Effect of Alumina Additives on Mechanical and Fresh Properties of Self-Compacting Concrete: A Review
Abstract
:1. Introduction
2. Nanoparticles
3. Production Processes of Nano Alumina
3.1. Extraction of Alumina Nanoparticles
3.2. Production of Alumina Nanoparticles
4. Sustainability of Nano Alumina
5. Self-Compacting Concrete (SCC)
6. Nano Alumina (NA) Applications in SCC
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shokravi, H.; Shokravi, H.; Bakhary, N.; Heidarrezaei, M.; Rahimian Koloor, S.S.; Petrů, M. Application of the subspace-based methods in health monitoring of civil structures: A Systematic review and meta-analysis. Appl. Sci. 2020, 10, 3607. [Google Scholar] [CrossRef]
- Shokravi, H.; Shokravi, H.; Shokravi, N.; Bakhary, N.; Koloor, S.S.R.; Petrů, M. Health monitoring of civil infrastructures by subspace system identification method: An overview. Appl. Sci. 2020, 10, 2786. [Google Scholar] [CrossRef] [Green Version]
- Shokravi, H.; Shokravi, H.; Shokravi, N.; Bakhary, N.; Heidarrezaei, M.; Koloor, S.R.K.; Petru, M. A review on vehicle classification methods and the potential of using smart-vehicle-assisted techniques. Sensors 2020, 20, 3274. [Google Scholar] [CrossRef] [PubMed]
- Shokravi, H.; Shokravi, H.; Shokravi, N.; Bakhary, N.; Heidarrezaei, M.; Koloor, S.R.K.; Petru, M. Vehicle-assisted techniques for health monitoring of bridges. Sensors 2020, 20, 3460. [Google Scholar] [CrossRef] [PubMed]
- Shokravi, H.; Shokravi, H.; Shokravi, N.; Bakhary, N.; Koloor, S.S.R.; Petrů, M. A comparative study of the data-driven stochastic subspace methods for health monitoring of structures: A bridge case study. Appl. Sci. 2020, 10, 3132. [Google Scholar] [CrossRef]
- Shokravi, H.; Mohammadyan-Yasouj, S.E.; Rafiei, P.; Rahimian Koloor, S.S.; Petrů, M. Temperature impact on engineered cementitious composite containing basalt fibers. J. Mater. Res. Technol. 2021. (Under review). [Google Scholar]
- Mohammadyan-Yasouj, S.E.; Ahangar, H.A.; Oskoei, N.A.; Shokravi, H.; Koloor, S.S.R.; Petrů, M. Thermal performance of alginate concrete reinforced with basalt fiber. Crystals 2020, 10, 779. [Google Scholar] [CrossRef]
- Praveenkumar, T.R.; Vijayalakshmi, M.M.; Meddah, M.S. Strengths and durability performances of blended cement concrete with TiO2 nanoparticles and rice husk ash. Constr. Build. Mater. 2019, 217, 343–351. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. Improvement compressive strength of concrete in different curing media by Al2O3 nanoparticles. Mater. Sci. Eng. A 2011, 528, 1183–1191. [Google Scholar] [CrossRef]
- Khoshakhlagh, A.; Nazari, A.; Khalaj, G. Effects of Fe2O3 nanoparticles on water permeability and strength assessments of high strength self-compacting concrete. J. Mater. Sci. Technol. 2012, 28, 73–82. [Google Scholar] [CrossRef]
- Karatas, M.; Benli, A.; Arslan, F. The effects of kaolin and calcined kaolin on the durability and mechanical properties of self-compacting mortars subjected to high temperatures. Constr. Build. Mater. 2020, 265, 120300. [Google Scholar] [CrossRef]
- Maia, L.; Neves, D. Developing a commercial self-compacting concrete without limestone filler and with volcanic aggregate materials. Procedia Struct. Integr. 2017, 5, 147–154. [Google Scholar] [CrossRef]
- Ibrahim, M.H.W.; Hamzah, A.F.; Jamaluddin, N.; Ramadhansyah, P.J.; Fadzil, A.M. Split tensile strength on self-compacting concrete containing coal bottom ash. Procedia Soc. Behav. Sci. 2015, 195, 2280–2289. [Google Scholar]
- Saha, P.; Debnath, P.; Thomas, P. Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach. Neural Comput. Appl. 2019, 32, 1–16. [Google Scholar] [CrossRef]
- Ramkumar, K.B.; Rajkumar, P.R.K.; Ahmmad, S.N.; Jegan, M. A review on performance of self-compacting concrete–use of mineral admixtures and steel fibres with artificial neural network application. Constr. Build. Mater. 2020, 261, 120215. [Google Scholar] [CrossRef]
- Salami, B.A.; Rahman, S.M.; Oyehan, T.A.; Maslehuddin, M.; Al Dulaijan, S.U. Ensemble machine learning model for corrosion initiation time estimation of embedded steel reinforced self-compacting concrete. Measurement 2020, 165, 108141. [Google Scholar] [CrossRef]
- Saafan, M.A.A.; Bait AL-Shab, T. Behavior of self-compacting concrete in simulated hot weather. ERJ. Eng. Res. J. 2020, 43, 223–230. [Google Scholar] [CrossRef]
- Benaicha, M.; Roguiez, X.; Jalbaud, O.; Burtschell, Y.; Alaoui, A.H. New approach to determine the plastic viscosity of self-compacting concrete. Front. Struct. Civ. Eng. 2016, 10, 198–208. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete. Compos. Part B Eng. 2011, 42, 570–578. [Google Scholar] [CrossRef]
