Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica
Abstract
:1. Introduction
2. Experimental Schemes
2.1. Material Preparations
2.2. Material Characterization and Property Test
3. Results and Discussion
3.1. Material Characterization
3.2. Crosslinking Degree
3.3. Microscopic Morphology of Nanocomposites
3.4. Electrical Tree Development
3.5. Charge Trapping Characteristics
3.6. Dielectric Breakdown Strength
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ouyang, B.; Ming, H.; Deng, X. A review about development of HV XLPE cable materials and processes. Insul. Mater. 2016, 49, 1–6. [Google Scholar]
- Ye, G.D.; Zhou, H.; Yang, J.W.; Zeng, Z.H.; Chen, Y.L. Photoinitiating behavior of macrophotoinitiator containing aminoalkylphenone group. J. Therm. Analy. Calor. 2006, 85, 771–777. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, J.; Zhao, H.; Hao, G.; Huang, B. Study of ventilation cooling for an irradiation box of low-voltage cable ultraviolet cross-linking. J. Harbin. Univ. Sci. Technol. 2013, 18, 45–50. [Google Scholar]
- Wu, Q.H.; Qu, B.J. Photoinitiating characteristics of benzophenone derivatives as new initiators in the photocrosslinking of polyethylene. Polym. Eng. Sci. 2001, 41, 1220–1226. [Google Scholar] [CrossRef]
- Wu, Q.H.; Qu, B.J. Synthesis of di(4-hydroxyl benzophenone) sebacate and its usage as initiator in the photocrosslinking of polyethylene. J. Appl. Poly. Sci. 2002, 85, 1581–1586. [Google Scholar] [CrossRef]
- Zhao, X.D.; Sun, W.F.; Zhao, H. Enhanced insulation performances of crosslinked polyethylene modified by chemically grafting chloroacetic acid allyl ester. Polymers 2019, 11, 592. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.W.; Wang, X.; Wu, Q.H.; Zhao, H. Study of crosslinked and electrical characteristics for cable insulating material of new UV XLPE. Trans. Chin. Electrotech. Soc. 2018, 33, 178–186. [Google Scholar]
- Chen, J.Q.; Zhao, H.; Zheng, H.F.; Chen, C.M.; Li, Y.; Sun, K. Research and design of electrodeless UV curing lamp with elliptic concentrator. Electr. Mach. Contr. 2017, 21, 109–113. [Google Scholar]
- Danikas, M.G.; Tanaka, T. Nanocomposites-a review of electrical treeing and breakdown. IEEE Electr. Insul. Mag. 2009, 25, 19–25. [Google Scholar] [CrossRef]
- Tanaka, T. Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 914–928. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Poly. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Wemyss, A.M.; Bowen, C.; Plesse, C.; Vancaeyzeele, C.; Nguyen, G.T.M.; Vidal, F.; Wan, C. Dynamic crosslinked rubbers for a green future: A material perspective. Mater. Sci. Eng. R Rep. 2020, 141, 100561. [Google Scholar] [CrossRef]
- Zhang, Y.; Khanbareh, H.; Roscow, J.; Pan, M.; Bowen, C.; Wan, C. Self-healing of materials under high electrical stress. Matter 2020, 3, 989–1008. [Google Scholar] [CrossRef]
- Xu, J.W.; Pang, W.M.; Shi, W.F. Synthesis of UV-curable organic–inorganic hybrid urethane acrylates and properties of cured films. Thin Solid Films 2006, 514, 69–75. [Google Scholar] [CrossRef]
- Sangermano, M.; Malucelli, G.; Amerio, E.; Priola, A.; Billi, E.; Rizza, G. Photopolymerization of epoxy coatings containing silica nanoparticles. Prog. Org. Coat. 2005, 54, 134–138. [Google Scholar] [CrossRef]
