhang D, Gao Q, Li B. Equivalence Ratio Measurements in CH4/Air Gases Based on the Spatial Distribution of the Emission Intensity of Femtosecond Laser-Induced Filament. Processes. 2021; 9(11):2022. https://doi.org/10.3390/pr9112022
Chicago/Turabian StyleLi, Ming, Jiangpeng Gu, Dayuan Zhang, Qiang Gao, and Bo Li. 2021. "Equivalence Ratio Measurements in CH4/Air Gases Based on the Spatial Distribution of the Emission Intensity of Femtosecond Laser-Induced Filament" Processes 9, no. 11: 2022. https://doi.org/10.3390/pr9112022
APA StyleLi, M., Gu, J., Zhang, D., Gao, Q., & Li, B. (2021). Equivalence Ratio Measurements in CH4/Air Gases Based on the Spatial Distribution of the Emission Intensity of Femtosecond Laser-Induced Filament. Processes, 9(11), 2022. https://doi.org/10.3390/pr9112022