Development of Strategies for AOB and NOB Competition Supported by Mathematical Modeling in Terms of Successful Deammonification Implementation for Energy-Efficient WWTPs
Abstract
:1. Introduction
2. Microorganisms Interaction through Shortcut Nitrification Systems
2.1. Ammonia Oxidizing Bacteria (AOB)
2.2. Nitrite Oxidizing Bacteria (NOB)
2.3. Anaerobic Ammonia Oxidizing Bacteria (AnAOB)
3. Factors Affecting Microorganisms Activity in Shortcut Nitrification Process
3.1. Temperature
- —Maximum specific growth rate (d−1);
- —Maximum specific growth rate (d−1) under temperature at 20 °C;
- —The activation energy (KJ/mol);
- R—8.314 (J/mol·K);
- —Reaction temperature at T;
- θ—temperature coefficient;
- A—the frequency factor for the reaction;
- T—temperature in Kelvin.
3.2. Dissolved Oxygen (DO) Set Point and Aeration Strategies
3.3. Intermittent Aeration Pattern
3.4. pH Direct Effect
3.5. FA and FNA Inhibition Effect
4. Cost and Energy/Resources Reductions Comparing Conventional & Deammonification
4.1. Energy Consumption in One-Stage Deammonification Systems
4.2. Energy Consumption in Two-Stage
5. Mathematical Modeling for Shortcut Nitrification Processes
5.1. Mathematical Kinetics Behavior of Microbial Community
- μmax—maximum growth rate (d−1);
- , , concentration of ammonia (mg N/L), nitrite (mg N/L), DO (mg O2/L);
- , , ammonia, nitrite half-saturation constant (mg N/L), oxygen half-saturation (mg/L) b is the decay rate (d−1).
- q—Specific growth rate per day;
- qmax—maximum specific growth rate per day for different bacteria;
- S—substrate concentration (mg/L);
- ks and ki are half saturation constant and inhibition constant (mg N/L), respectively.
5.2. The Application of Mathematical Models
5.3. Model-Based Simulations of NOB Suppression
6. Perspectives
- The changes in reactor operation and configuration, for instance, the elimination of carbon within a partial nitrification process with the application of two-stage configuration [12].
- The recognition of functional microbial communities and their features for considering the appropriate strategies to outcompete NOB species against the AOB community.
- The identification of main operating factors affecting AOB and NOB competition within different phases in order to apply the optimum range of such parameters for maintaining the stability of the process. The main bottlenecks in this step are related to the differences of specific growth rates of bacteria under various operating conditions. For instance, the high DO concentrations can enhance the activity of both AOB and NOB, whereas due to the slower growth rate of AOB than NOB, the complete nitrification process could occur by AOB repression and nitrate accumulation. Moreover, AnAOB are sensitive to aerobic conditions while their activities will be inhibited under aerated processes. Therefore, the optimal operational conditions should be further considered for enriching AOB and AnAOB over NOB based on their dominating species (K and R-strategists).
- Alternative and supplemental strategies have gained attention due to maintaining the stability of the nitritation process, but these strategies need to be further studied to suppress NOB activities based on the mutual interaction between different operating parameters. Such possible strategies might be: (1) intermittent aeration operation as an effective method to successfully inhibit NOB activities under optimal aeration frequency under aerobic/anoxic conditions; (2) gradual decrease of temperature coupled with applying biomass to the system as an alternative to perform shortcut nitrification methods even under lower temperatures [61]; (3) bioaugmentation strategy may be useful to increase the nitrogen removal efficiency, the enrichment of nitrifier activities, and quicker start-up even under lower temperatures and DO concentrations [105,138]; (4) FA and FNA can inhibit AOB and NOB activities, as well as this inhibitory impact of FA and FNA on NOB is much more than AOB, so this method should be further investigated to identify the optimum range for these variables based on pH changes [7]; (5) the use of supplemental process to make the nitritation process much more efficient and decrease the consequences of carbon sources on the growth rate of bacteria under mainstream conditions. For instance, the use of carbon substrate for developing novel technologies based on simultaneous partial nitrification, anammox, and denitrification (SNAD) [139]; (6) To date, extensive efforts have been done for evaluating the interesting possibility of applying different types of biomasses including suspended sludge, biofilm, and granules within the nitrogen removal processes. Furthermore, the combination of different biomasses such suspended sludge (the enrichment of AOB-NOB activities) and biofilm or granules (the improvement of anammox activity) into reactors are gaining increasing interest for nitrite pathway methods which can enhance nitrogen removal efficiency (Figure 7, Table 5). Laureni et al. (2019) reported that the combination of biofilm with floc biomasses can have a significant effect on AnAOB and AOB-NOB activities, which was successfully followed by inhibiting NOB activity under decreasing DO concentration from 1.2 to 0.17 mg O2/L (Figure 8) [140].