- Joshaghani, A.; Balapour, M.; Mashhadian, M.; Ozbakkaloglu, T. Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete (SCC): An experimental study. Constr. Build. Mater. 2020, 245. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. The effects of TiO2 nanoparticles on physical, thermal and mechanical properties of concrete using ground granulated blast furnace slag as binder. Mater. Sci. Eng. A 2011, 528, 2085–2092. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete. Mater. Sci. Eng. A 2010, 528, 756–763. [Google Scholar] [CrossRef]
- Faez, A.; Sayari, A.; Manie, S. Mechanical and rheological properties of self-compacting concrete containing Al2O3 nanoparticles and silica fume. Iran. J. Sci. Technol. Trans. Civ. Eng. 2020, 44, 1–11. [Google Scholar] [CrossRef]
- Kaplan, G.; Demircan, R.K.; Cakmak, C.; Gultekin, A.B. Microwave curing effect on internal sulfate damage in nano alumina reinforced white cement. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 032038. [Google Scholar] [CrossRef]
- Meddah, M.S.; Praveenkumar, T.R.; Vijayalakshmi, M.M.; Manigandan, S.; Arunachalam, R. Mechanical and microstructural characterization of rice husk ash and Al2O3 nanoparticles modified cement concrete. Constr. Build. Mater. 2020, 255, 119358. [Google Scholar] [CrossRef]
- Salemi, N.; Behfarnia, K. Effect of nano-particles on durability of fiber-reinforced concrete pavement. Constr. Build. Mater. 2013, 48, 934–941. [Google Scholar] [CrossRef]
- Mohammadyan-Yasouj, S.E.; Heidari, N.; Shokravi, H. Influence of waste alumina powder on self-compacting concrete resistance under elevated temperature. J. Build. Eng. 2021. [Google Scholar] [CrossRef]
- De Schutter, G.; Bartos, P.J.M.; Domone, P.; Gibbs, J. Self-Compacting Concrete; Whittles Publishing: Caithness, Scotland, 2008. [Google Scholar]
- Tande, S.N.; Mohite, P.B. Applications of self compacting concrete. In Proceedings of the International Conference Concrete Structure, Singapore, 12 March 2007. [Google Scholar]
- Aslani, F.; Liu, Y.; Wang, Y. The effect of NiTi shape memory alloy, polypropylene and steel fibres on the fresh and mechanical properties of self-compacting concrete. Constr. Build. Mater. 2019, 215, 644–659. [Google Scholar] [CrossRef]
- Basu, P.; Agrawal, V.; Gupta, R.C. Permeation characteristics of self-compacting concrete containing sandstone slurry. Mater. Today Proc. 2020, 26, 1590–1593. [Google Scholar] [CrossRef]
- Simonsson, P.; Emborg, M. Industrialized construction: Benefits using SCC in cast in-situ construction. Nord. Concr. Res. 2009, 39, 33–52. [Google Scholar]
- Georgiadis, A.S.; Sideris, K.K.; Anagnostopoulos, N.S. Properties of SCC produced with limestone filler or viscosity modifying admixture. J. Mater. Civ. Eng. 2010, 22, 352–360. [Google Scholar] [CrossRef]
- Bilir, T.; Kockal, N.U.; Khatib, J.M. Properties of SCC at elevated temperature. In Self-Compacting Concrete: Materials, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 195–218. [Google Scholar]
- Kwon, S.H.; Shah, S.P.; Phung, Q.T.; Kim, J.H.; Lee, Y. Intrinsic model to predict formwork pressure. ACI Mater. J. 2010, 107, 20. [Google Scholar]
- Reinhardt, H.W.; Stegmaier, M. Self-consolidating concrete in fire. ACI Mater. J. 2006, 103, 130. [Google Scholar]
- Kim, J.H.; Noemi, N.; Shah, S.P. Effect of powder materials on the rheology and formwork pressure of self-consolidating concrete. Cem. Concr. Compos. 2012, 34, 746–753. [Google Scholar] [CrossRef]
- Omrane, M.; Kenai, S.; Kadri, E.-H.; Aït-Mokhtar, A. Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan. J. Clean. Prod. 2017, 165, 415–430. [Google Scholar] [CrossRef]
- Koehler, E.P. Aggregates in Self-Consolidating Concrete. Ph.D. Thesis, University of Texas, Austin, TX, USA, 2007. [Google Scholar]
- Skarendahl, A. Changing concrete construction through use of self-compacting concrete. In Proceedings of the First International Symposium on Design, Performance and Use of Self-Consolidating Concrete, Changsha, China, 26–28 May 2005; RILEM Publications SARL: Hunan, Kina, 2005; pp. 17–24. [Google Scholar]
- D’Souza, B.; Yamamiya, H. Applications of smart dynamic concrete. In Proceedings of the International Symposium on Design, Performance and Use of Self-Consolidating Concrete, Kyoto, Japan, 19–21 August 2013; pp. 18–21. [Google Scholar]
