Processes and Properties of Ionic Liquid-Modified Nanofiller/Polymer Nanocomposites—A Succinct Review
Abstract
:1. Introduction
2. Types of Imidazolium-Based Ionic Liquids
2.1. Alkylimidazolium Halide Ionic Liquids
2.2. Alkylimidazolium Hexafluorophosphate Ionic Liquids
2.3. Alkylimidazolium Tetrafluoroborate Ionic Liquids
2.4. Alkylimidazolium Bistriflimide Ionic Liquids
3. Types of Ionic Liquid-Modified Nanofiller/Polymer Nanocomposites
3.1. Ionic Liquid-Nanofiller/Thermoplastic Nanocomposites
3.2. Ionic Liquid-Nanofiller/Elastomer Nanocomposites
3.3. Ionic Liquid-Nanofiller/Thermoset Nanocomposites
4. Effect of Imidazolium-Based Ionic Liquids on the Thermo-Mechanico-Chemical Properties
4.1. Effect of Alkylimidazolium Halide Ionic Liquids
4.2. Effect of Alkylimidazolium Hexafluorophosphate Ionic Liquids
4.3. Effect of Alkylimidazolium Tetrafluoroborate Ionic Liquids
4.4. Effect of Alkylimidazolium Bistriflimide Ionic Liquids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shamsuri, A.A.; Md Jamil, S.N.A. Compatibilization Effect of Ionic Liquid-Based Surfactants on Physicochemical Properties of PBS/Rice Starch Blends: An Initial Study. Materials 2020, 13, 1885. [Google Scholar] [CrossRef] [Green Version]
- Shamsuri, A.A.; Md Jamil, S.N.A. Functional Properties of Biopolymer-Based Films Modified with Surfactants: A Brief Review. Processes 2020, 8, 1039. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Daik, R. Mechanical and Thermal Properties of Nylon-6/LNR/MMT Nanocomposites Prepared Through Emulsion Dispersion Technique. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 73, 1–12. [Google Scholar] [CrossRef]
- Prasad Sahoo, B.; Naskar, K.; Kumar Tripathy, D. Multiwalled carbon nanotube-filled ethylene acrylic elastomer nanocomposites: Influence of ionic liquids on the mechanical, dynamic mechanical, and dielectric properties. Polym. Compos. 2016, 37, 2568–2580. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, X.; Jia, H.; Wang, J.; Ji, Q.; Xu, Z. Influence of ionic liquid on the polymer–filler coupling and mechanical properties of nano-silica filled elastomer. J. Appl. Polym. Sci. 2017, 134, 44478. [Google Scholar] [CrossRef]
- Yin, B.; Zhang, X.; Zhang, X.; Wang, J.; Wen, Y.; Jia, H.; Ji, Q.; Ding, L. Ionic liquid functionalized graphene oxide for enhancement of styrene-butadiene rubber nanocomposites. Polym. Adv. Technol. 2017, 28, 293–302. [Google Scholar] [CrossRef]
- Sahu, G.; Tripathy, J.; Sahoo, B.P. Significant enhancement of dielectric properties of graphene oxide filled polyvinyl alcohol nanocomposites: Effect of ionic liquid and temperature. Polym. Compos. 2020, 41, 4411–4430. [Google Scholar] [CrossRef]
- Qiu, M.; Zhang, B.; Wu, H.; Cao, L.; He, X.; Li, Y.; Li, J.; Xu, M.; Jiang, Z. Preparation of anion exchange membrane with enhanced conductivity and alkaline stability by incorporating ionic liquid modified carbon nanotubes. J. Memb. Sci. 2019, 573, 1–10. [Google Scholar] [CrossRef]
- Huang, G.; Isfahani, A.P.; Muchtar, A.; Sakurai, K.; Shrestha, B.B.; Qin, D.; Yamaguchi, D.; Sivaniah, E.; Ghalei, B. Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. J. Memb. Sci. 2018, 565, 370–379. [Google Scholar] [CrossRef]