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; van Loosdrecht, M.C. Full-scale partial nitritation/anammox experiences—An application survey. Water Res. 2014, 55, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Wang, S.; Cao, S.; Miao, Y.; Jia, F.; Du, R.; Peng, Y. Biological nitrogen removal from sewage via anammox: Recent advances. Bioresour. Technol. 2016, 200, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Fux, C.; Siegrist, H. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: Environmental and economical considerations. Water Sci. Technol. 2004, 50, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Dosta, J.; Vila, J.; Sancho, I.; Basset, N.; Grifoll, M.; Mata-Álvarez, J. Two-step partial nitritation/Anammox process in granulation reactors: Start-up operation and microbial characterization. J. Environ. Manag. 2015, 164, 196–205. [Google Scholar] [CrossRef]
- Drewnowski, J.; Remiszewska-Skwarek, A.; Duda, S.; Łagód, G. Aeration process in bioreactors as the main en-ergy consumer in a wastewater treatment plant. Review of solutions and methods of process optimization. Processes 2019, 7, 311. [Google Scholar] [CrossRef] [Green Version]
- Masłoń, A.; Czarnota, J.; Szaja, A.; Szulżyk-Cieplak, J.; Łagód, G. The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland. Energies 2020, 13, 6056. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Q.; Laloo, A.E.; Xu, Y.; Bond, P.L.; Yuan, Z. Achieving Stable Nitritation for Mainstream Deammonification by Combining Free Nitrous Acid-Based Sludge Treatment and Oxygen Limitation. Sci. Rep. 2016, 6, 25547. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yan, Y.; Gao, D. The threshold of influent ammonium concentration for nitrate over-accumulation in a one-stage deammonification system with granular sludge without aeration. Sci. Total Environ. 2018, 634, 843–852. [Google Scholar] [CrossRef]
- Han, M.; De Clippeleir, H.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Bott, C.; Murthy, S. Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification. Water Sci. Technol. 2016, 74, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Malovanyy, A.; Yang, J.; Trela, J.; Plaza, E. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment. Bioresour. Technol. 2015, 180, 144–153. [Google Scholar] [CrossRef]
- Jardin, N.; Hennerkes, J. Full-scale experience with the deammonification process to treat high strength sludge water—A case study. Water Sci. Technol. 2012, 65, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zhou, Y.; Yang, Q.; Lee, Z.M.-P.; Guangjing, X.; Lay, W.; Cao, Y.; Liu, Y. The challenges of mainstream deammonification process for municipal used water treatment. Appl. Microbiol. Biotechnol. 2015, 99, 2485–2490. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, X.; Al-Hazmi, H.; Mąkinia, J. An overview of the strategies for the deammonification process start-up and recovery after accidental operational failures. Rev. Environ. Sci. Bio/Technol. 2017, 16, 541–568. [Google Scholar] [CrossRef]
- Wett, B.; Murthy, S.; Tak´cs, I.; Hell, M.; Bowden, G.; Deur, A.; O’Shaughnessy, M. Key Parameters for Control of DEMON Deammonification Process. Configurations 2007, 1, 1–16. [Google Scholar]
- Gonzalez-Martinez, A.; Morillo, J.; Garcia-Ruiz, M.; Gonzalez-Lopez, J.; Osorio, F.; Martinez-Toledo, M.; Van Loosdrecht, M. Archaeal populations in full-scale autotrophic nitrogen removal bioreactors operated with different technologies: CANON, DEMON and partial nitritation/anammox. Chem. Eng. J. 2015, 277, 194–201. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.; Han, Y.; Zhang, X. Start-up and bacterial communities of single-stage nitrogen removal using anammox and partial nitritation (SNAP) for treatment of high strength ammonia wastewater. Bioresour. Technol. 2014, 169, 652–657. [Google Scholar] [CrossRef]