- Niewiadomski, P.; Hoła, J.; Ćwirzeń, A. Study on properties of self-compacting concrete modified with nanoparticles. Arch. Civ. Mech. Eng. 2018, 18, 877–886. [Google Scholar] [CrossRef]
- Hemalatha, T.; Sundar, K.R.R.; Murthy, A.R.; Iyer, N.R. Influence of mixing protocol on fresh and hardened properties of self-compacting concrete. Constr. Build. Mater. 2015, 98, 119–127. [Google Scholar] [CrossRef]
- Pai, B.H.V.; Nandy, M.; Krishnamoorthy, A.; Sarkar, P.K.; George, P. Comparative study of self compacting concrete mixes containing fly ash and rice husk ash. Am. J. Eng. Res. 2014, 3, 150–154. [Google Scholar]
- Dolatabad, Y.A.; Kamgar, R.; Nezad, I.G. Rheological and mechanical properties, acid resistance and water penetrability of lightweight self-compacting concrete containing nano-SiO2, nano-TiO2 and nano-Al2O3. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 44, 1–16. [Google Scholar]
- Sumesh, M.; Alengaram, U.J.; Jumaat, M.Z.; Mo, K.H.; Alnahhal, M.F. Incorporation of nano-materials in cement composite and geopolymer based paste and mortar—A review. Constr. Build. Mater. 2017, 148, 62–84. [Google Scholar] [CrossRef]
- Arefi, M.R.; Rezaei-Zarchi, S. Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites. Int. J. Mol. Sci. 2012, 13, 4340–4350. [Google Scholar] [CrossRef] [PubMed]
- Nazari, A.; Riahi, S. The effects of Cr2O3 nanoparticles on strength assessments and water permeability of concrete in different curing media. Mater. Sci. Eng. A 2011, 528, 1173–1182. [Google Scholar] [CrossRef]
- Lin, K.L.; Chang, W.C.; Lin, D.F.; Luo, H.L.; Tsai, M.C. Effects of nano-SiO2 and different ash particle sizes on sludge ash–cement mortar. J. Environ. Manag. 2008, 88, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Zenan, Z.; Deyu, K.; Rongshen, C. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 2007, 21, 539–545. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles. Mater. Sci. Eng. A 2010, 527, 7663–7672. [Google Scholar] [CrossRef]
- Abhilash, P.P.; Nayak, D.K.; Sangoju, B.; Kumar, R.; Kumar, V. Effect of nano-silica in concrete; a review. Constr. Build. Mater. 2021, 278, 122347. [Google Scholar]
- Kooshafar, M.; Madani, H. An investigation on the influence of nano silica morphology on the characteristics of cement composites. J. Build. Eng. 2020, 30, 101293. [Google Scholar] [CrossRef]
- Orakzai, M.A. Hybrid effect of nano-alumina and nano-titanium dioxide on mechanical properties of concrete. Case Stud. Constr. Mater. 2021, 14, e00483. [Google Scholar]
- Wang, X.; Dong, S.; Ashour, A.; Zhang, W.; Han, B. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Constr. Build. Mater. 2020, 240, 117942. [Google Scholar] [CrossRef]
- Shao, Q.; Zheng, K.; Zhou, X.; Zhou, J.; Zeng, X. Enhancement of nano-alumina on long-term strength of Portland cement and the relation to its influences on compositional and microstructural aspects. Cem. Concr. Compos. 2019, 98, 39–48. [Google Scholar] [CrossRef]
- Zhang, A.; Yang, W.; Ge, Y.; Du, Y.; Liu, P. Effects of nano-SiO2 and nano-Al2O3 on mechanical and durability properties of cement-based materials: A comparative study. J. Build. Eng. 2020, 34, 101936. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. The effects of zinc dioxide nanoparticles on flexural strength of self-compacting concrete. Compos. Part B Eng. 2011, 42, 167–175. [Google Scholar] [CrossRef]
- Yang, J.; Mohseni, E.; Behforouz, B.; Khotbehsara, M.M. An experimental investigation into the effects of Cr2O3 and ZnO2 nanoparticles on the mechanical properties and durability of self-compacting mortar. Int. J. Mater. Res. 2015, 106, 886–892. [Google Scholar] [CrossRef]
- Heikal, M.; Zaki, M.E.A.; Ibrahim, S.M. Characterization, hydration, durability of nano-Fe2O3-composite cements subjected to sulphates and chlorides media. Constr. Build. Mater. 2021, 269, 121310. [Google Scholar] [CrossRef]
- Madandoust, R.; Mohseni, E.; Mousavi, S.Y.; Namnevis, M. An experimental investigation on the durability of self-compacting mortar containing nano-SiO2, nano-Fe2O3 and nano-CuO. Constr. Build. Mater. 2015, 86, 44–50. [Google Scholar] [CrossRef]
- Khotbehsara, M.M.; Miyandehi, B.M.; Naseri, F.; Ozbakkaloglu, T.; Jafari, F.; Mohseni, E. Effect of SnO2, ZrO2, and CaCO3 nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash: Experimental observations and ANFIS predictions. Constr. Build. Mater. 2018, 158, 823–834. [Google Scholar] [CrossRef]