- Thomas, E.; Parvathy, C.; Balachandran, N.; Bhuvaneswari, S.; Vijayalakshmi, K.P.; George, B.K. PVDF-ionic liquid modified clay nanocomposites: Phase changes and shish-kebab structure. Polymer 2017, 115, 70–76. [Google Scholar] [CrossRef]
- Abraham, J.; Xavier, P.; Bose, S.; George, S.C.; Kalarikkal, N.; Thomas, S. Investigation into dielectric behaviour and electromagnetic interference shielding effectiveness of conducting styrene butadiene rubber composites containing ionic liquid modified MWCNT. Polymer 2017, 112, 102–115. [Google Scholar] [CrossRef]
- Abraham, J.; Zachariah, A.K.; Wilson, R.; Ibarra-Gómez, R.; Muller, R.; George, S.C.; Kalarikkal, N.; Thomas, S. Effect of ionic liquid modified MWCNT on the rheological and microstructural developments in styrene butadiene rubber nanocomposites. Rubber Chem. Technol. 2019, 92, 531–545. [Google Scholar] [CrossRef]
- Abraham, J.; Thomas, J.; Kalarikkal, N.; George, S.C.; Thomas, S. Static and Dynamic Mechanical Characteristics of Ionic Liquid Modified MWCNT-SBR Composites: Theoretical Perspectives for the Nanoscale Reinforcement Mechanism. J. Phys. Chem. B 2018, 122, 1525–1536. [Google Scholar] [CrossRef]
- Abraham, J.; Jose, T.; Moni, G.; George, S.C.; Kalarikkal, N.; Thomas, S. Ionic liquid modified multiwalled carbon nanotube embedded styrene butadiene rubber membranes for the selective removal of toluene from toluene/methanol mixture via pervaporation. J. Taiwan Inst. Chem. Eng. 2019, 95, 594–601. [Google Scholar] [CrossRef]
- George, S.; Abraham, J.; Jose, T.; Kalarikkal, N.; Thomas, S. Mechanics and Pervaporation Performance of Ionic Liquid Modified CNT Based SBR Membranes—A Case Study for the Separation of Toluene/Heptane Mixtures. Int. J. Membr. Sci. Technol. 2015, 2, 30–38. [Google Scholar] [CrossRef]
- Abraham, J.; Sidhardhan Sisanth, K.; Zachariah, A.K.; Mariya, H.J.; George, S.C.; Kalarikkal, N.; Thomas, S. Transport and solvent sensing characteristics of styrene butadiene rubber nanocomposites containing imidazolium ionic liquid modified carbon nanotubes. J. Appl. Polym. Sci. 2020, 137, e49429. [Google Scholar] [CrossRef]
- Sowińska, A.; Maciejewska, M.; Guo, L.; Delebecq, E. Effect of SILPs on the Vulcanization and Properties of Ethylene–Propylene–Diene Elastomer. Polymers 2020, 12, 1220. [Google Scholar] [CrossRef] [PubMed]
- Le, H.H.; Wießner, S.; Das, A.; Fischer, D.; Auf Der Landwehr, M.; Do, Q.K.; Stöckelhuber, K.W.; Heinrich, G.; Radusch, H.J. Selective wetting of carbon nanotubes in rubber compounds—Effect of the ionic liquid as dispersing and coupling agent. Eur. Polym. J. 2016, 75, 13–24. [Google Scholar] [CrossRef]
- Xu, P.; Cui, Z.P.; Ruan, G.; Ding, Y.S. Enhanced Crystallization Kinetics of PLLA by Ethoxycarbonyl Ionic Liquid Modified Graphene. Chin. J. Polym. Sci. 2019, 37, 243–252. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, Q.; Zhang, Y.; Liu, F.; Han, J.; Wu, C. High-performance natural rubber latex composites developed by a green approach using ionic liquid-modified multiwalled carbon nanotubes. J. Appl. Polym. Sci. 2018, 135, 46588. [Google Scholar] [CrossRef]
- Członka, S.; Strąkowska, A.; Strzelec, K.; Kairytė, A.; Kremensas, A. Melamine, silica, and ionic liquid as a novel flame retardant for rigid polyurethane foams with enhanced flame retardancy and mechanical properties. Polym. Test. 2020, 87, 106511. [Google Scholar] [CrossRef]