- Shalini, S.S.; Joseph, K. Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON–ANAMMOX process. Waste Manag. 2012, 32, 2385–2400. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Cheng, Z.; Wang, S. Effect of low aeration rate on simultaneous nitrification and denitrification in an intermittent aeration aged refuse bioreactor treating leachate. Waste Manag. 2017, 63, 410–416. [Google Scholar] [CrossRef]
- Agrawal, S.; Karst, S.M.; Gilbert, E.M.; Horn, H.; Nielsen, P.H.; Lackner, S. The role of inoculum and reactor configuration for microbial community composition and dynamics in mainstream partial nitritation anammox reactors. MicrobiologyOpen 2017, 6, e00456. [Google Scholar] [CrossRef]
- Ma, Y.; Sundar, S.; Park, H.; Chandran, K. The effect of inorganic carbon on microbial interactions in a biofilm nitritation–anammox process. Water Res. 2015, 70, 246–254. [Google Scholar] [CrossRef]
- Sobotka, D.; Czerwionka, K.; Makinia, J. Influence of temperature on the activity of anammox granular biomass. Water Sci. Technol. 2016, 73, 2518–2525. [Google Scholar] [CrossRef]
- Yao, Q.; Peng, D.-C. Nitrite oxidizing bacteria (NOB) dominating in nitrifying community in full-scale biological nutrient removal wastewater treatment plants. AMB Express 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Sun, K.; Wei, Q.; Urata, K.; Yamashita, Y.; Hong, N.; Hama, T.; Kawagoshi, Y. One-stage partial nitritation and anammox in membrane bioreactor. Environ. Sci. Pollut. Res. 2016, 23, 11149–11162. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Cheng, J.; Zhang, S.; Li, X.; Peng, Y. Microbial community evolution in partial nitritation/anammox process: From sidestream to mainstream. Bioresour. Technol. 2018, 251, 327–333. [Google Scholar] [CrossRef]
- Spieck, E.; Keuter, S.; Wenzel, T.; Bock, E.; Ludwig, W. Characterization of a new marine nitrite oxidizing bacterium, Nitrospina watsonii sp. nov., a member of the newly proposed phylum “Nitrospinae”. Syst. Appl. Microbiol. 2014, 37, 170–176. [Google Scholar] [CrossRef]
- Watson, S.W.; Bock, E.; Valois, F.W.; Waterbury, J.B.; Schlosser, U. Nitrospira marina gen. nov. sp. nov.: A chemo-lithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 1986, 144, 1–7. [Google Scholar] [CrossRef]
- Ge, S.; Wang, S.; Yang, X.; Qiu, S.; Li, B.; Peng, Y. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. Chemosphere 2015, 140, 85–98. [Google Scholar] [CrossRef]
- Wett, B.; Nyhuis, G.; Takács, I.; Murthy, S. Development of Enhanced Deammonification Selector. Proc. Water Environ. Fed. 2010, 2010, 5917–5926. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J. Long-Term Low DO Enriches and Shifts Nitrifier Community in Activated Sludge. Environ. Sci. Technol. 2013, 47, 5109–5117. [Google Scholar] [CrossRef]
- Isanta, E.; Reino, C.; Carrera, J.; Pérez, J. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor. Water Res. 2015, 80, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.H.; Kwan, T.; Chandran, K. Comparison of Partial and Full Nitrification Processes Applied for Treating High-Strength Nitrogen Wastewaters: Microbial Ecology through Nitrous Oxide Production. Environ. Sci. Technol. 2011, 45, 2734–2740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Li, D.; Zhang, X.; Zeng, H.; Yang, Z.; Cui, S.; Zhang, J. Stability and nitrite-oxidizing bacteria community structure in different high-rate CANON reactors. Bioresour. Technol. 2015, 175, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Pedrouso, A.; Del Río, V.; Morales, N.; Padín, J.R.V.; Campos, J.L.; Méndez, R.; Mosquera-Corral, A. Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions. Sep. Purif. Technol. 2017, 186, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, E.M.; Agrawal, S.; Brunner, F.; Schwartz, T.; Horn, H.; Lackner, S. Response of DifferentNitrospiraSpecies To Anoxic Periods Depends on Operational DO. Environ. Sci. Technol. 2014, 48, 2934–2941. [Google Scholar] [CrossRef]