- Massa, M.A.; Covarrubias, C.; Bittner, M.; Fuentevilla, I.A.; Capetillo, P.; Von Marttens, A.; Carvajal, J.C. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Mater. Sci. Eng. C 2014, 45, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Morsy, M.S.; Alsayed, S.H.; Aqel, M. Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Constr. Build. Mater. 2011, 25, 145–149. [Google Scholar] [CrossRef]
- Felekoğlu, B.; Sarıkahya, H. Effect of chemical structure of polycarboxylate-based superplasticizers on workability retention of self-compacting concrete. Constr. Build. Mater. 2008, 22, 1972–1980. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. Effects of Cr2O3 nanoparticles on properties of SCC with GGBFS binder. Mag. Concr. Res. 2012, 64, 433–444. [Google Scholar] [CrossRef]
- Bankir, M.B.; Ozturk, M.; Sevim, U.K.; Depci, T. Effect of n-CaCO3 on fresh, hardened properties and acid resistance of granulated blast furnace slag added mortar. J. Build. Eng. 2020, 29, 101209. [Google Scholar] [CrossRef]
- Tawfik, T.A.; Aly Metwally, K.; EL-Beshlawy, S.A.; Al Saffar, D.M.; Tayeh, B.A.; Soltan Hassan, H. Exploitation of the nanowaste ceramic incorporated with nano silica to improve concrete properties. J. King Saud Univ. Eng. Sci. 2020. [Google Scholar] [CrossRef]
- Jalal, M.; Ramezanianpour, A.A.; Pool, M.K. Split tensile strength of binary blended self compacting concrete containing low volume fly ash and TiO2 nanoparticles. Compos. Part B Eng. 2013, 55, 324–337. [Google Scholar] [CrossRef]
- Quercia, G.; Spiesz, P.; Hüsken, G.; Brouwers, H.J.H. SCC modification by use of amorphous nano-silica. Cem. Concr. Compos. 2014, 45, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Beigi, M.H.; Berenjian, J.; Omran, O.L.; Nik, A.S.; Nikbin, I.M. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater. Des. 2013, 50, 1019–1029. [Google Scholar] [CrossRef]
- Vassaux, S.; Gaudefroy, V.; Boulangé, L.; Pévère, A.; Mouillet, V.; Barragan-Montero, V. Towards a better understanding of wetting regimes at the interface asphalt/aggregate during warm-mix process of asphalt mixtures. Constr. Build. Mater. 2017, 133, 182–195. [Google Scholar] [CrossRef]
- Feng, D.; Xie, N.; Gong, C.; Leng, Z.; Xiao, H.; Li, H.; Shi, X. Portland cement paste modified by TiO2 nanoparticles: A microstructure perspective. Ind. Eng. Chem. Res. 2013, 52, 11575–11582. [Google Scholar] [CrossRef]
- Chen, J.; Kou, S.; Poon, C. Hydration and properties of nano-TiO2 blended cement composites. Cem. Concr. Compos. 2012, 34, 642–649. [Google Scholar] [CrossRef]
- Oltulu, M.; Şahin, R. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Mater. Sci. Eng. A 2011, 528, 7012–7019. [Google Scholar] [CrossRef]
- Mohseni, E.; Naseri, F.; Amjadi, R.; Khotbehsara, M.M.; Ranjbar, M.M. Microstructure and durability properties of cement mortars containing nano-TiO2 and rice husk ash. Constr. Build. Mater. 2016, 114, 656–664. [Google Scholar] [CrossRef]
- Mohseni, E.; Miyandehi, B.M.; Yang, J.; Yazdi, M.A. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash. Constr. Build. Mater. 2015, 84, 331–340. [Google Scholar] [CrossRef]
- Said, S.; Mikhail, S.; Riad, M. Recent processes for the production of alumina nano-particles. Mater. Sci. Energy Technol. 2020, 3, 344–363. [Google Scholar] [CrossRef]
- De Dios, A.S.; Díaz-García, M.E. Multifunctional nanoparticles: Analytical prospects. Anal. Chim. Acta 2010, 666, 1–22. [Google Scholar] [CrossRef]
- Neouze, M.-A.; Schubert, U. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte Chem. Chem. Mon. 2008, 139, 183–195. [Google Scholar] [CrossRef]
- Xue, Y.; Yu, W.; Mei, J.; Jiang, W.; Lv, X. A clean process for alumina extraction and ferrosilicon alloy preparation from coal fly ash via vacuum thermal reduction. J. Clean. Prod. 2019, 240, 118262. [Google Scholar] [CrossRef]
- Bertolino, L.C.; Rossi, A.M.; Scorzelli, R.B.; Torem, M.L. Influence of iron on kaolin whiteness: An electron paramagnetic resonance study. Appl. Clay Sci. 2010, 49, 170–175. [Google Scholar] [CrossRef]
- Murray, H.H. Structure and composition of the clay minerals and their physical and chemical properties. Dev. Clay Sci. 2006, 2, 7–31. [Google Scholar]
- Lin, H.Y.; Wan, L.; Yang, Y.F. Aluminium hydroxide ultrafine powder extracted from fly ash. Adv. Mater. Res. 2012, 512, 1548–1553. [Google Scholar] [CrossRef]
- Li, H.; Hui, J.; Wang, C.; Bao, W.; Sun, Z. Extraction of alumina from coal fly ash by mixed-alkaline hydrothermal method. Hydrometallurgy 2014, 147, 183–187. [Google Scholar] [CrossRef]
- Ding, J.; Ma, S.; Shen, S.; Xie, Z.; Zheng, S.; Zhang, Y. Research and industrialization progress of recovering alumina from fly ash: A concise review. Waste Manag. 2017, 60, 375–387. [Google Scholar] [CrossRef]