- Bahader, A.; Haoguan, G.; HaoGoa, F.; Ping, W.; Shaojun, W.; Yunsheng, D. Preparation and characterization of poly(vinylidene fluoride) nanocomposites containing amphiphilic ionic liquid modified multiwalled carbon nanotubes. J. Polym. Res. 2016, 23, 184. [Google Scholar] [CrossRef]
- Song, S.; Xia, S.; Liu, Y.; Lv, X.; Sun, S. Effect of Na+ MMT-ionic liquid synergy on electroactive, mechanical, dielectric and energy storage properties of transparent PVDF-based nanocomposites. Chem. Eng. J. 2020, 384, 123365. [Google Scholar] [CrossRef]
- Shi, F.; Ma, Y.; Ma, J.; Wang, P.; Sun, W. Preparation and characterization of PVDF/TiO2 hybrid membranes with ionic liquid modified nano-TiO2 particles. J. Memb. Sci. 2013, 427, 259–269. [Google Scholar] [CrossRef]
- Pelit, F.O.; Pelit, L.; Dizdaş, T.N.; Aftafa, C.; Ertaş, H.; Yalçinkaya, E.E.; Türkmen, H.; Ertaş, F.N. A novel polythiophene—Ionic liquid modified clay composite solid phase microextraction fiber: Preparation, characterization and application to pesticide analysis. Anal. Chim. Acta 2015, 859, 37–45. [Google Scholar] [CrossRef]
- Caldas, C.M.; Soares, B.G.; Indrusiak, T.; Barra, G.M.O. Ionic liquids as dispersing agents of graphene nanoplatelets in poly(methyl methacrylate) composites with microwave absorbing properties. J. Appl. Polym. Sci. 2021, 138, e49814. [Google Scholar] [CrossRef]
- Mondal, T.; Basak, S.; Bhowmick, A.K. Ionic liquid modification of graphene oxide and its role towards controlling the porosity, and mechanical robustness of polyurethane foam. Polymer 2017, 127, 106–118. [Google Scholar] [CrossRef]
- Chen, G.X.; Zhang, S.; Zhou, Z.; Li, Q. Dielectric properties of poly(vinylidene fluoride) composites based on bucky gels of carbon nanotubes with ionic liquids. Polym. Compos. 2015, 36, 94–101. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, J.; Jia, H.; Fang, E.; Ding, L. Structure, thermal conductivity, and thermal stability of bromobutyl rubber nanocomposites with ionic liquid modified graphene oxide. Polym. Degrad. Stab. 2013, 98, 2208–2214. [Google Scholar] [CrossRef]
- Ke, K.; Pötschke, P.; Gao, S.; Voit, B. An Ionic Liquid as Interface Linker for Tuning Piezoresistive Sensitivity and Toughness in Poly(vinylidene fluoride)/Carbon Nanotube Composites. ACS Appl. Mater. Interfaces 2017, 9, 5437–5446. [Google Scholar] [CrossRef]
- Członka, S.; Strąkowska, A.; Strzelec, K.; Kairytė, A.; Vaitkus, S. Composites of rigid polyurethane foams and silica powder filler enhanced with ionic liquid. Polym. Test. 2019, 75, 12–25. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, J.; Deng, L.; Li, L.; Li, J.; Yang, Y.; Khashab, N.M. Polyetherimide/bucky gels nanocomposites with superior conductivity and thermal stability. ACS Appl. Mater. Interfaces 2013, 5, 7478–7484. [Google Scholar] [CrossRef]
- Zheng, X.; Li, D.; Feng, C.; Chen, X. Thermal properties and non-isothermal curing kinetics of carbon nanotubes/ionic liquid/epoxy resin systems. Thermochim. Acta 2015, 618, 18–25. [Google Scholar] [CrossRef]
