The Reattachment Process of a Lifted Jet Diffusion Flame by Repetitive DC Pulse Discharges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Burner and Electric Corona Discharge Configurations
2.2. Conditional Flame-Edge Propagation Speed Measurement
2.3. Average 2D Ozone Density Measurement and Analysis
3. Results and Discussions
3.1. Effect of Pulse Repetitive Frequency
3.2. The Dynamic Response of Flame Base Motion
3.3. 2D Ozone Density Distribution
3.4. The Reattachment Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinberg, F.J. Advanced Combustion Method; Academic Press: London, UK, 1986; pp. 332–394. [Google Scholar]
- Rickard, M.; Dunn-Rankin, D.; Weinberg, F.; Carleton, F. Characterization of ionic wind velocity. J. Electrost. 2005, 63, 711–716. [Google Scholar] [CrossRef]
- Zake, M.; Barmina, I.; Turlajs, D. Electric field control of polluting emissions from a propane flame. Glob. Nest Int. J. 2001, 3, 95–108. [Google Scholar]
- Ju, Y.; Sun, W. Plasma assisted combustion: Progress, challenges, and opportunities. Combust. Flame 2015, 162, 529–532. [Google Scholar] [CrossRef]
- Altendorfner, F.; Kuhl, J.; Zigan, L.; Leipertz, A. Proc. Study of the influence of electric fields on flames using planar LIF and PIV techniques. Proc. Combust. Inst. 2011, 33, 3195–3201. [Google Scholar] [CrossRef]
- Cessou, A.; Varea, E.; Criner, K.; Godard, G.; Vervisch, P. Simultaneous measurements of OH, mixture fraction and velocity fields to investigate flame stabilization enhancement by electric field. Exp. Fluids 2012, 52, 905–917. [Google Scholar] [CrossRef]
- Starikovskii, A.Y. Plasma supported combustion. Proc. Combust. Inst. 2005, 30, 2405–2417. [Google Scholar] [CrossRef]
- Bradley, D.; Nasser, S.H. Electrical coronas and burner flame stability. Combust. Flame 1984, 55, 53–58. [Google Scholar] [CrossRef]
- Pilla, G.; Galley, D.; Lacoste, D.A.; Lacas, F.; Veynante, D.; Laux, C.O. Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma. IEEE Trans. Plasma Sci. 2006, 34, 2471–2477. [Google Scholar] [CrossRef]
- Vincent-Randonnier, A.; Larigaldie, S.; Magre, P.; Sabel’nikov, V. Plasma assisted combustion: Effect of a coaxial DBD on a methane diffusion flame. Plasma Sources Sci. Technol. 2007, 16, 149–160. [Google Scholar] [CrossRef]
- Criner, K.; Cessou, A.; Louiche, J.; Vervisch, P. Stabilization of turbulent lifted jet flames assisted by pulsed high voltage discharge. Combust. Flame 2006, 144, 422–425. [Google Scholar] [CrossRef]
- Kim, W.; Do, H.; Mungal, M.G.; Cappelli, M.A. Plasma-discharge stabilization of jet diffusion flames. IEEE Trans. Plasma Sci. 2006, 34, 2545–2551. [Google Scholar] [CrossRef]
- Samaranayake, W.J.M.; Miyahara, Y.; Namihira, T.; Katsuki, S.; Sakugawa, T.; Akiyama, R.H.H. Pulsed streamer discharge characteristics of ozone production in dry air. IEEE Trans. Dielect. Electr. Insul. 2000, 7, 254–260. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yang, L.; Li, B.; Li, Z.S.; Sun, Z.W.; Alden, A.; Cen, K.F.; Konnov, A.A. Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations. Combust. Flame 2012, 159, 120–129. [Google Scholar] [CrossRef]
- Ombrello, T.; Won, S.H.; Ju, Y.; Williams, S. Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3. Combust. Flame 2010, 157, 1906–1915. [Google Scholar] [CrossRef]
- Chang, T.-W.; Chao, Y.-C.; Cheng, T.-S. Experimental investigation of reattachment behavior of turbulent lifted diffusion jet flames induced by repetitive DC electric pulse discharges with conditional PIV. Combust. Sci. Technol. 2019, 191, 726–744. [Google Scholar] [CrossRef]
- Ono, R.; Oda, T. Spatial distribution of ozone density in pulsed corona discharges observed by two-dimensional laser absorption method. J. Phys. D Appl. Phys. 2004, 37, 730–735. [Google Scholar] [CrossRef]
- Ono, R.; Oda, T. Ozone production process in pulsed positive dielectric barrier discharge. J. Phys. D Appl. Phys. 2007, 40, 176–182. [Google Scholar] [CrossRef]
- Upatnieks, A.; Driscoll, J.F.; Rasmussen, C.C.; Ceccio, S.L. Liftoff of turbulent jet flames—Assessment of edge flame and other concepts using cinema-PIV. Combust. Flame 2004, 138, 259–272. [Google Scholar] [CrossRef]
- Gordon, R.L.; Boxx, I.; Carter, C.; Dreizler, A.; Meier, W. Lifted diffusion flame stabilisation: Conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base. Flow Turbul. Combust. 2012, 88, 503–527. [Google Scholar] [CrossRef]
- Ruetsch, G.R.; Vervisch, L.; Liñán, A. Effects of heat release on triple flames. Phys. Fluids 1995, 7, 1447–1454. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, Y.-C.; Chang, T.-W.; Chan, Y.-P. The Reattachment Process of a Lifted Jet Diffusion Flame by Repetitive DC Pulse Discharges. Processes 2021, 9, 534. https://doi.org/10.3390/pr9030534
Chao Y-C, Chang T-W, Chan Y-P. The Reattachment Process of a Lifted Jet Diffusion Flame by Repetitive DC Pulse Discharges. Processes. 2021; 9(3):534. https://doi.org/10.3390/pr9030534
Chicago/Turabian StyleChao, Yei-Chin, Tzu-Wei Chang, and Yu-Pei Chan. 2021. "The Reattachment Process of a Lifted Jet Diffusion Flame by Repetitive DC Pulse Discharges" Processes 9, no. 3: 534. https://doi.org/10.3390/pr9030534
APA StyleChao, Y. -C., Chang, T. -W., & Chan, Y. -P. (2021). The Reattachment Process of a Lifted Jet Diffusion Flame by Repetitive DC Pulse Discharges. Processes, 9(3), 534. https://doi.org/10.3390/pr9030534