- Kong, Q.; Zhang, J.; Ngo, H.H.; Ni, S.; Fu, R.; Guo, W.; Guo, N.; Tian, L. Nitrous oxide emission in an aerobic granulation se-quencing batch airlift reactor at ambient temperatures. Int. Biodeterior. Biodegrad. 2013, 85, 533–538. [Google Scholar] [CrossRef]
- Fukushima, T.; Whang, L.-M.; Chiang, T.-Y.; Lin, Y.-H.; Chevalier, L.R.; Chen, M.-C.; Wu, Y.-J. Nitrifying bacterial community structures and their nitrification performance under sufficient and limited inorganic carbon conditions. Appl. Microbiol. Biotechnol. 2012, 97, 6513–6523. [Google Scholar] [CrossRef]
- Huang, X.; Urata, K.; Wei, Q.; Yamashita, Y.; Hama, T.; Kawagoshi, Y. Fast start-up of partial nitritation as pre-treatment for anammox in membrane bioreactor. Biochem. Eng. J. 2016, 105, 371–378. [Google Scholar] [CrossRef]
- Jin, P.; Li, B.; Mu, D.; Li, X.; Peng, Y. High-efficient nitrogen removal from municipal wastewater via two-stage nitritation/anammox process: Long-term stability assessment and mechanism analysis. Bioresour. Technol. 2019, 271, 150–158. [Google Scholar] [CrossRef]
- Keerio, H.A.; Bae, W.; Park, J.; Kim, M. Substrate uptake, loss, and reserve in ammonia-oxidizing bacteria (AOB) under different substrate availabilities. Process Biochem. 2020, 91, 303–310. Available online: https://wwwcbio.sciencedirect.com/science/article/pii/S135951132019.12.02315727 (accessed on 30 December 2019). [CrossRef]
- Strous, M.; Heijnen, J.J.; Kuenen, J.G.; Jetten, M.S.M. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol. 1998, 50, 589–596. [Google Scholar] [CrossRef]
- Gilbert, E.M.; Agrawal, S.; Schwartz, T.; Horn, H.; Lackner, S. Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures. Water Res. 2015, 81, 92–100. [Google Scholar] [CrossRef]
- Pereira, A.D.; Cabezas, A.; Etchebehere, C.; Chernicharo, C.A.D.L.; De Araújo, J.C. Microbial communities in anammox reactors: A review. Environ. Technol. Rev. 2017, 6, 74–93. [Google Scholar] [CrossRef]
- Ye, L.; Li, D.; Zhang, J.; Zeng, H. Resuscitation of starved anaerobic ammonium oxidation sludge system: Impacts of repeated short-term starvation. Bioresour. Technol. 2018, 263, 458–466. [Google Scholar] [CrossRef]
- Zaborowska, E.; Majtacz, J.; Drewnowski, J.; Sobotka, D.; Al-Hazmi, H.; Kowal, P.; Makinia, J. Improving the energy balance in wastewater treatment plants by optimization of aeration control and application of new technologies. In Water Supply Wastewater Disposal; Sobczuk, H., Kowalska, B., Eds.; Lublin University of Technology: Lublin, Poland, 2018; pp. 317–328. [Google Scholar]
- Jubany, I.; Lafuente, J.; Baeza, J.A.; Carrera, J. Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on Oxygen Uptake Rate measurements. Water Res. 2009, 43, 2761–2772. [Google Scholar] [CrossRef] [PubMed]
- Strous, M.; Kuenen, J.G.; Jetten, M.S.M. Key Physiology of Anaerobic Ammonium Oxidation. Appl. Environ. Microbiol. 1999, 65, 3248–3250. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Niu, Q.; Ma, H.; Zhang, Y.; Li, Y.-Y. The Treatment Performance and the Bacteria Preservation of Anammox: A Review. Water Air Soil Pollut. 2015, 226, 1–16. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, A.; Purswani, J.; Lotti, T.; Maza-Marquez, P.; Van Loosdrecht, M.C.M.; Vahala, R.; Gonzalez-Martinez, A. Distribution and microbial community structure analysis of a single-stage partial nitritation/anammox granular sludge bioreactor operating at low temperature. Environ. Technol. 2016, 37, 2281–2291. [Google Scholar] [CrossRef] [PubMed]