- Fang, D.; Zhou, C.; Liu, G.; Luo, G.; Gong, P.; Yang, Q.; Niu, Y.; Li, G. Effects of ionic liquids and thermal annealing on the rheological behavior and electrical properties of poly(methyl methacrylate)/carbon nanotubes composites. Polymer 2018, 148, 68–78. [Google Scholar] [CrossRef]
- Shi, K.; Luo, J.; Huan, X.; Lin, S.; Liu, X.; Jia, X.; Zu, L.; Cai, Q.; Yang, X. Ionic Liquid-Graphene Oxide for Strengthening Microwave Curing Epoxy Composites. ACS Appl. Nano Mater. 2020, 3, 11955–11969. [Google Scholar] [CrossRef]
- Damlin, P.; Suominen, M.; Heinonen, M.; Kvarnström, C. Non-covalent modification of graphene sheets in PEDOT composite materials by ionic liquids. Carbon N. Y. 2015, 93, 533–543. [Google Scholar] [CrossRef]
- Lopes Pereira, E.C.; Soares, B.G. Conducting epoxy networks modified with non-covalently functionalized multi-walled carbon nanotube with imidazolium-based ionic liquid. J. Appl. Polym. Sci. 2016, 133, 43976. [Google Scholar] [CrossRef]
- Rhyu, S.Y.; Cho, Y.; Kang, S.W. Nanocomposite membranes consisting of poly(ethylene oxide)/ionic liquid/ZnO for CO2 separation. J. Ind. Eng. Chem. 2020, 85, 75–80. [Google Scholar] [CrossRef]
- Ruan, H.; Zhang, Q.; Liao, W.; Li, Y.; Huang, X.; Xu, X.; Lu, S. Enhancing tribological, mechanical, and thermal properties of polyimide composites by the synergistic effect between graphene and ionic liquid. Mater. Des. 2020, 189, 108527. [Google Scholar] [CrossRef]
- Cao, X.; Jin, M.; Liang, Y.; Li, Y. Synergistic effects of two types of ionic liquids on the dispersion of multiwalled carbon nanotubes in ethylene–vinyl acetate elastomer: Preparation and characterization of flexible conductive composites. Polym. Int. 2017, 66, 1708–1715. [Google Scholar] [CrossRef]
- Xing, C.; Wang, Y.; Huang, X.; Li, Y.; Li, J. Poly(vinylidene fluoride) Nanocomposites with Simultaneous Organic Nanodomains and Inorganic Nanoparticles. Macromolecules 2016, 49, 1026–1035. [Google Scholar] [CrossRef]
- Subramaniam, K.; Das, A.; Steinhauser, D.; Klüppel, M.; Heinrich, G. Effect of ionic liquid on dielectric, mechanical and dynamic mechanical properties of multi-walled carbon nanotubes/polychloroprene rubber composites. Eur. Polym. J. 2011, 47, 2234–2243. [Google Scholar] [CrossRef]
- Subramaniam, K.; Das, A.; Heinrich, G. Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Compos. Sci. Technol. 2011, 71, 1441–1449. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, K.; Das, A.; Häußler, L.; Harnisch, C.; Stöckelhuber, K.W.; Heinrich, G. Enhanced thermal stability of polychloroprene rubber composites with ionic liquid modified MWCNTs. Polym. Degrad. Stab. 2012, 97, 776–785. [Google Scholar] [CrossRef]
- Subramaniam, K.; Das, A.; Simon, F.; Heinrich, G. Networking of ionic liquid modified CNTs in SSBR. Eur. Polym. J. 2013, 49, 345–352. [Google Scholar] [CrossRef]
- Subramaniam, K.; Das, A.; Heinrich, G. Highly conducting polychloroprene composites based on multi-walled carbon nanotubes and 1-butyl 3-methyl imidazolium bis(trifluoromethylsulphonyl)imide. KGK Kautsch. Gummi Kunstst. 2012, 65, 44–46. [Google Scholar]
- Steinhauser, D.; Subramaniam, K.; Das, A.; Heinrich, G.; Klüppel, M. Influence of ionic liquids on the dielectric relaxation behavior of CNT based elastomer nanocomposites. Express Polym. Lett. 2012, 6, 927–936. [Google Scholar] [CrossRef]
