Analysis and Characterization of Metallic Nodules on Biochar from Single-Stage Downdraft Gasification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials: Biomass
2.2. Methods
2.2.1. Single-Stage Downdraft Gasifier
2.2.2. Proximate and Ultimate Analyses
2.2.3. BET Surface Analyses
2.2.4. Scanning Electron Microscope and Electron Dispersive X-ray Analysis
3. Results and Discussion
3.1. Ultimate and Proximate Analyses
3.2. BET Surface Analyses
3.3. Scanning Electron Microscope and Electron Dispersive X-ray Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sen, S.; Ganguly, S. Opportunities, barriers and issues with renewable energy development—A discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009; Chapter 1; pp. 1–12. [Google Scholar]
- Scholz, S.B.; Sembres, T.; Roberts, K.; Whitman, T.; Wilson, K.; Lehmann, J. Biochar Systems for Smallholders in Developing Countries: Leveraging Current Knowledge and Exploring Future Potential for Climate-Smart Agriculture; The World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Saletnik, B.; Zaguła, G.; Bajcar, M.; Tarapatskyy, M.; Bobula, G.; Puchalski, C. Biochar as a multifunctional component of the environment—A review. Appl. Sci. 2019, 9, 1139. [Google Scholar] [CrossRef] [Green Version]
- Malińska, K. Biochar-a response to current environmental issues. Inżynieria Ochr. Srodowiska 2012, 4, 387–403. [Google Scholar]
- Montoya, J.I.; Chejne-Janna, F.; Garcia-Pérez, M. Fast pyrolysis of biomass: A review of relevant aspects: Part I: Parametric study. Dyna 2015, 82, 239–248. [Google Scholar] [CrossRef]
- Park, J.; Hung, I.; Gan, Z.; Rojas, O.J.; Lim, K.H.; Park, S. Activated carbon from biochar: Influence of its physico-chemical properties on the sorption characteristics of phenanthrene. Bioresour. Technol. 2013, 149, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of biochar and its application in remediation of con-taminated soil. J. Biosci. Bioeng. 2013, 116, 653–659. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U.J. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Steiner, C.; Das, K.; Melear, N.D.; Lakly, D. Reducing Nitrogen Loss during Poultry Litter Composting Using Biochar. J. Environ. Qual. 2010, 39, 1236–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, C.; Melear, N.; Harris, K.; Das, K. Biochar as bulking agent for poultry litter composting. Carbon Manag. 2011, 2, 227–230. [Google Scholar] [CrossRef]
- Malińska, K.; Zabochnicka-Świątek, M.; Dach, J. Effects of biochar amendment on ammonia emission during com-posting of sewage sludge. Ecol. Eng. 2014, 71, 474–478. [Google Scholar] [CrossRef]
- Malińska, K.; Dach, J. Biochar as a supplementary material for biogas production. Inżynieria Ekol. 2015, 2015, 117–124. [Google Scholar] [CrossRef]
- Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 2017, 3, 17008. [Google Scholar] [CrossRef] [PubMed]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Prost, L.; Berthet, E.T.A.; Cerf, M.; Jeuffroy, M.-H.; Labatut, J.; Meynard, J.-M. Innovative design for agriculture in the move towards sustainability: Scientific challenges. Res. Eng. Des. 2016, 28, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, A.N.; Snapp, S.S.; Robertson, G.P. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proc. Natl. Acad. Sci. USA 2017, 114, 926–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenic, E.; Ghogare, R.; Dhingra, A. Biochar—A Panacea for Agriculture or Just Carbon? Horticulturae 2020, 6, 37. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, X.; Chen, L.; Wang, Z.; Xia, Y.; Zhang, Y.; Wang, H.; Luo, X.; Xing, B. Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ. 2017, 41, 517–532. [Google Scholar] [CrossRef]
- Laird, D.; Novak, J.; Collins, H.; Ippolito, J.; Karlen, D.; Lentz, R.; Sistani, K.; Spokas, K.; Van Pelt, R. Multi-year and multilocation soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma 2017, 289, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Knapp, S.; van der Heijden, M.G. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, F.; Wang, Z.; Xing, B. The role of biochars in sustainable crop production and soil resiliency. J. Exp. Bot. 2019, 71, 520–542. [Google Scholar] [CrossRef] [PubMed]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2012, 5, 202–214. [Google Scholar] [CrossRef]
