Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joseph, L.; Jun, B.M.; Jang, M.; Park, C.M.; Muñoz-Senmache, J.C.; Hernández-Maldonado, A.J.; Heyden, A.; Yu, M.; Yoon, Y. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review. Chem. Eng. J. 2019, 369, 928–946. [Google Scholar] [CrossRef]
- García-Córcoles, M.T.; Rodríguez-Gómez, R.; de Alarcón-Gómez, B.; Çipa, M.; Martín-Pozo, L.; Kauffmann, J.M.; Zafra-Gómez, A. Chromatographic methods for the determination of emerging contaminants in natural water and wastewater samples: A review. Crit. Rev. Anal. Chem. 2019, 49, 160–186. [Google Scholar] [CrossRef] [PubMed]
- Alimi, O.S.; Budarz, J.F.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Petrella, A.; Petruzzelli, V.; Basile, T.; Petrella, M.; Boghetich, G.; Petruzzelli, D. Recycled porous glass from municipal/industrial solid wastes sorting operations as a lead ion sorbent from wastewaters. React. Funct. Polym. 2010, 70, 203–209. [Google Scholar] [CrossRef]
- Petrella, A.; Petrella, M.; Boghetich, G.; Basile, T.; Petruzzelli, V.; Petruzzelli, D. Heavy metals retention on recycled waste glass from solid wastes sorting operations: A comparative study among different metal species. Ind. Eng. Chem. Res. 2012, 51, 119–125. [Google Scholar] [CrossRef]
- Tammaro, M.; Fiandra, V.; Mascolo, M.C.; Salluzzo, A.; Riccio, C.; Lancia, A. Photocatalytic degradation of atenolol in aqueous suspension of new recyclable catalysts based on titanium dioxide. J. Environ. Chem. Eng. 2017, 5, 3224–3234. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A.; Vepsäläinen, M. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere 2018, 190, 54–71. [Google Scholar] [CrossRef]
- Petrella, A.; Spasiano, D.; Rizzi, V.; Cosma, P.; Race, M.; De Vietro, N. Thermodynamic and kinetic investigation of heavy metals sorption in packed bed columns by recycled lignocellulosic materials from olive oil production. Chem. Eng. Comm. 2019, 1–16. [Google Scholar] [CrossRef]
- Bai, X.; Acharya, K. Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. Environ. Pollut. 2019, 247, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Spasiano, D.; Luongo, V.; Petrella, A.; Alfè, M.; Pirozzi, F.; Fratino, U.; Piccinni, A.F. Preliminary study on the adoption of dark fermentation as pretreatment for a sustainable hydrothermal denaturation of cement-asbestos composites. J. Clean. Prod. 2017, 166, 172–180. [Google Scholar] [CrossRef]
- Petrella, A.; Petruzzelli, V.; Ranieri, E.; Catalucci, V.; Petruzzelli, D. Sorption of Pb(II), Cd(II) and Ni(II) from single- and multimetal solutions by recycled waste porous glass. Chem. Eng. Commun. 2016, 203, 940–947. [Google Scholar] [CrossRef]
- Rizzi, V.; D’Agostino, F.; Gubitosa, J.; Fini, P.; Petrella, A.; Agostiano, A.; Semeraro, P.; Cosma, P. An alternative use of olive pomace as a wide-ranging bioremediation strategy to adsorb and recover disperse orange and disperse red industrial dyes from wastewater. Separations 2017, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Zazou, H.; Afanga, H.; Akhouairi, S.; Ouchtak, H.; Addi, A.A.; Akbour, R.A.; Assabane, A.; Douch, J.; Elmchaour, A.; Duplay, J.; et al. Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. J. Water Process Eng. 2019, 28, 214–221. [Google Scholar] [CrossRef]