- Persson, F.; Sultana, R.; Suarez, M.; Hermansson, M.; Plaza, E.; Wilén, B.-M. Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation–anammox at low temperatures. Bioresour. Technol. 2014, 154, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Trojanowicz, K.; Plaza, E.; Trela, J. Pilot scale studies on nitritation-anammox process for mainstream wastewater at low temperature. Water Sci. Technol. 2015, 73, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Qi, G.; Yan, Y.; Gao, D. Influence of temperature fluctuations on one-stage deammonification systems in northern cold region. Environ. Sci. Pollut. Res. 2018, 25, 18632–18641. [Google Scholar] [CrossRef]
- Lackner, S.; Welker, S.; Gilbert, E.M.; Horn, H. Influence of seasonal temperature fluctuations on two different partial nitritation-anammox reactors treating mainstream municipal wastewater. Water Sci. Technol. 2015, 72, 1358–1363. [Google Scholar] [CrossRef] [PubMed]
- Anthonisen, A.C.; Srinath, E.G.G.; Loehr, R.C.; Prakasam, T.B.S.; Srinath, E.G.G. Inhibition of nitrification and nitrous acid compounds. Water Environ. Pollut. Control Fed. 1976, 48, 835–852. [Google Scholar]
- Metcalf, L.; Eddy, H.P.; Tchobanoglous, G. Wastewater Engineering: Treatment, Disposal, and Reuse; McGraw-Hill: New York, NY, USA, 1979; Volume 4. [Google Scholar]
- Guo, J.; Peng, Y.; Huang, H.; Wang, S.; Ge, S.; Zhang, J.; Wang, Z. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater. J. Hazard. Mater. 2010, 179, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Gabarró, J.; Ganigué, R.; Gich, F.; Ruscalleda, M.; Balaguer, M.; Colprim, J. Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration. Bioresour. Technol. 2012, 126, 283–289. [Google Scholar] [CrossRef]
- Hellinga, C.; Schellen, A.; Mulder, J.; Vanloosdrecht, M.; Heijnen, J. The sharon process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol. 1998, 37, 135–142. [Google Scholar] [CrossRef]
- Lotti, T.; Kleerebezem, R.; Hu, Z.; Kartal, B.; Jetten, M.; Van Loosdrecht, M. Simultaneous partial nitritation and anammox at low temperature with granular sludge. Water Res. 2014, 66, 111–121. [Google Scholar] [CrossRef]
- Gilbert, E.M.; Agrawal, S.; Karst, S.M.; Horn, H.; Nielsen, P.H.; Lackner, S. Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater. Environ Sci. Technol. 2014, 48, 8784–8792. [Google Scholar] [CrossRef]
- Zekker, I.; Rikmann, E.; Mandel, A.; Kroon, K.; Seiman, A.; Mihkelson, J.; Tenno, T.; Tenno, T. Step-wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9 °C in short-term anammox biofilm tests. Environ. Technol. 2016, 37, 1933–1946. [Google Scholar] [CrossRef]
- Soliman, M.; Eldyasti, A. Development of partial nitrification as a first step of nitrite shunt process in a Sequential Batch Reactor (SBR) using Ammonium Oxidizing Bacteria (AOB) controlled by mixing regime. Bioresour. Technol. 2016, 221, 85–95. [Google Scholar] [CrossRef]
- Li, X.; Sun, S.; Badgley, B.D.; Sung, S.; Zhang, H.; He, Z. Nitrogen removal by granular nitritation–anammox in an upflow membrane-aerated biofilm reactor. Water Res. 2016, 94, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xu, G.; Qiu, Z.; Zhou, Y.; Liu, Y. NOB suppression in pilot-scale mainstream nitritation-denitritation system coupled with MBR for municipal wastewater treatment. Chemosphere 2019, 216, 633–639. [Google Scholar] [CrossRef]
- Third, K.A.; Paxman, J.; Schmid, M.; Strous, M.; Jetten, M.S.M.; Cord-Ruwisch, R. Enrichment of anammox from ac-tivated sludge and its application in the CANON process. Microb. Ecol. 2005, 49, 236–244. [Google Scholar] [CrossRef]
