Study of Natural Convection of Lithium-Ion Battery Module Employing Phase Change Material
Abstract
:1. Introduction
2. Numerical Method and Geometry
2.1. Mathematical Formulation
- if T < Tsolid.
- if T > Tliquid.
- if Tsolids < T < Tliquid.
- αn = 0 for the control volume which is void in the nth fluid;
- αn = 1 for the control volume which is filled in the nth fluid;
- 0 < αn < 1 for the control volume which comprises the surface amid the nth fluid and at least one other fluids.
2.2. Geometry Model
2.3. Initial and Boundary Conditions
2.4. Grid Independence Test
2.5. Time Step Validation
3. Results and Discussion
3.1. Influence of Inter-Cylinder Distance on Maximum Temperature and Heat Transfer
Performance
3.2. Effect of Fin Array on Temperature and Liquid Fraction Contours
3.3. Variation of Maximum Temperature and Heat Transfer Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Nomenclature | |
Cp | Specific heat at constant pressure (J/kg °C) |
D | cylinder diameter (mm) |
g | Gravity (m/s2) |
H | Height of calculation domain (m) |
ℏ | Enthalpy (J/kg) |
h | Heat transfer coefficient (W/m2 °C) or height of the rectangular pack (m) |
k | Thermal conductivity (W/m °C) |
L | Latent heat (J/kg) or length of computational region (m) |
l | length of the rectangular pack (m) |
Nuavg | Average Nusselt number (hL/k) |
Heat flux (w/m2) | |
p | Pressure (N/mm2) |
Sh | Heat production rate of cylindrical heat source (w/m3) |
t | Time (s) |
T | Temperature (°C) |
u | Velocity component for x direction (m/s) |
v | Velocity component for y direction (m/s) |
w | Velocity component for z direction (m/s) or width of the rectangular pack (m) |
W | Width of calculation domain (m) |
x | Cartesian coordinate (m) |
Greek symbols | |
α | Phase volume fraction |
Thermal expansion coefficient | |
γ | Liquid fraction |
μ | Dynamic viscosity (kg/m s) |
ρ | Density (kg/m3) |
Subscripts | |
f | Fluid |
i | Component |
l | Liquid |
n | nth |
ref | Reference value |
s | Solid |
References
- Scrosati, B.; Hassoun, J.; Sun, Y.K. Lithium-ion batteries. A look into the future. Energy Environ. 2011, 4, 3287–3295. [Google Scholar] [CrossRef]
- Wang, Q.S.; Sun, J.H.; Chu, G.Q. Lithium ion battery fire and explosion. Fire Safety Sci. 2005, 8, 375–382. [Google Scholar] [CrossRef]
- Taheri, P.; Bahrami, M. Temperature rise in prismatic polymer lithium-ion batteries: An analytic approach. SAE Int. 2012. [Google Scholar] [CrossRef] [Green Version]
- Michael, A.R.; Sauer, D.U. Dynamic electric behavior and open circuit voltage modeling of LiFePO4 based lithium ion secondary batteries. J. Power Sources 2011, 196, 331–336. [Google Scholar]
- Wang, T.; Tseng, K.J.; Zhao, J.Y.; Wei, Z.B. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Appl. Energy 2014, 134, 229–238. [Google Scholar] [CrossRef]
- Mohammadian, S.K.; Zhang, Y. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles. J. Power Sources 2015, 273, 431–439. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, B.; Li, B.; Yan, Y.Y. A Critical Review of Thermal Management Models and Solutions of Lithium-ion Batteries for the Development of Pure Electric Vehicles. Renew. Sustain. Energy Rev. 2016, 64, 106–128. [Google Scholar] [CrossRef]
- Jue, T.C.; Wu, H.W.; Hung, S.Y. Heat Transfer Predictions around Three Heated Cylinders between two Parallel Plates. Numer. Heat Transf. Part A Appl. 2001, 40, 715–733. [Google Scholar]
- Deka, R.K.; Paul, A.; Chaliha, A. Transient free convection flow past vertical cylinder with constant heat flux and mass transfer. Ain. Shams Engr. J. 2017, 8, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.W.; Perng, S.W.; Hung, S.Y.; Jue, T.C. Transient Mixed Convective Heat Transfer Predictions around Three Heated Cylinders in a Horizontal Channel. Int. J. Numer. Methods Heat Fluid Flow 2006, 16, 674–692. [Google Scholar] [CrossRef]
- Rosler, F.; Bruggemann, D. Shell-and-tube type latent heat thermal energy storage: Numerical analysis and comparison with experiments. Heat Mass Transfer 2011, 47, 1027–1033. [Google Scholar] [CrossRef]
- Al-Abidi, A.A.; Mat, S.; Sopian, K.; Sulaiman, M.Y.; Mohammad, A.T. Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build 2014, 68, 33–41. [Google Scholar] [CrossRef]
- Nomura, T.; Tsubota, M.; Oya, T.; Okinaka, N.; Akiyama, T. Heat storage in direct-contact heat exchanger with phase change material. Appl. Therm. Eng. 2013, 50, 26–34. [Google Scholar] [CrossRef]
- Mat, S.; Al-Abidi, A.A.; Sopian, K.; Sulaiman, M.Y.; Mohammad, A.T. Enhance heat transfer for PCM melting in triplex tube with internal-external fins. Energy Convers. Manag. 2013, 74, 223–236. [Google Scholar] [CrossRef]