- Brillas, E. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere 2020, 126198. [Google Scholar] [CrossRef] [PubMed]
- Amor, C.; Marchão, L.; Lucas, M.S.; Peres, J.A. Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water 2019, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Vandenberg, L.N.; Luthi, D.; Quinerly, D.A. Plastic bodies in a plastic world: Multi-disciplinary approaches to study endocrine disrupting chemicals. J. Clean. Prod. 2017, 140, 373–385. [Google Scholar] [CrossRef]
- Plahuta, M.; Tišler, T.; Toman, M.J.; Pintar, A. Toxic and endocrine disrupting effects of wastewater treatment plant influents and effluents on a freshwater isopod Asellus aquaticus (Isopoda, Crustacea). Chemosphere 2017, 174, 342–353. [Google Scholar] [CrossRef]
- Gubitosa, J.; Rizzi, V.; Lopedota, A.; Fini, P.; Laurenzana, A.; Fibbi, G.; Fanelli, F.; Petrella, A.; Laquintana, V.; Denora, N.; et al. One pot environmental friendly synthesis of gold nanoparticles using Punica Granatum Juice: A novel antioxidant agent for future dermatological and cosmetic applications. J. Colloid Interface Sci. 2018, 521, 50–61. [Google Scholar] [CrossRef]
- Petrella, A.; Spasiano, D.; Rizzi, V.; Cosma, P.; Race, M.; De Vietro, N. Lead ion sorption by perlite and reuse of the exhausted material in the construction field. Appl. Sci. 2018, 8, 1882. [Google Scholar] [CrossRef] [Green Version]
- Tayo, L.L.; Caparanga, A.R.; Doma, B.T.; Liao, C.H. A Review on the removal of pharmaceutical and personal care products (PPCPs) using advanced oxidation processes. J. Adv. Oxid. Technol. 2018, 21, 196–214. [Google Scholar] [CrossRef]
- Wang, C.; Kim, J.; Malgras, V.; Na, J.; Lin, J.; You, J.; Zhang, M.; Li, J.; Yamauchi, Y. Metal–organic frameworks and their derived materials: Emerging catalysts for a sulfate radicals-based advanced oxidation process in water purification. Small 2019, 15, 1900744. [Google Scholar] [CrossRef]
- Oppenlander, T. Advanced oxidation processes (AOPs): Principles, Reaction Mechanisms, Reactor Concepts; Wiley VCH: Weinheim, Germany, 2007. [Google Scholar]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Mascolo, M.C.; Ring, T.A. Recyclable aggregates of mesoporous titania synthesized by thermal treatment of amorphous or peptized precursors. Materials 2018, 11, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, N.F.; Narciso-da-Rocha, C.; Polo-López, M.I.; Pastrana-Martínez, L.M.; Faria, J.L.; Manaia, C.M.; Fernandez-Ibanez, F.; Nunes, O.C.; Silva, A.M. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. Water Res. 2018, 135, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Mascolo, M.C. Synthesis of wide spectrum of mesoporous titania materials by forced co-hydrolysis of Zr–Ti alkoxides. Micropor. Mesopor. Mater. 2013, 181, 160–165. [Google Scholar] [CrossRef]
- Petrella, A.; Cozzoli, P.D.; Curri, M.L.; Striccoli, M.; Cosma, P.; Agostiano, A. Photoelectrochemical study on photosynthetic pigments-sensitized nanocrystalline ZnO films. Bioelectrochemistry 2004, 63, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Camarillo, R.; Rincon, J. Photocatalytic discoloration of dyes: Relation between effect of operating parameters and dye structure. Chem. Eng. Technol. 2011, 34, 1675–1684. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Labidi, A.; Salaberria, A.M.; Fernandes, S.; Labidi, J.; Abderrabba, M. Functional chitosan derivative and chitin as decolorization materials for Methylene Blue and Methyl Orange from aqueous solution. Materials 2019, 12, 361. [Google Scholar] [CrossRef] [Green Version]
- Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H. Adsorption of basic dye using activated carbon prepared from oil palm shell: Batch and fixed bed studies. Desalination 2008, 225, 13–28. [Google Scholar] [CrossRef]
- Srinivasan, A.; Viraraghavan, T. Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manag. 2010, 91, 1915–1929. [Google Scholar] [CrossRef] [PubMed]
- Badr, Y.; El-Wahed, M.A.; Mahmoud, M.A. Photocatalytic degradation of methyl red dye by silica nanoparticles. J. Hazard. Mater. 2008, 154, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Waghmode, T.R.; Kurade, M.B.; Sapkal, R.T.; Bhosale, C.H.; Jeon, B.H.; Govindwar, S.P. Sequential photocatalysis and biological treatment for the enhanced degradation of the persistent azo dye methyl red. J. Hazard. Mater. 2019, 371, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Malviya, A.; Kaur, D.; Mittal, J.; Kurup, L. Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste materials. J. Hazard. Mater. 2007, 148, 229–240. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Petrella, A.; Boghetich, G.; Petrella, M.; Mastrorilli, P.; Petruzzelli, V.; Petruzzelli, D. Photocatalytic degradation of azo dyes. Pilot plant investigation. Ind. Eng. Chem. Res. 2014, 53, 2566–2571. [Google Scholar] [CrossRef]
- Petrella, A.; Mascolo, G.; Murgolo, S.; Petruzzelli, V.; Ranieri, E.; Spasiano, D.; Petruzzelli, D. Photocatalytic oxidation of organic micro-pollutants: Pilot plant investigation and mechanistic aspects of the degradation reaction. Chem. Eng. Commun. 2016, 203, 1298–1307. [Google Scholar] [CrossRef]
- Petrella, A.; Spasiano, D.; Cosma, P.; Rizzi, V.; Race, M. Evaluation of the hydraulic and hydrodynamic parameters influencing photo-catalytic degradation of bio-persistent pollutants in a pilot plant. Chem. Eng. Comm. 2019, 206, 1286–1296. [Google Scholar] [CrossRef]
- Konstantinou, T.; Albanis, A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Kim, S.H.; Ngo, H.H.; Shon, H.K.; Vigneswaran, S. Adsorption and photocatalysis kinetics of herbicide onto titanium oxide and powdered activated carbon. Sep. Purif. Technol. 2008, 58, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.Z.; An, H. Photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 1995, 31, 4157–4170. [Google Scholar] [CrossRef]
- Giraldo, A.L.; Penuela, G.A.; Torres-Palma, R.A.; Pino, N.J.; Palominos, R.A.; Mansilla, H.D. Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Res. 2010, 44, 5158–5167. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, D.; Mendice, C.; Bahnemann, D. TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B 2010, 99, 398–406. [Google Scholar] [CrossRef]
- Comparelli, R.; Fanizza, E.; Curri, M.L.; Cozzoli, P.D.; Mascolo, G.; Passino, R.; Agostiano, A. Photocatalytic degradation of azo dyes by organic-capped anatase TiO2 nanocrystals immobilized onto substrates. Appl. Catal. B 2005, 55, 81–91. [Google Scholar] [CrossRef]
- Guillard, C.; Lachheb, H.; Houas, A.; Ksibi, M.; Elaloui, E.; Herrmann, J.M. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J. Photoch. Photobio. A 2003, 158, 27–36. [Google Scholar] [CrossRef]