- Corbalá-Robles, L.; Picioreanu, C.; Van Loosdrecht, M.C.; Pérez, J. Analysing the effects of the aeration pattern and residual ammonium concentration in a partial nitritation-anammox process. Environ. Technol. 2015, 37, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Sobotka, D.; Czerwionka, K.; Makinia, J. The effects of different aeration modes on ammonia removal from sludge digester liquors in the nitritation–anammox process. Water Sci. Technol. 2015, 71, 986–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Guan, Y.; Pan, M.; Zhan, X.; Hu, Z.; Wu, G. Enhanced biological nitrogen removal and N2O emission characteristics of the intermittent aeration activated sludge process. Rev. Environ. Sci. Biotechnol. 2017, 6, 761–780. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, L.; Yang, Y.; Peng, Y.; Li, B.; Wang, S.; Zhang, Q. Start-up of single-stage partial nitrification-anammox process treating low-strength swage and its restoration from nitrate accumulation. Bioresour. Technol. 2016, 218, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Henry, L.G.; Liu, R.; Huang, X.; Zhan, X. Nitrogen removal from slaughterhouse wastewater through par-tial nitrification followed by denitrification in intermittently aerated sequencing batch reactors at 11 °C. Environ. Technol. 2014, 35, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Zhang, L.; Li, B.; Zhang, Q.; Wang, S.; Peng, Y. Enhancing ammonium oxidizing bacteria activity was key to single-stage partial nitrification-anammox system treating low-strength sewage under intermittent aeration condition. Bioresour. Technol. 2017, 231, 36–44. [Google Scholar] [CrossRef]
- Ma, B.; Bao, P.; Wei, Y.; Zhu, G.; Yuan, Z.; Peng, Y. Suppressing Nitrite-oxidizing Bacteria Growth to Achieve Nitrogen Removal from Domestic Wastewater via Anammox Using Intermittent Aeration with Low Dissolved Oxygen. Sci. Rep. 2015, 5, 13048. [Google Scholar] [CrossRef]
- Miao, Y.; Peng, Y.; Zhang, L.; Li, B.; Li, X.; Wu, L.; Wang, S. Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: Effect of influent C/N ratios. Chem. Eng. J. 2018, 334, 664–672. [Google Scholar] [CrossRef]
- Su, Q.; Mark, J.M.; Domingo-Félez, C.; Kiil, A.S.; Thamdrup, B.; Jensen, M.M.; Smets, B.F. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors. Water Res. 2017, 123, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Blum, J.-M.; Jensen, M.M.; Smets, B.F. Nitrous oxide production in intermittently aerated Partial Nitritation-Anammox reactor: Oxic N2O production dominates and relates with ammonia removal rate. Chem. Eng. J. 2018, 335, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Trela, J.; Zubrowska-Sudol, M.; Plaza, E. Intermittent aeration in one-stage partial nitritation/anammox process. Ecol. Eng. 2015, 75, 413–420. [Google Scholar] [CrossRef]
- Bao, P.; Wang, S.; Ma, B.; Zhang, Q.; Peng, Y. Achieving partial nitrification by inhibiting the activity of Nitrospira-like bacteria under high-DO conditions in an intermittent aeration reactor. J. Environ. Sci. 2017, 56, 71–78. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Zhang, L. Effects of constant pH and unsteady pH at different free ammonia concentra-tions on shortcut nitrification for landfill leachate treatment. Appl. Microbiol. Biotechnol. 2015, 99, 3707–3713. [Google Scholar] [CrossRef]
- Wei, D.; Du, B.; Xue, X.; Dai, P.; Zhang, J. Analysis of factors affecting the performance of partial nitrification in a sequencing batch reactor. Appl. Microbiol. Biotechnol. 2013, 98, 1863–1870. [Google Scholar] [CrossRef] [PubMed]
- Daverey, A.; Hung, N.-T.; Dutta, K.; Lin, J.-G. Ambient temperature SNAD process treating anaerobic digester liquor of swine wastewater. Bioresour. Technol. 2013, 141, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; He, Y.; Wang, Z.; Smith, R.; Shayya, W.; Pei, Y. Effects of pH and temperature on coupling nitritation and anammox in biofilters treating dairy wastewater. Ecol. Eng. 2012, 47, 76–82. [Google Scholar] [CrossRef]