- Ling, Z.Y.; Wang, F.X.; Fang, X.M.; Gao, X.N.; Zhang, Z.G. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl. Energy 2015, 148, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Rao, Z.H.; Wang, S.F.; Zhang, Y.L. Simulation of heat dissipation with phase change material for cylindrical power battery. Energy Inst. 2012, 85, 38–43. [Google Scholar] [CrossRef]
- Parsons, K.K. Design and Simulation of Passive Thermal Management System of Passive Thermal Management System for Lithium-Ion Battery Packs on an Unmanned Ground Vehicle. Master’s Thesis, Science in Mechanical Engineering. California Polytechnic State University, San Luis Obispo, CA, USA, 2012. [Google Scholar]
- Hussain, A.; Tso, C.Y.; Chao, C.Y.H. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite. Energy 2016, 115, 209–218. [Google Scholar] [CrossRef]
- Tay, N.H.S.; Bruno, F.; Belusko, M. Experimental validation of a CFD model for tubes in a phase change thermal energy storage system. Int. J. Heat Mass Transfer 2012, 55, 574–585. [Google Scholar] [CrossRef]
- Niu, J.Y.; Xie, N.; Zhon, Y.; Gao, X.N.; Fang, Y.T.; Zhang, Z.G. Numerical analysis of battery thermal management system coupling with low-thermal-conductive phase change material and liquid cooling. J. Energy Storage 2021, 39, 102605. [Google Scholar] [CrossRef]
- Huang, R.; Li, Z.; Hon, W.H.; Wu, Q.C.; Yu, X.L. Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management. Energy Rep. 2020, 6, 8–19. [Google Scholar] [CrossRef]
- Wang, F.X.; Cao, J.H.; Ling, Z.Y.; Zhang, Z.G.; Fang, X.M. Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack. Energy 2020, 207, 118215. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Youssef, R.; Patil, M.S.; van Mierlo, J.; Berecibar, M. Comprehensive Passive Thermal Management Systems for Electric Vehicles. Energies 2021, 14, 3881. [Google Scholar] [CrossRef]
- Wang, Y.N.; Wang, Z.K.; Min, H.T.; Li, H.; Li, Q.F. Performance investigation of a passive battery thermal management system applied with phase change material. J. Energy Storage 2021, 35, 102279. [Google Scholar] [CrossRef]
- Chang, S.W.; Wu, H.W.; Guo, D.Y.; Shi, J.J.; Chen, T.H. Heat transfer enhancement of vertical dimpled fin array in natural convection. Inter. J. Heat Mass Transfer 2017, 106, 781–792. [Google Scholar] [CrossRef]
- Pletcher, H.R.; Tannehill, J.C.; Anderson, D. Computational Fluid Mechanics and Heat Transfer, 3rd ed.; CRC Press: New York, NY, USA, 2011; pp. 554–556. [Google Scholar]
- Bejan, A. Convection Heat Transfer, 4th ed.; Wiley: New York, NY, USA, 2013; pp. 175–176. [Google Scholar]
- Brent, A.D.; Voller, V.R.; Reid, K.J. Enthalpy-porosity technique for modeling convectione diffusion phase change: Application to the melting of a pure metal. Numer. Heat Transfer 1998, 13, 297–318. [Google Scholar]
- Nichols, B.; Hirt, C. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar]
Bettery Type | Nominal Voltage (V) | Capacity | Current (I) | Battery Power (2 C) | ρ (kg/m3) | Cp (J/kg K) | k (W/m K) |
---|---|---|---|---|---|---|---|
Sony 18650 | 3.2 V | 40 Ah | 40 Amp | 1.47 W | 4035 | 640 | 6.6 |
Material | ρ (kg/m3) | Cp (J/kg K) | k (W/(m K) | Tm (K) | μ (g m/s) | (J/kg) |
---|---|---|---|---|---|---|
N-eicosane (PCM) | 2890 | 0.21 | 319–321 | 173,400 | ||
Aluminum | 2719 | 871 | 202.4 | ―― | ―― | ―― |
Air | 1.2 × 10−5 T2−0.01134 T + 3.498 | 1006.4 | 0.0242 | ―― | ―― | ―― |
Inter-Cylinder Distance | Case A | Case B | Case C | Case D |
---|---|---|---|---|
1 mm | 64.84 | 50.49 (−22.1%) | 58.94 (−9.1%) | 49.66 (−23.4%) |
2 mm | 64.34 | 50.18 (−22.0%) | 58.58 (−9.0%) | 49.47 (−23.1%) |
3 mm | 64.03 | 50.13 (−21.7%) | 58.33 (−8.9%) | 49.17 (−23.2%) |
4 mm | 63.73 | 49.97 (−21.6%) | 59.11 (−7.2%) | 49.11 (−22.9%) |
5 mm | 63.68 | 49.81 (−21.8%) | 58.95 (−7.4%) | 48.95 (−23.1%) |
6 mm | 63.05 | 49.65 (−21.3%) | 58.66 (−7.0%) | 48.66 (−22.8%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.-W.; Ciou, Y.-C.; Wu, J.-K.; Huang, D.-A. Study of Natural Convection of Lithium-Ion Battery Module Employing Phase Change Material. Processes 2021, 9, 2023. https://doi.org/10.3390/pr9112023
Wu H-W, Ciou Y-C, Wu J-K, Huang D-A. Study of Natural Convection of Lithium-Ion Battery Module Employing Phase Change Material. Processes. 2021; 9(11):2023. https://doi.org/10.3390/pr9112023
Chicago/Turabian StyleWu, Horng-Wen, Yi-Chen Ciou, Jun-Kuan Wu, and De-An Huang. 2021. "Study of Natural Convection of Lithium-Ion Battery Module Employing Phase Change Material" Processes 9, no. 11: 2023. https://doi.org/10.3390/pr9112023
APA StyleWu, H. -W., Ciou, Y. -C., Wu, J. -K., & Huang, D. -A. (2021). Study of Natural Convection of Lithium-Ion Battery Module Employing Phase Change Material. Processes, 9(11), 2023. https://doi.org/10.3390/pr9112023