- Amoakwah, E.; Arthur, E.; Frimpong, K.A.; Parikh, S.J.; Islam, R. Soil organic carbon storage and quality are impacted by corn cob biochar application on a tropical sandy loam. J. Soils Sediments 2020, 20, 1960–1969. [Google Scholar] [CrossRef]
- Fryda, L.; Visser, R.; Schmidt, J. Biochar Replaces Peat in Horticulture: Environmental Impact Assessment of Combined Biochar & Bioenergy Production. Detritus 2018, 5, 132–149. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.; Hu, Q.; Wang, D.; Yang, H.; Wu, C.; Wang, X.; Chen, H. Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresour. Technol. 2016, 216, 159–164. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.-H.; Kwon, E.E. Biochar as a Catalyst. Renew. Sustain. Energy Rev. 2017, 77, 70–79. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Water Quality. J. Environ. Qual. 2019, 48, 2–15. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent advances in utilization of biochar. Renew. Sustain. Energy Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- Perez-Mercado, L.F.; Lalander, C.; Berger, C.; Dalahmeh, S.S. Potential of Biochar Filters for Onsite Wastewater Treatment: Effects of Biochar Type, Physical Properties and Operating Conditions. Water 2018, 10, 1835. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.-P.; Wilson, K. 55 uses of biochar. Ithaka J. 2012, 1, 286–289. [Google Scholar]
- Schmidt, H.P.; Wilson, K.; Kammann, C. Using biochar in animal farming to recycle nutrients and reduce greenhouse gas emissions. In Proceedings of the 19th EGU General Assembly, EGU2017, Vienna, Austria, 23–28 April 2017; p. 5719. [Google Scholar]
- Gu, X.; Wang, Y.; Lai, C.; Qiu, J.; Li, S.; Hou, Y.; Martens, W.N.; Mahmood, N.; Zhang, S. Microporous bamboo biochar for lithium-sulfur batteries. Nano Res. 2014, 8, 129–139. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
- Hung, C.Y.; Tsai, W.T.; Chen, J.W.; Lin, Y.Q.; Chang, Y.M. Characterization of biochar prepared from biogas di-gestate. Waste Manag. 2017, 66, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.C.; You, S.; Ling, R.; Gin, K.Y.-H.; Dai, Y.; Wang, C.-H. Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis. Energy 2017, 139, 732–742. [Google Scholar] [CrossRef] [Green Version]
- Sharma, T.; Yepes Maya, D.M.; Nascimento, F.R.M.; Shi, Y.; Ratner, A.; Silva Lora, E.E.; Mendes Neto, L.J.; Escobar Palacio, J.C.; Vieira Andrade, R. An Experimental and Theoretical Study of the Gasification of Miscanthus Briquettes in a Double-Stage Downdraft Gasifier: Syngas, Tar, and Biochar Characterization. Energies 2018, 11, 3225. [Google Scholar] [CrossRef] [Green Version]
- Cetin, E.; Moghtaderi, B.; Gupta, R.; Wall, T. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 2004, 83, 2139–2150. [Google Scholar] [CrossRef]
- Xie, T.; Reddy, K.R.; Wang, C.; Yargicoglu, E.; Spokas, K. Characteristics and Applications of Biochar for Environmental Remediation: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 939–969. [Google Scholar] [CrossRef]
- Benedetti, V.; Patuzzi, F.; Baratieri, M. Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Appl. Energy 2018, 227, 92–99. [Google Scholar] [CrossRef]
- Hernández, J.J.; Lapuerta, M.; Monedero, E. Characterisation of residual char from biomass gasification: Effect of the gasifier operating conditions. J. Clean. Prod. 2016, 138, 83–93. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A.; Patil, K.N.; Bellmer, D.D.; Wang, D.; Yuan, W.; Huhnke, R.L. Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char. Energies 2013, 6, 3972–3986. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science, Technology and Implementation; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Whitehouse.gov. Available online: https://www.whitehouse.gov/wpcontent/uploads/2018/02/Assessment-of-Critical-Minerals-Update-2018.pdf (accessed on 8 July 2020).