- Szente, R.N.; Schroeter, R.A.; Garcia, M.G.; Bender, O.W. Recovering aluminum via plasma processing. JOM 1997, 49, 52–55. [Google Scholar] [CrossRef]
- Saravanakumar, R.; Ramachandran, K.; Laly, L.G.; Ananthapadmanabhan, P.V.; Yugeswaran, S. Plasma assisted synthesis of γ-alumina from waste aluminium dross. Waste Manag. 2018, 77, 565–575. [Google Scholar] [CrossRef]
- Kumar, P.M.; Balasubramanian, C.; Sali, N.D.; Bhoraskar, S.V.; Rohatgi, V.K.; Badrinarayanan, S. Nanophase alumina synthesis in thermal arc plasma and characterization: Correlation to gas-phase studies. Mater. Sci. Eng. B 1999, 63, 215–227. [Google Scholar] [CrossRef]
- Kumar, P.M.; Borse, P.; Rohatgi, V.K.; Bhoraskar, S.V.; Singh, P.; Sastry, M. Synthesis and structural characterization of nanocrystalline aluminium oxide. Mater. Chem. Phys. 1994, 36, 354–358. [Google Scholar] [CrossRef]
- Fu, L.; Johnson, D.L.; Zheng, J.G.; Dravid, V.P. Microwave plasma synthesis of nanostructured γ-Al2O3 powders. J. Am. Ceram. Soc. 2003, 86, 1635–1637. [Google Scholar] [CrossRef]
- Stanislaus, A.; Al-Dolama, K.; Absi-Halabi, M. Preparation of a large pore alumina-based HDM catalyst by hydrothermal treatment and studies on pore enlargement mechanism. J. Mol. Catal. A Chem. 2002, 181, 33–39. [Google Scholar] [CrossRef]
- Akia, M.; Alavi, S.M.; Rezaei, M.; Yan, Z.-F. Optimizing the sol–gel parameters on the synthesis of mesostructure nanocrystalline γ-Al2O3. Microporous Mesoporous Mater. 2009, 122, 72–78. [Google Scholar] [CrossRef]
- Weitkamp, J.; Sing, K.S.W.; Schüth, F. Handbook of Porous Solids; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Mirjalili, F.; Hasmaliza, M.; Abdullah, L.C. Size-controlled synthesis of nano α-alumina particles through the sol–gel method. Ceram. Int. 2010, 36, 1253–1257. [Google Scholar] [CrossRef] [Green Version]
- Belekar, R.M.; Dhoble, S.J. Activated alumina granules with nanoscale porosity for water defluoridation. Nano Struct. Nano Objects 2018, 16, 322–328. [Google Scholar] [CrossRef]
- Esmaeilirad, M.; Zabihi, M.; Shayegan, J.; Khorasheh, F. Oxidation of toluene in humid air by metal oxides supported on γ-alumina. J. Hazard. Mater. 2017, 333, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.; Jiang, F.; Jiang, W.; Liu, J.; Zhang, Q.; Hu, Q.; Miao, L.; Wu, Q. Effect of oxygen donor alcohol on nonaqueous precipitation synthesis of alumina powders. Ceram. Int. 2019, 45, 354–360. [Google Scholar] [CrossRef]
- Hong, J.-P.; Jun, W.; Chen, H.-Y.; Sun, B.-D.; Li, J.-J.; Chong, C. Process of aluminum dross recycling and life cycle assessment for Al-Si alloys and brown fused alumina. Trans. Nonferrous Met. Soc. China 2010, 20, 2155–2161. [Google Scholar] [CrossRef]
- Calder, G.V.; Stark, T.D. Aluminum reactions and problems in municipal solid waste landfills. Pract. Period. Hazardous Toxic Radioact. Waste Manag. 2010, 14, 258–265. [Google Scholar] [CrossRef]
- EI Katatny, E.A.; Halawy, S.A.; Mohamed, M.A.; Zaki, M.I. Recovery of high surface area alumina from aluminium dross tailings. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 2000, 75, 394–402. [Google Scholar] [CrossRef]
- David, E.; Kopac, J. Aluminum recovery as a product with high added value using aluminum hazardous waste. J. Hazard. Mater. 2013, 261, 316–324. [Google Scholar] [CrossRef]
- Dash, B.; Das, B.R.; Tripathy, B.C.; Bhattacharya, I.N.; Das, S.C. Acid dissolution of alumina from waste aluminium dross. Hydrometallurgy 2008, 92, 48–53. [Google Scholar] [CrossRef]
- Das, J.; Patra, B.S.; Baliarsingh, N.; Parida, K.M. Adsorption of phosphate by layered double hydroxides in aqueous solutions. Appl. Clay Sci. 2006, 32, 252–260. [Google Scholar] [CrossRef]
- Sarker, M.S.R.; Alam, M.Z.; Qadir, M.R.; Gafur, M.A.; Moniruzzaman, M. Extraction and characterization of alumina nanopowders from aluminum dross by acid dissolution process. Int. J. Miner. Metall. Mater. 2015, 22, 429–436. [Google Scholar] [CrossRef]
- Singh, U.; Ansari, M.S.; Puttewar, S.P.; Agnihotri, A. Studies on process for conversion of waste aluminium dross into value added products. Russ. J. Non Ferrous Met. 2016, 57, 296–300. [Google Scholar] [CrossRef]
- How, L.F.; Islam, A.; Jaafar, M.S.; Taufiq-Yap, Y.H. Extraction and characterization of Γ-alumina from waste aluminium dross. Waste Biomass Valoriz. 2017, 8, 321–327. [Google Scholar] [CrossRef]
- Yang, S.-F.; Wang, T.-M.; Shie, Z.-Y.J.; Jiang, S.-J.; Hwang, C.-S.; Tzeng, C.-C. Fine Al2O3 powder produced by radio-frequency plasma from aluminum dross. IEEE Trans. Plasma Sci. 2014, 42, 3751–3755. [Google Scholar] [CrossRef]