- Le, H.H.; Hoang, X.T.; Das, A.; Gohs, U.; Stoeckelhuber, K.W.; Boldt, R.; Heinrich, G.; Adhikari, R.; Radusch, H.J. Kinetics of filler wetting and dispersion in carbon nanotube/rubber composites. Carbon N. Y. 2012, 50, 4543–4556. [Google Scholar] [CrossRef]
- Subramaniam, K.; Das, A.; Heinrich, G. Improved oxidation resistance of conducting polychloroprene composites. Compos. Sci. Technol. 2013, 74, 14–19. [Google Scholar] [CrossRef]
- Semeriyanov, F.F.; Chervanyov, A.I.; Jurk, R.; Subramaniam, K.; König, S.; Roscher, M.; Das, A.; Stöckelhuber, K.W.; Heinrich, G. Non-monotonic dependence of the conductivity of carbon nanotube-filled elastomers subjected to uniaxial compression/decompression. J. Appl. Phys. 2013, 113, 103706. [Google Scholar] [CrossRef]
- Krainoi, A.; Kummerlöwe, C.; Nakaramontri, Y.; Wisunthorn, S.; Vennemann, N.; Pichaiyut, S.; Kiatkamjornwong, S.; Nakason, C. Influence of carbon nanotube and ionic liquid on properties of natural rubber nanocomposites. Express Polym. Lett. 2019, 13, 327–348. [Google Scholar] [CrossRef]
- Jiang, G.; Song, S.; Zhai, Y.; Feng, C.; Zhang, Y. Improving the filler dispersion of polychloroprene/carboxylated multi-walled carbon nanotubes composites by non-covalent functionalization of carboxylated ionic liquid. Compos. Sci. Technol. 2016, 123, 171–178. [Google Scholar] [CrossRef]
- Abraham, J.; Mohammed Arif, P.; Kailas, L.; Kalarikkal, N.; George, S.C.; Thomas, S. Developing highly conducting and mechanically durable styrene butadiene rubber composites with tailored microstructural properties by a green approach using ionic liquid modified MWCNTs. RSC Adv. 2016, 6, 32493. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Sharma, S.; Abraham, J.; Thomas, S.; Madras, G.; Bose, S. Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs. Mater. Res. Express 2014, 1, 035003. [Google Scholar] [CrossRef] [Green Version]
- Hassouneh, S.S.; Yu, L.; Skov, A.L.; Daugaard, A.E. Soft and flexible conductive PDMS/MWCNT composites. J. Appl. Polym. Sci. 2017, 134, 44767. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Md. Jamil, S.N.A. A Short Review on the Effect of Surfactants on the Mechanico-Thermal Properties of Polymer Nanocomposites. Appl. Sci. 2020, 10, 4867. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Abdullah, D.K. Protonation and Complexation Approaches for Production of Protic Eutectic Ionic Liquids. J. Phys. Sci. 2010, 21, 15–28. [Google Scholar]
- Shamsuri, A.A.; Abdan, K.; Kaneko, T. A Concise Review on the Physicochemical Properties of Biopolymer Blends Prepared in Ionic Liquids. Molecules 2021, 26, 216. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Abdullah, D.K. Synthesizing of ionic liquids from different chemical pathways. Int. J. Appl. Chem. 2011, 7, 15–24. [Google Scholar]
- Hassanshahi, N.; Hu, G.; Li, J. Application of Ionic Liquids for Chemical Demulsification: A Review. Molecules 2020, 25, 4915. [Google Scholar] [CrossRef]
Imidazolium-Based Ionic Liquid | Abbreviation | References |
---|---|---|
1-Allyl-3-methylimidazolium chloride | [Amim][Cl] | [4,5,6,7] |
1-(3-Aminopropyl)-2-methyl-3-butylimidazole bromide | [Apmbim][Br] | [8] |
1-(3-Aminopropyl)-3-methylimidazolium bromide | [Apmim][Br] | [8,9] |