- Gov.info.gov. Available online: https://www.govinfo.gov/content/pkg/FR-2017-12-26/pdf/2017-27899.pdf (accessed on 8 July 2020).
- Ma, X.; Zhou, B.; Budai, A.; Jeng, A.; Hao, X.; Wei, D.; Zhang, Y.; Rasse, D. Study of Biochar Properties by Scanning Electron Microscope—Energy Dispersive X-Ray Spectroscopy (SEM-EDX). Commun. Soil Sci. Plant Anal. 2016, 47, 593–601. [Google Scholar] [CrossRef]
- Sharma, T. Biochar and Other Properties Resulting from the Gasification and Combustion of Biomass with Different Components. Ph.D. Thesis, University of Iowa, Iowa, IA, USA, 2019. [Google Scholar] [CrossRef]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef]
- Shaaban, A.; Se, S.-M.; Mitan, N.M.M.; Dimin, M. Characterization of Biochar Derived from Rubber Wood Sawdust through Slow Pyrolysis on Surface Porosities and Functional Groups. Procedia Eng. 2013, 68, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Brewer, C.E.; Schmidt-Rohr, K.; Satrio, J.A.; Brown, R.C. Characterization of biochar from fast pyrolysis and gasification systems. Environ. Progress Sustain. Energy 2009, 28, 386–396. [Google Scholar] [CrossRef]
- Li, X.; Guo, X.; Wang, S.; Wang, K.; Luo, Z.; Wang, Q. Characterization and Analysis of Char Produced by Biomass Fast Pyrolysis. In Proceedings of the Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Mukome, F.N.; Parikh, S.J. Chemical, Physical, and Surface Characterization of Biochar; CRC Press: Boca Raton, FL, USA, 2015; pp. 67–98. [Google Scholar]
- Wang, S.; Gao, B.; Zimmerman, A.R.; Li, Y.; Ma, L.; Harris, W.G.; Migliaccio, K.W. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour. Technol. 2015, 175, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gao, B.; Li, Y.; Mosa, A.; Zimmerman, A.R.; Ma, L.Q.; Harris, W.G.; Migliaccio, K.W. Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresour. Technol. 2015, 181, 13–17. [Google Scholar] [CrossRef]
- Muvhiiwa, R.; Kuvarega, A.; Llana, E.M.; Muleja, A. Study of biochar from pyrolysis and gasification of wood pellets in a nitrogen plasma reactor for design of biomass processes. J. Environ. Chem. Eng. 2019, 7, 103391. [Google Scholar] [CrossRef]
- Marks, E.A.; Mattana, S.; Alcañiz, J.M.; Pérez-Herrero, E.; Domene, X. Gasifier biochar effects on nutrient availability, organic matter mineralization, and soil fauna activity in a multi-year Mediterranean trial. Agric. Ecosyst. Environ. 2016, 215, 30–39. [Google Scholar] [CrossRef]
- Ojeda, G.; Mattana, S.; Àvila, A.; Alcañiz, J.M.; Volkmann, M.; Bachmann, J. Are soil–water functions affected by biochar application? Geoderma 2015, 249–250, 1–11. [Google Scholar] [CrossRef]
- Limwikran, T.; Kheoruenromne, I.; Suddhiprakarn, A.; Prakongkep, N.; Gilkes, R.J. Most Plant Nutrient Elements Are Retained by Biochar in Soil. Soil Syst. 2019, 3, 75. [Google Scholar] [CrossRef] [Green Version]