- Ashish, D.K.; Verma, S.K. Robustness of self-compacting concrete containing waste foundry sand and metakaolin: A sustainable approach. J. Hazard. Mater. 2020, 401, 123329. [Google Scholar] [CrossRef]
- Vali, R.H.; Wani, M.M. The effect of mixed nano-additives on performance and emission characteristics of a diesel engine fuelled with diesel-ethanol blend. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Uysal, M. Self-compacting concrete incorporating filler additives: Performance at high temperatures. Constr. Build. Mater. 2012, 26, 701–706. [Google Scholar] [CrossRef]
- Zhu, W.; Gibbs, J.C. Use of different limestone and chalk powders in self-compacting concrete. Cem. Concr. Res. 2005, 35, 1457–1462. [Google Scholar] [CrossRef]
- Uysal, M.; Sumer, M. Performance of self-compacting concrete containing different mineral admixtures. Constr. Build. Mater. 2011, 25, 4112–4120. [Google Scholar] [CrossRef]
- Fathi, H.; Lameie, T.; Maleki, M.; Yazdani, R. Simultaneous effects of fiber and glass on the mechanical properties of self-compacting concrete. Constr. Build. Mater. 2017, 133, 443–449. [Google Scholar] [CrossRef]
- Ahmad, S.; Umar, A.; Masood, A. Properties of normal concrete, self-compacting concrete and glass fibre-reinforced self-compacting concrete: An experimental study. Procedia Eng. 2017, 173, 807–813. [Google Scholar] [CrossRef]
- Anand, N.; Arulraj, G.P. The effect of elevated temperature on concrete materials-A literature review. Int. J. Civ. Struct. Eng. 2011, 1, 928–938. [Google Scholar]
- Annerel, E.; Taerwe, L.; Vandevelde, P. Assessment of temperature increase and residual strength of SCC after fire exposure. In Proceedings of the 5th International RILEM Symposium on Self-Compacting Concrete, Ghent, Belgium, 5–7 September 2007; pp. 715–720. [Google Scholar]
- Pineaud, A.; Pimienta, P.; Rémond, S.; Carré, H. Mechanical properties of high performance self-compacting concretes at room and high temperature. Constr. Build. Mater. 2016, 112, 747–755. [Google Scholar] [CrossRef]
- Andiç-Çakır, Ö.; Hızal, S. Influence of elevated temperatures on the mechanical properties and microstructure of self consolidating lightweight aggregate concrete. Constr. Build. Mater. 2012, 34, 575–583. [Google Scholar] [CrossRef]
- Ma, Q.; Guo, R.; Zhao, Z.; Lin, Z.; He, K. Mechanical properties of concrete at high temperature—A review. Constr. Build. Mater. 2015, 93, 371–383. [Google Scholar] [CrossRef]
- Khaliq, W.; Khan, H.A. High temperature material properties of calcium aluminate cement concrete. Constr. Build. Mater. 2015, 94, 475–487. [Google Scholar] [CrossRef]
- Lea, F.C. The resistance to fire of concrete and reinforced concrete. J. Soc. Chem. Ind. 1922, 41, 395R–396R. [Google Scholar] [CrossRef]
- Qadir, S.S. Strength and behavior of self compacting concrete with crushed ceramic tiles as partial replacement for coarse aggregate and subjected to elevated temperature. Int. J. Eng. Technol. Manag. Appl. Sci. 2015, 3, 278–286. [Google Scholar]
- Norhasri, M.S.M.; Hamidah, M.S.; Fadzil, A.M. Applications of using nano material in concrete: A review. Constr. Build. Mater. 2017, 133, 91–97. [Google Scholar] [CrossRef]
- Ashoor, M.; Khorshidi, A.; Sarkhosh, L. Appraisal of new density coefficient on integrated-nanoparticles concrete in nuclear protection. Kerntechnik 2020, 85, 9–14. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Mousavi Ajarostaghi, S.S.; Bhojaraju, C. A critical review of the effect of concrete composition on rebar–concrete interface (RCI) bond strength: A case study of nanoparticles. SN Appl. Sci. 2020, 2, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Niewiadomski, P.; Stefaniuk, D. Creep assessment of the cement matrix of self-compacting concrete modified with the addition of nanoparticles using the indentation method. Appl. Sci. 2020, 10, 2442. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.Y.; Zhang, Y.M.; Pan, L.S.; Tan, W. Research on characterization and chemical composition of baoluo kaolin in hainan province. Adv. Mater. Res. Trans Tech Publ. 2011, 233, 2258–2262. [Google Scholar] [CrossRef]
- Gowda, R.; Narendra, H.; Nagabushan, B.M.; Rangappa, D.; Prabhakara, R. Investigation of nano-alumina on the effect of durability and micro-structural properties of the cement mortar. Mater. Today Proc. 2017, 4, 12191–12197. [Google Scholar] [CrossRef]