- Medda, S.K.; Kundu, D.; De, G. Inorganic–organic hybrid coatings on polycarbonate.: Spectroscopic studies on the simultaneous polymerizations of methacrylate and silica networks. J. Non Cryst. Solids 2003, 318, 149–156. [Google Scholar] [CrossRef]
- Crucho, C.I.C.; Baleizão, C.; Farinha, J.P.S. Functional group coverage and conversion quantification in nanostructured silica by 1H NMR. Analyt. Chem. 2016, 89, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Sangermano, M.; Colucci, G.; Fragale, M.; Rizza, G. Hybrid organic–inorganic coatings based on thiol-ene systems. React. Funct. Poly. 2009, 69, 719–723. [Google Scholar] [CrossRef]
- Zhao, X.D.; Zhao, H.; Sun, W.F. Significantly improved electrical properties of crosslinked polyethylene modified by UV-initiated grafting MAH. Polymers 2020, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Qiu, P.; Chen, J.Q.; Sun, W.F.; Zhao, H. Improved DC dielectric performance of photon-initiated crosslinking polyethylene with TMPTMA auxiliary agent. Materials 2019, 12, 3540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, H.Z.; Xing, X.S.; Zhu, H.S. A kinetic model of time-dependent dielectric breakdown for polymers. J. Phys. D Appl. Phys. 1994, 27, 591. [Google Scholar]
- Chi, X.H.; Gao, J.G.; Zheng, J.; Zhang, X.H. The mechanism of electrical treeing propagation in polypropylene. Acta Phys. Sin. 2014, 63, 177701–177708. [Google Scholar]
- Tian, F.; Bu, W.; Shi, L.; Yang, C.; Wang, Y.; Lei, Q. Theory of modified thermally stimulated current and direct determination of trap level distribution. J. Electrost. 2011, 69, 7–10. [Google Scholar] [CrossRef]
- Roy, M.; Nelson, J.K.; MacCrone, R.K.; Schadler, L.S.; Reed, C.W.; Keefe, R. Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 629–643. [Google Scholar] [CrossRef]
Materials | LLDPE | BPL | TMPTA | TMPTA-s-SiO2 | SiO2 | Antioxidant |
---|---|---|---|---|---|---|
XLPE | 96.7 | 2.0 | 1.0 | 0 | 0 | 0.3 |
0.5wt%TMPTA-s-SiO2/XLPE | 97.2 | 2.0 | 0 | 0.5 | 0 | 0.3 |
1.5wt%TMPTA-s-SiO2/XLPE | 96.7 | 2.0 | 0 | 1.5 | 0 | 0.3 |
1.5wt%SiO2/XLPE | 95.7 | 2.0 | 1.0 | 0 | 1.5 | 0.3 |
Materials | Characteristic Inception Voltage/kV | Shape Parameter | Increment/% |
---|---|---|---|
XLPE | 5.99 | 12.37 | |
0.5 wt%TMPTA-s-SiO2/XLPE | 6.53 | 9.349 | 9 |
1.5 wt%TMPTA-s-SiO2/XLPE | 7.15 | 10.17 | 19 |
1.5 wt%SiO2/XLPE | 6.10 | 11.79 | 2 |
Materials | Eb/(kV/mm) | β |
---|---|---|
XLPE | 87.74 | 25.74 |
0.5 wt%TMPTA-s-SiO2/XLPE | 97.79 | 24.58 |
1.5 wt%TMPTA-s-SiO2/XLPE | 101.83 | 24.42 |
1.5 wt%SiO2/XLPE | 95.70 | 23.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-Q.; Yu, P.-L.; Sun, W.-F.; Wang, X. Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica. Processes 2021, 9, 313. https://doi.org/10.3390/pr9020313
Zhang Y-Q, Yu P-L, Sun W-F, Wang X. Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica. Processes. 2021; 9(2):313. https://doi.org/10.3390/pr9020313
Chicago/Turabian StyleZhang, Yong-Qi, Ping-Lan Yu, Wei-Feng Sun, and Xuan Wang. 2021. "Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica" Processes 9, no. 2: 313. https://doi.org/10.3390/pr9020313
APA StyleZhang, Y. -Q., Yu, P. -L., Sun, W. -F., & Wang, X. (2021). Ameliorated Electrical-Tree Resistant Characteristics of UV-Initiated Cross-Linked Polyethylene Nanocomposites with Surface-Functionalized Nanosilica. Processes, 9(2), 313. https://doi.org/10.3390/pr9020313