1-Butyl-3-methylimidazolium chloride | [Bmim][Cl] | [10] |
1-Benzyl-3-methylimidazolium chloride | [Bzmim][Cl] | [11,12,13,14,15,16] |
1-Decyl-3-methylimidazolium bromide | [Dmim][Br] | [17] |
1-Decyl-3-methylimidazolium chloride | [Dmim][Cl] | [18] |
1-(Ethoxycarbonyl)methyl-3-methylimidazolium bromide | [Ecmmim][Br] | [19] |
1-Ethyl-3-methylimidazolium bromide | [Emim][Br] | [20] |
1-Ethyl-3-methylimidazolium chloride | [Emim][Cl] | [21] |
1-Hexadecyl-3-methylimidazolium bromide | [Hdmim][Br] | [22] |
1-Hexadecyl-3-methylimidazolium chloride | [Hdmim][Cl] | [10,23] |
1-Hexyl-3-methylimidazolium bromide | [Hmim][Br] | [20] |
1-Hexyl-3-methylimidazolium chloride | [Hmim][Cl] | [10] |
1-Methyl-3-carboxymethylimidazolium chloride | [Mcmim][Cl] | [24] |
1-Methyl-3-dodecylimidazolium bromide | [Mddim][Br] | [25,26] |
1-Methyl-3-octadecylimidazolium bromide | [Modim][Br] | [25] |
1-Methyl-3-octylimidazolium bromide | [Moim][Br] | [25] |
1-Methyl-3-octylimidazolium chloride | [Moim][Cl] | [4] |
1-Methylimidazolium chloride | [Mim][Cl] | [27] |
1-Allyl-3-methylimidazolium hexafluorophosphate | [Amim][PF6] | [28] |
1-Butyl-3-methylimidazolium hexafluorophosphate | [Bmim][PF6] | [28,29,30,31,32,33,34] |
1-Hexadecyl-3-methylimidazolium hexafluorophosphate | [Hdmim][PF6] | [22] |
1-Hexyl-3-methylimidazolium hexafluorophosphate | [Hmim][PF6] | [34] |
1-(3-Butoxy-2-hydroxy-propyl)-3-methylimidazolium tetrafluoroborate | [Bhpmim][BF4] | [35] |
1-Butyl-3-methylimidazolium tetrafluoroborate | [Bmim][BF4] | [36,37,38,39] |
1-Ethyl-3-methylimidazolium tetrafluoroborate | [Emim][BF4] | [28,40] |
1-Hexyl-3-methylimidazolium tetrafluoroborate | [Hmim][BF4] | [36] |
1-Vinyl-3-ethylimidazolium tetrafluoroborate | [Veim][BF4] | [41] |
1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | [Bmim][NTf2] | [42,43,44,45,46,47,48,49,50,51] |
1-Carboxyethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | [Cemim][NTf2] | [52] |
1-Ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide | [Edmim][NTf2] | [53] |
1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | [Emim][NTf2] | [54,55] |
1-Methyl-3-dodecylimidazolium bis(trifluoromethylsulfonyl)imide | [Mddim][NTf2] | [26] |
Polymer Matrix | Abbreviation | Nanofiller | Abbreviation |
---|---|---|---|
Ethylene–vinyl acetate | EVM | Multi-walled carbon nanotubes | MWCNTs |
Imidazolium-based poly(ether ether ketone) | ImPEEK | Carboxylated multi-walled carbon nanotubes | MWCNT-COOH |
Polyether block amide | Pebax | Graphene oxide | GO |
Polyetherimide | PEI | Graphene nanosheets | GN |
Poly(ethylene oxide) | PEO | Graphene nanoplatelets | GNP |
Polyimide | PI | Nanosilica | nano-SiO2 |
Poly(L-lactic acid) | PLLA | Titanium dioxide nanoparticles | nano-TiO2 |
Poly(methyl methacrylate) | PMMA | Zinc oxide nanoparticles | ZnO NPs |
Polyvinyl alcohol | PVA | Carbon black nanoparticles | CB NPs |
Poly(vinylidene fluoride) | PVDF | Montmorillonite | MMT |
Bromobutyl rubber | BIIR | ||
Ethylene acrylic elastomer | AEM | ||
Ethylene–propylene–diene | EPDM | ||
Natural rubber | NR | ||
Natural rubber latex | NRL | ||
Polychloroprene rubber | CR | ||
Polydimethylsiloxane | PDMS | ||
Styrene butadiene rubber | SBR | ||