- Rasin, F.A.; Abbas, L.K.; Kadhim, M.J. Study the effects of nano-materials addition on some mechanical properties of cement mortar. Eng. Technol. J. 2017, 35, 348–355. [Google Scholar]
- Liu, F.; Zhang, T.; Luo, T.; Zhou, M.; Ma, W.; Zhang, K. The effects of Nano-SiO2 and Nano-TiO2 addition on the durability and deterioration of concrete subject to freezing and thawing cycles. Materials 2019, 12, 3608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Luhybi, A.S.; Altalabani, D. The Influence of Nano-Silica on the Properties and Microstructure of Lightweight Concrete: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1094, 012075. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C.; Ihara, I. Sensors and technologies for structural health monitoring: A review. New Dev. Sens. Technol. Struct. Heal. Monit. 2011, 96, 1–14. [Google Scholar]
- Sua-iam, G.; Makul, N. Rheological and mechanical properties of cement–fly ash self-consolidating concrete incorporating high volumes of alumina-based material as fine aggregate. Constr. Build. Mater. 2015, 95, 736–747. [Google Scholar] [CrossRef]
- Farzadnia, N.; Abang Ali, A.A.; Demirboga, R. Characterization of high strength mortars with nano alumina at elevated temperatures. Cem. Concr. Res. 2013, 54, 43–54. [Google Scholar] [CrossRef]
- Behfarnia, K.; Salemi, N. The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Constr. Build. Mater. 2013, 48, 580–584. [Google Scholar] [CrossRef]
- Zhan, B.J.; Xuan, D.X.; Poon, C.S. The effect of nanoalumina on early hydration and mechanical properties of cement pastes. Constr. Build. Mater. 2019, 202, 169–176. [Google Scholar] [CrossRef]
- Szymanowski, J.; Sadowski, L. The development of nanoalumina-based cement mortars for overlay applications in concrete floors. Materials 2019, 12, 3465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wang, H.; He, S.; Lu, Y.; Wang, M. Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater. Lett. 2006, 60, 356–359. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Mukherjee, S.; Nikraz, H. Effects of nano-Al2O3 on early-age microstructural properties of cement paste. Constr. Build. Mater. 2014, 52, 189–193. [Google Scholar] [CrossRef]
- Heikal, M.; Ismail, M.N.; Ibrahim, N.S. Physico-mechanical, microstructure characteristics and fire resistance of cement pastes containing Al2O3 nano-particles. Constr. Build. Mater. 2015, 91, 232–242. [Google Scholar] [CrossRef]
- Sua-iam, G.; Makul, N. Use of recycled alumina as fine aggregate replacement in self-compacting concrete. Constr. Build. Mater. 2013, 47, 701–710. [Google Scholar] [CrossRef]
- Mohseni, E.; Khotbehsara, M.M.; Naseri, F.; Monazami, M.; Sarker, P. Polypropylene fiber reinforced cement mortars containing rice husk ash and nano-alumina. Constr. Build. Mater. 2016, 111, 429–439. [Google Scholar] [CrossRef]
Advantages | Ref. | Disadvantages | Ref. |
---|---|---|---|
Speeded up construction | [29] | Prolonged demolding time | [30] |
Improved the construction quality | [31] | Increased risk and associated uncertainty | [32] |
Safer work conditions | [33] | Lowered elevated temperature resistance | [34] |
The increased service life of formworks due to the elimination of vibration | [31] | Higher formwork pressure means higher formwork costs. | [35] |
Improved quality of the final product | [33] | Not fully known fire behavior | [36] |
Reduced manpower | [33] | Maintaining ready-mixed is not easy under the construction site | [37] |
Improved ecological footprint | [38] | Not appropriate for every application | [39] |
Improved economic | [38] | Unsuitable choice for horizontal castings | [40] |
Enhanced filling spaces in dense reinforcement or inaccessible voids | [38] | Higher associated costs for ready-mixed | [41] |
Improved freeze-thaw resistance | [42] | Using conventional drum mixers are not suitable for the distribution | [43] |
Noise-free working atmosphere | [31] | Not standardized mix design | [44] |
Investigated Parameter | Temperature Range | Effect of Temperature Rise |
---|---|---|
Compressive strength | 100–800 °C. |
|
Porosity and pore size | 100–800 °C. Above 1000 °C, |
|
Elastic modulus. | 100–800 °C. |
|
Splitting tensile strength | 100–800 °C. |
|
Stress-strain relationship | 100–800 °C |
|
Residual flexural strength | 100–800 °C |
|
Water evaporation | At 105 °C At 400 °C |
|
Hydration | Up to 300 °C |
|
Microstructure | Up to 200 °C 200 °C–400 °C |
|
Advantages | Reference |
---|---|
Reduced porosity of the microstructure as the voids were filled by NS. | [129] |
Decreased in water absorption | [130] |