- Franco, A.; Neves, M.C.; Ribeiro Carrott, M.M.L.; Mendonca, M.H.; Pereira, M.I.; Monteiro, O.C. Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites. J. Hazard. Mater. 2009, 161, 545–550. [Google Scholar] [CrossRef]
Test No. | c0 (mg/L) | TiO2 (g/cm3) | Vsol (L) | Q (L/s) | hw (cm) | lw (cm) | lc (cm) | ld (cm) | Virr (L) | Irt (s) | Light | Power (W) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.7 | 0.16 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
2 | 0.7 | 0.39 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
3 | 0.7 | 0.55 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
4 | 0.7 | 0.79 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
5 | 0.7 | 0.85 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
6 | 0.7 | 0.95 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
7 | 0.3, 0.7, 1.2, 2.5, 5 | 0.79 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
8 | 0.3, 0.7, 1.2, 2.5, 5 | 0.79 | 60 | 0.147 | 13.5 | 15 | 140 | 0.79 | 1.66 | 10.5 | yes | 120 | 7.5 |
9 | 0.3, 0.7, 1.2, 2.5, 5 | 0.79 | 60 | 0.210 | 13.5 | 15 | 140 | 0.85 | 1.78 | 7.9 | yes | 120 | 7.5 |
10 | 0.3, 0.7, 1.2, 2.5, 5 | 0.79 | 60 | 0.305 | 13.5 | 15 | 140 | 1.05 | 2.20 | 6.7 | yes | 120 | 7.5 |
11 | 0.7 | 0.79 | 72.5 | 0.355 | 18 | 15 | 140 | 1.08 | 2.30 | 5.8 | yes | 120 | 7.5 |
12 | 0.7 | 0.79 | 90 | 0.408 | 22.5 | 15 | 140 | 1.12 | 2.35 | 5.2 | yes | 120 | 7.5 |
13 | 0.7 | 0.79 | 105 | 0.441 | 27 | 15 | 140 | 1.16 | 2.45 | 4.9 | yes | 120 | 7.5 |
14 | 0.7 | 0 | 60 | 0.305 | 13.5 | 15 | 140 | 1.05 | 2.20 | 6.7 | yes | 120 | 7.5 |
15 | 0.7 | 0.79 | 60 | 0.305 | 13.5 | 15 | 140 | 1.05 | 2.20 | 6.7 | no | no | 7.5 |
16 | 0.7 | 0.79 | 60 | 0.305 | 13.5 | 15 | 140 | 1.05 | 2.20 | 6.7 | yes | 40 | 7.5 |
17 | 0.7 | 0.79 | 60 | 0.305 | 13.5 | 15 | 140 | 1.05 | 2.20 | 6.7 | yes | 80 | 7.5 |
18 | 0.7 | 0.79 | 60 | 0.305 | 13.5 | 15 | 140 | 1.05 | 2.20 | 6.7 | yes | 120 | 6.0 |
Dye | Molecular Structure | Power (W) | k (min−1) × 10−4 |
---|---|---|---|
Methyl Orange | 40 | 2 ± 0.2 | |
80 | 2.9 ± 0.3 | ||
120 | 4 ± 0.1 | ||
Methyl Red | 40 | 2.6 ± 0.1 | |
80 | 3.7 ± 0.1 | ||
120 | 5.7 ± 0.3 | ||
Methylene Blue | 40 | 8.8 ± 0.4 | |
80 | 19 ± 0.5 | ||
120 | 35 ± 0.5 |
Dye | Molecular Structure | Power (W) | k (min−1) × 10−4 |
---|---|---|---|
Methyl Orange | 120 | 5.6 ± 0.3 | |
Methyl Red | 120 | 5.2 ± 0.3 | |
Methylene Blue | 120 | 29 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrella, A.; Spasiano, D.; Cosma, P.; Rizzi, V.; Race, M.; Mascolo, M.C.; Ranieri, E. Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions. Processes 2021, 9, 205. https://doi.org/10.3390/pr9020205
Petrella A, Spasiano D, Cosma P, Rizzi V, Race M, Mascolo MC, Ranieri E. Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions. Processes. 2021; 9(2):205. https://doi.org/10.3390/pr9020205
Chicago/Turabian StylePetrella, Andrea, Danilo Spasiano, Pinalysa Cosma, Vito Rizzi, Marco Race, Maria Cristina Mascolo, and Ezio Ranieri. 2021. "Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions" Processes 9, no. 2: 205. https://doi.org/10.3390/pr9020205
APA StylePetrella, A., Spasiano, D., Cosma, P., Rizzi, V., Race, M., Mascolo, M. C., & Ranieri, E. (2021). Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions. Processes, 9(2), 205. https://doi.org/10.3390/pr9020205