Diglycidyl ester of aliphatic cyclo | DGEAC | ||
Diglycidyl ether of bisphenol A | DGEBA | ||
Polyurethane foam | PUF | ||
Poly(3,4-ethylene dioxythiophene) | PEDOT | ||
Polythiophene | PTh |
Ionic Liquid | Nanofiller | Modification Process | Modification Temperature (°C) | Time (Hour) | References |
---|---|---|---|---|---|
[Amim][Cl] | MWCNTs | Ultrasonication | R | U | [4] |
[Amim][Cl] | nano-SiO2 | Ultrasonication | R | 1 | [5] |
[Amim][Cl] | GO | Ultrasonication | R | 0.5 | [6] |
[Apmbim][Br] | MWCNT-COOH | Refluxation | 60 | 24 | [8] |
[Apmim][Br] | GO | Stirring | 80 | 24 | [9] |
[Bmim][Cl] | MMT | Stirring | R | U | [10] |
[Bzmim][Cl] | MWCNTs | Sonication | R | 0.5 | [11] |
[Dmim][Br] | nano-SiO2 | Ultrasonication | R | 0.25 | [17] |
[Dmim][Cl] | MWCNTs | Sonication | R | 2 | [18] |
[Ecmmim][Br] | GN | Sonication | R | 4 | [19] |
[Emim][Br] | MWCNTs | Ultrasonication | R | 2 | [20] |
[Hdmim][Br] | MWCNTs | Sonication | R | 0.5 | [22] |
[Hdmim][Cl] | MMT | Stirring | R | 24 | [23] |
[Mddim][Br] | GNP | Grinding | R | 0.17 | [26] |
[Mim][Cl] | GO | Stirring | 35 | 12 | [27] |
[Amim][PF6] | MWCNTs | Grinding | R | 8 | [28] |
[Bmim][PF6] | GO | Ultrasonication | R | 0.5 | [29] |
[Bmim][PF6] | MWCNT-COOH | Grinding | R | 0.25 | [30] |
[Bmim][PF6] | nano-SiO2 | Stirring | R | U | [31] |
[Bmim][PF6] | MWCNTs | Grinding | R | 0.5 | [32] |
[Bmim][PF6] | MWCNTs | Ultrasonication | R | 1 | [33] |
[Hdmim][PF6] | MWCNTs | Sonication | R | 0.5 | [22] |
[Hmim][PF6] | MWCNTs | Milling | R | 0.17 | [34] |
[Bhpmim][BF4] | GO | Irradiation | 20 | 0.02 | [35] |
[Bmim][BF4] | MWCNTs | Grinding | R | 0.3 | [37] |
[Bmim][BF4] | ZnO NPs | Sonication | R | U | [38] |
[Bmim][BF4] | GN | Stirring | 80 | 24 | [39] |
[Emim][BF4] | MWCNTs | Grinding | R | 8 | [28] |
[Emim][BF4] | MWCNTs | Grinding | R | 0.3 | [40] |
[Hmim][BF4] | GO | Stirring | R | U | [36] |
[Veim][BF4] | CB NPs | Grinding | R | U | [41] |
[Bmim][NTf2] | MWCNTs | Grinding | R | U | [42] |
[Bmim][NTf2] | MWCNTs | Sonication | R | 0.3 | [51] |
[Cemim][NTf2] | MWCNT-COOH | Ultrasonication | R | 0.25 | [52] |
[Edmim][NTf2] | MWCNTs | Sonication | R | 0.5 | [53] |
[Emim][NTf2] | MWCNTs | Ultrasonication | R | 0.5 | [54] |
[Emim][NTf2] | MWCNTs | Grinding | R | U | [55] |
[Mddim][NTf2] | GNP | Grinding | R | 0.17 | [26] |
Polymer Matrix | Nanofiller | Ionic Liquid | Mixing Process | Final Process | References |
---|---|---|---|---|---|
EVM | MWCNTs | [Emim][BF4] | Melt blending | Hot pressing | [40] |
ImPEEK | MWCNT-COOH | [Apmbim][Br] | Solution blending | Solution casting | [8] |
Pebax | GO | [Apmbim][Br] | Sonication | Solution casting | [9] |
PEI | MWCNTs | [Bmim][PF6] | Sonication | Solution casting | [32] |
PEO | ZnO NPs | [Bmim][BF4] | Solution blending | Solution casting | [38] |
PI | GN | [Bmim][BF4] | Solution blending | Solution casting | [39] |
PLLA | GN | [Ecmmim][Br] | Ultrasonication | Hot pressing | [19] |
PMMA | GNP | [Mddim][NTf2] | Sonication | Compression molding | [26] |
PMMA | MWCNTs | [Hmim][PF6] | Melt blending | Compression molding | [34] |
PVA | GO | [Amim][Cl] | Sonication | Solvent casting | [7] |
PVDF | CB NPs | [Veim][BF4] | Melt blending | Hot pressing | [41] |
PVDF | MMT | [Hdmim][Cl] | Melt blending | Compression molding | [23] |