- Vaughn, S.F.; Kenar, J.A.; Thompson, A.R.; Peterson, S.C. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind. Crop. Prod. 2013, 51, 437–443. [Google Scholar] [CrossRef]
- Pelaez-Samaniego, M.R.; Perez, J.F.; Ayiania, M.; Garcia-Perez, T. Chars from wood gasification for removing H2S from biogas. Biomass Bioenergy 2020, 142, 105754. [Google Scholar] [CrossRef]
- You, S.; Ok, Y.S.; Chen, S.S.; Tsang, D.C.; Kwon, E.E.; Lee, J.; Wang, C.-H. A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresour. Technol. 2017, 246, 242–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, C.E. Biochar Characterization and Engineering. Ph.D. Thesis, Iowa State University, Iowa, IA, USA, 2018. [Google Scholar] [CrossRef]
- Bista, P.; Ghimire, R.; Machado, S.; Pritchett, L. Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management. Agronomy 2019, 9, 623. [Google Scholar] [CrossRef] [Green Version]
- Suman, S.; Panwar, D.S.; Gautam, S. Surface morphology properties of biochars obtained from different biomass waste. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 37, 1–6. [Google Scholar] [CrossRef]
Corn Grain | Soybeans | Wood Pellets | |
---|---|---|---|
Volatile Matter | 66.63 | 82.40 | 74 |
Fixed Carbon | 17.15 | 13.27 | 16.6 |
Ash | 1.4 | 4.34 | 0.43 |
Total wt.% | 100% | 100% | 100% |
Carbon | 40.07 | 64.77 | 47.52 |
Hydrogen | 7.1 | 7.79 | 6.5 |
Nitrogen | 1.4 | 7.64 | 0.05 |
Sulfur | 0.17 | 0.32 | 0.1 |
Oxygen | 50.5 | 15.15 | 42.00 |
Total wt.% | 100% | 100% | 100% |
HHV | 19.77 MJ/kg (8500 Btu/lb) | 13.63 MJ/kg (10,160 Btu/lb) | 32.33 MJ/kg (13,900 Btu/lb) |
Single-Stage Downdraft Parameters | |
---|---|
Equivalence ratio | 0.25 |
Mass flow (kg/h) | 22.7 |
Combustion zone temperature (°C) | 800–1000 |
Air flow (m3/kg of fuel) | 4.06 |
Corn Grain | Soybeans | Wood Pellets | |
---|---|---|---|
Volatile Matter | 5.37 | 32.41 | 6.00 |
Fixed Carbon | 73.39 | 49.79 | 91.53 |
Ash | 21.23 | 17.85 | 2.47 |
Total | 100% | 100% | 100% |
Carbon | 71.54 | 65.67 | 89.43 |
Hydrogen | <0.50 | 5.97 | <0.50 |
Nitrogen | 2.31 | 4.33 | 0.71 |
Sulfur | 0.04 | 0.15 | 0.04 |
Oxygen | 5.17 | 15.87 | 7.49 |
Total | 100% | 100% | 100% |
HHV | 24.7 MJ/kg (10,620 Btu/lb) | 26.17 MJ/kg (11,250 Btu/lb) | 32.33 MJ/kg (13,900 Btu/lb) |
Method Used | Biochar | Surface Area (m2/g) |
---|---|---|
down draft gasifier | corn biochar | 22.8 |
soybean biochar | 22.4 | |
wood biochar | 92.4 | |
fluidized bed gasifier | wood biochar | 19.7 [51] |
fast pyrolysis | bamboo | 110.0 |
rose wood | 32.36 [52] | |
pine wood | 95.10 |
Element wt.% | Figure 3 | Figure 4 | Figure 5 | Figure 6 | Figure 7 |
---|---|---|---|---|---|