Improved frost resistance of concrete | [131] |
Controlled the setting time of the cement through a faster hydration process will be. | [132] |
Reduced amount of un-hydrated cement in the mix | [129] |
Increased modulus of elasticity of cement mortar. | [133] |
Reduced segregation and flocculation. | [124] |
Refined voids in the hydration gel as a nanofiller. | [124] |
Reduced coefficients of permeability by 1–3 orders of magnitude. | [133] |
Ref. | Research Topic | Test Age (day) | Sample Size | W/C (%) | Alumina | Remarks | |||
---|---|---|---|---|---|---|---|---|---|
Type | Size (mm) | Amount of Alumina | Investigated Parameters | ||||||
Suaiam and Makul [134,142] | Rheological and mechanical properties SCC with high volumes of alumina | 28 and 90 days | Φ150 mm × 300 mm | 0.38 | Alumina | Below ≈5 mm | 0, 25, 50, 75, and 100% of the total fine aggregate |
|
|
Mohseni et al. [143] | Cement mortars containing rice husk ash, Polypropylene fiber (PPF), and nano-alumina (NA) | 28 and 90 days | 50 × 50 × 50 mm3 and 50 × 50 × 200 mm3 | 0.49 | NA | 20 nm | 0, 1, 2 and 3%, |
|
|
Gowda et al. [129] | Durability and microstructural properties of mortars with NA | 28 days | 70.5× 70.5× 70.5 mm3 | 0.79 | NA | - | 1, 3 and 5% |
|
|
Farzadnia et al. [135] | Elevated temperature’s effect on NA -based mortars | 1, 7, and 28 days | 50 × 50 × 50 mm3 and Φ20 mm × 50 mm | 0.35 | NA | the average size of 13 nm | 0, 1, 2 and 3% |
|
|
Behfarnia and Salemi [136] | Frost resistance of NA concrete | 7, 28 and 120 days | 70 × 70 × 70 mm3. | 0.48 | NA | 15 nm | 1% and more than 2% |
|
|
Zhan et al. [137] | Effect of NA on early hydration and mechanical properties of cement pastes | 1, 3, 7, and 28 days | cubes of size 20 mm × 20 mm × 20 mm cubes of size 6 mm × 6 mm × 13 mm | 0.456 | NA | 30 nm | 0%, 1%, 2% and 4% |
|
|
Szymanowski and Sadowski [138] | NA-based cement mortars for concrete floors | 28 days | 71 × 71 × 71 mm3, 11 × 11 × 11 mm3, and 40 × 40 × 80 mm3 | 0.3 | NA | Below 50 nm | 0.5, 1 and 1.5% |
|
|
Li et al. [139] | Preparation and mechanical properties of the NA based cement composite | 3 days, 7 days, 28 days | Φ20 × 40 mm | 0.4 | NA | Below 150 nm | 5% and 7% |
|
|
Nazari and Riahi [9] | Different curing media for NA in concrete | 7, 28 and 90 days | Cubes of 100 mm edge for compressive strength tests, cubes with 200 mm × 50 mm × 50 mm | 0.40 | NA | 15 nm | 0.5%, 1.5% and 2% |
Flexural strength
|
|
Barbhuiya et al. [140] | Early-age microstructural properties of adding NA to cement paste | 1, 3, 7, and 28 days | 50 × 50 × 50 mm3 | 0.40 | NA | 27–43 nm | 2% and 4% |
|
|
Mohseni et al. [77] | Effects of NA on mechanical, rheological, and durability properties of SCC | 3, 7, 28 and 90 days | 50 × 50 × 50 mm3 and Φ100 × 50 mm | 0.4 | NA | 15 nm | 1%, 3%, and 5% |
|
|
Heikal et al. [141] | Physico-mechanical, microstructure characteristics and fire resistance of cement pastes with NA - | 3, 7, 28, and 90 days. | - | NA | 15 ± 3 nm | 1, 2, 4 and 6 % |
|
| |
Khaliq and Khan [121] | High-temperature material properties of calcium aluminate cement concrete | 3, 14, and 28 days | Φ100 mm × 200 mm | 0.5 | calcium aluminate cement concrete | - | - |
|
|
Niewiadomski et al. [42] | Self-compacting concrete modified with NA | 28 and 90 days | 100 × 100 × 100 mm3, 40 × 40 × 160 mm3, and Φ25 mm × 20 mm | 0.42 | NA | Below 50 nm | Cement replacement 0.5 wt.%, 1.0 wt.%, 2.0 wt.% and 3.0 wt.% of the. |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokravi, H.; Mohammadyan-Yasouj, S.E.; Koloor, S.S.R.; Petrů, M.; Heidarrezaei, M. Effect of Alumina Additives on Mechanical and Fresh Properties of Self-Compacting Concrete: A Review. Processes 2021, 9, 554. https://doi.org/10.3390/pr9030554
Shokravi H, Mohammadyan-Yasouj SE, Koloor SSR, Petrů M, Heidarrezaei M. Effect of Alumina Additives on Mechanical and Fresh Properties of Self-Compacting Concrete: A Review. Processes. 2021; 9(3):554. https://doi.org/10.3390/pr9030554
Chicago/Turabian StyleShokravi, Hoofar, Seyed Esmaeil Mohammadyan-Yasouj, Seyed Saeid Rahimian Koloor, Michal Petrů, and Mahshid Heidarrezaei. 2021. "Effect of Alumina Additives on Mechanical and Fresh Properties of Self-Compacting Concrete: A Review" Processes 9, no. 3: 554. https://doi.org/10.3390/pr9030554
APA StyleShokravi, H., Mohammadyan-Yasouj, S. E., Koloor, S. S. R., Petrů, M., & Heidarrezaei, M. (2021). Effect of Alumina Additives on Mechanical and Fresh Properties of Self-Compacting Concrete: A Review. Processes, 9(3), 554. https://doi.org/10.3390/pr9030554