PVDF | MMT | [Hmim][Cl] | Solution blending | Solution casting | [10] |
PVDF | MWCNTs | [Hdmim][PF6] | Solution blending | Compression molding | [22] |
PVDF | MWCNT-COOH | [Bmim][PF6] | Melt blending | Compression molding | [30] |
PVDF | nano-TiO2 | [Mcmim][Cl] | Solution blending | Hot pressing | [24] |
AEM | MWCNTs | [Amim][Cl] | Hot mixing | Heat curing | [4] |
BIIR | GO | [Bmim][PF6] | Mill mixing | Heat curing | [29] |
CR | MWCNTs | [Bmim][NTf2] | Mill mixing | Heat curing | [42] |
CR | MWCNT-COOH | [Cemim][NTf2] | Mill mixing | Heat curing | [52] |
EPDM | nano-SiO2 | [Dmim][Br] | Mill mixing | Heat curing | [17] |
NR | nano-SiO2 | [Amim][Cl] | Mill mixing | Heat curing | [5] |
NRL | MWCNTs | [Emim][Br] | Mill mixing | Heat curing | [20] |
PDMS | MWCNTs | [Emim][NTf2] | Speed mixing | Heat curing | [55] |
SBR | GO | [Amim][Cl] | Mill mixing | Heat curing | [6] |
SBR | MWCNTs | [Bzmim][Cl] | Mill mixing | Heat curing | [11] |
DGEAC | GO | [Bhpmim][BF4] | Solvent-free blending | Microwave curing | [35] |
DGEBA | MWCNTs | [Bmim][PF6] | Solution blending | Heat curing | [33] |
PUF | GO | [Mim][Cl] | Mill mixing | Compression molding | [27] |
PUF | nano-SiO2 | [Bmim][PF6] | Solvent-free blending | Cast molding | [31] |
PUF | nano-SiO2 | [Emim][Cl] | Solvent-free blending | Cast molding | [21] |
Ionic Liquid | Polymer Nanocomposite | Thermo-Mechanico-Chemical Properties * | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Tg | Tc | Tm | Td | TS | TM | EB | Ch | |||
[Amim][Cl] | nano-SiO2/NR | ▲ | ○ | ○ | ○ | ▲ | ▲ | ▲ | ▲ | [5] |
[Bmim][Cl] | MMT/PVDF | ○ | ▲ | ○ | ▲ | ▲ | ▲ | ▲ | ▲ | [10] |
[Bzmim][Cl] | MWCNT/SBR | ▼ | ○ | ○ | ○ | ▲ | ▲ | ▼ | ▲ | [13] |
[Bmim][PF6] | MWCNT/PEI | ▲ | ○ | ○ | ▲ | ▲ | ▲ | ▼ | ▲ | [32] |
[Bmim][PF6] | nano-SiO2/PUF | ▲ | ○ | ○ | ▲ | ▲ | ○ | ▼ | ▲ | [31] |
[Hdmim][PF6] | MWCNT/PVDF | ○ | ▲ | ▲ | ○ | ▼ | ○ | ▼ | ▲ | [22] |
[Bhpmim][BF4] | GO/DGEAC | ▲ | ○ | ○ | ▲ | ▲ | ▲ | ○ | ▲ | [35] |
[Bmim][BF4] | GN/PI | ▲ | ○ | ○ | ▲ | ▲ | ▲ | ▼ | ▲ | [39] |
[Emim][BF4] | MWCNT/EVM | ▲ | ○ | ▲ | ■ | ▲ | ○ | ▲ | ▲ | [40] |
[Bmim][NTf2] | MWCNT/CR | ▲ | ○ | ○ | ▲ | ○ | ▲ | ▲ | ▲ | [42] |
[Bmim][NTf2] | MWCNT/NRL | ▲ | ○ | ○ | ▼ | ▼ | ▲ | ▼ | ▲ | [51] |
[Emim][NTf2] | MWCNT/PVDF | ▼ | ○ | ▼ | ○ | ▲ | ▼ | ▲ | ▲ | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamsuri, A.A.; Jamil, S.N.A.M.; Abdan, K. Processes and Properties of Ionic Liquid-Modified Nanofiller/Polymer Nanocomposites—A Succinct Review. Processes 2021, 9, 480. https://doi.org/10.3390/pr9030480
Shamsuri AA, Jamil SNAM, Abdan K. Processes and Properties of Ionic Liquid-Modified Nanofiller/Polymer Nanocomposites—A Succinct Review. Processes. 2021; 9(3):480. https://doi.org/10.3390/pr9030480
Chicago/Turabian StyleShamsuri, Ahmad Adlie, Siti Nurul Ain Md. Jamil, and Khalina Abdan. 2021. "Processes and Properties of Ionic Liquid-Modified Nanofiller/Polymer Nanocomposites—A Succinct Review" Processes 9, no. 3: 480. https://doi.org/10.3390/pr9030480
APA StyleShamsuri, A. A., Jamil, S. N. A. M., & Abdan, K. (2021). Processes and Properties of Ionic Liquid-Modified Nanofiller/Polymer Nanocomposites—A Succinct Review. Processes, 9(3), 480. https://doi.org/10.3390/pr9030480