C | 46.90 | 60.06 | 12.23 | 12.06 | 29.40 |
O | 7.05 | 6.83 | 17.65 | 5.12 | 25.65 |
Mg | 1.16 | 1.52 | 3.60 | 1.24 | 1.37 |
P | 9.62 | 7.13 | 21.74 | 13.45 | 12.89 |
K | 31.76 | 21.67 | 41.24 | 67.42 | 21.82 |
Ca | 3.50 | 2.76 | 1.25 | 0.71 | 1.70 |
Al | - | - | 1.02 | - | 2.99 |
Si | - | - | 1.27 | - | 4.18 |
100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Element Concentration wt.% | Figure 9 | Figure 10 |
---|---|---|
C | 17.92 | 74.48 |
O | 26.79 | 5.36 |
Mg | 5.31 | 0.8 |
Si | 2.82 | 0.64 |
P | 14.39 | 1.76 |
Cl | 1.29 | 0.91 |
K | 17.18 | 4.63 |
Ca | 4.98 | 0.86 |
Na | - | 0.90 |
Al | - | 0.93 |
Mn | - | 1.69 |
Fe | - | 2.17 |
Ni | - | 4.85 |
Total | 100% | 100% |
Element | Figure 11 wt.% | Figure 12 wt.% | Figure 13 wt.% |
---|---|---|---|
C | 11.9 | 14.38 | 16.43 |
O | 3.30 | 3.87 | 5.16 |
Mg | 0.9 | 1.05 | 1.27 |
P | 3.44 | 1.48 | 1.80 |
K | 35.95 | 24.50 | 25.80 |
Ca | 44.52 | 54.72 | 49.53 |
Total | 100.00 | 100.00 | 100.00 |
Element | Figure 14 wt.% | Figure 15 wt.% | [54,62] wt.% | [56] wt.% | [57,59] mg kg−1 | [58,59] mg kg−1 | [55] mg kg−1 | [60] mg kg−1 | [61] mg kg−1 | [61] mg kg−1 |
---|---|---|---|---|---|---|---|---|---|---|
C | 57.26 | 70.92 | 85.7 | 83.9 | - | - | - | - | - | |
O | 13.22 | 5.10 | 11.4 | - | - | - | - | - | ||
Mg | 1.49 | 0.69 | 0.12 | - | 2.1 | 0.16 | 944 | 0.21 | 0.96 | 1.20 |
P | 3.20 | 0.83 | 0.04 | - | 1.337 | 0.8 | 3463 | 5 | - | - |
K | 4.85 | 8.73 | 0.05 | 2.3 | 9.36 | 8.3 | 5552 | 349 | 4.27 | 6.48 |
Ca | 4.94 | 1.53 | 0.19 | 2.5 | 20.52 | 92.3 | 14,362 | 187 | 0.041 | 0.48 |
Al | 2.54 | 0.69 | 0.04 | 0.3 | - | - | - | - | 0.19 | 0.22 |
Si | 3.22 | 0.76 | - | 0.2 | - | - | - | - | - | - |
Mn | 1.63 | 1.72 | - | - | - | - | 1273 | 8.2 | - | - |
Fe | 2.04 | 2.55 | 0.02 | - | - | 0.08 | - | 5.5 | 0.07 | 0.07 |
Ni | 4.64 | - | - | - | 0.025 | 10 | - | - | - | - |
Cl | 0.98 | 6.46 | - | - | - | - | - | 12 | - | - |
100.00 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, T.; Ratner, A. Analysis and Characterization of Metallic Nodules on Biochar from Single-Stage Downdraft Gasification. Processes 2021, 9, 533. https://doi.org/10.3390/pr9030533
Sharma T, Ratner A. Analysis and Characterization of Metallic Nodules on Biochar from Single-Stage Downdraft Gasification. Processes. 2021; 9(3):533. https://doi.org/10.3390/pr9030533
Chicago/Turabian StyleSharma, Tejasvi, and Albert Ratner. 2021. "Analysis and Characterization of Metallic Nodules on Biochar from Single-Stage Downdraft Gasification" Processes 9, no. 3: 533. https://doi.org/10.3390/pr9030533
APA StyleSharma, T., & Ratner, A. (2021). Analysis and Characterization of Metallic Nodules on Biochar from Single-Stage Downdraft Gasification. Processes, 9(3), 533. https://doi.org/10.3390/pr9030533