- Tang, H.L.; Chen, H. Nitrification at full-scale municipal wastewater treatment plants: Evaluation of inhibition and bioaugmentation of nitrifiers. Bioresour. Technol. 2015, 190, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.; Li, P.; Wang, S.; Peng, Y.; Liu, Y.; He, J. The synergistic effects of dissolved oxygen and pH on N2O pro-duction in biological domestic wastewater treatment under nitrifying conditions. Environ. Technol. 2015, 36, 37–41. [Google Scholar]
- Kinh, C.T.; Ahn, J.; Suenaga, T.; Sittivorakulpong, N.; Noophan, P.; Hori, T.; Riya, S.; Hosomi, M.; Terada, A. Free nitrous acid and pH determine the predominant ammonia-oxidizing bacteria and amount of N2O in a partial nitrifying reactor. Appl. Microbiol. Biotechnol. 2016, 101, 1673–1683. [Google Scholar] [CrossRef]
- Rathnayake, R.M.; Oshiki, M.; Ishii, S.; Segawa, T.; Satoh, H.; Okabe, S. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules. Bioresour. Technol. 2015, 197, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Q.; Domingo-Félez, C.; Zhang, Z.; Blum, J.-M.; Jensen, M.M.; Smets, B.F. The effect of pH on N2O production in intermittently-fed nitritation reactors. Water Res. 2019, 156, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Massara, T.M.; Malamis, S.; Guisasola, A.; Baeza, J.A.; Noutsopoulos, C.; Katsou, E. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci. Total Environ. 2017, 596–597, 106–123. [Google Scholar] [CrossRef] [PubMed]
- Jaroszynski, L.; Cicek, N.; Sparling, R.; Oleszkiewicz, J. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor. Chemosphere 2012, 88, 188–195. [Google Scholar] [CrossRef]
- Hultman, B. Biological Nitrogen Reduction Studied as a General Microbiological Engineering Process. In Environmental Engineering; Springer: New York, NY, USA, 1973; pp. 339–350. [Google Scholar] [CrossRef]
- Antoniou, P.; Hamilton, J.; Koopman, B.; Jain, R.; Holloway, B.; Lyberatos, G.; Svoronos, S. Effect of temperature and ph on the effective maximum specific growth rate of nitrifying bacteria. Water Res. 1990, 24, 97–101. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ellegaard, L.; Ahring, B.K. A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition. Biotechnol. Bioeng. 1993, 42, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Oehmen, A.; Lim, M.; Vadivelu, V.; Ng, W.J. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res. 2011, 45, 4672–4682. [Google Scholar] [CrossRef]
- Wei, D.; Xue, X.; Yan, L.; Sun, M.; Zhang, G.; Shi, L.; Du, B. Effect of influent ammonium concentration on the shift of full nitritation to partial nitrification in a sequencing batch reactor at ambient temperature. Chem. Eng. J. 2014, 235, 19–26. [Google Scholar] [CrossRef]
- Im, J.; Jung, J.; Bae, H.; Kim, D.; Gil, K. Correlation between nitrite accumulation and the concentration of AOB in a nitritation reactor. Environ. Earth Sci. 2014, 72, 289–297. [Google Scholar] [CrossRef]
- Sun, H.; Peng, Y.; Wang, S.; Ma, J. Achieving nitritation at low temperatures using free ammonia inhibition on Nitrobacter and real-time control in an SBR treating landfill leachate. J. Environ. Sci. 2015, 30, 157–163. [Google Scholar] [CrossRef]
- Hou, B.; Han, H.; Jia, S.; Zhuang, H.; Zhao, Q.; Xu, P. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor. J. Environ. Sci. 2014, 26, 1014–1022. [Google Scholar] [CrossRef]
- Qian, W.; Peng, Y.; Li, X.; Zhang, Q.; Ma, B. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition. Bioresour. Technol. 2017, 243, 1247–1250. [Google Scholar] [CrossRef]
- Wang, Q. A Roadmap for Achieving Energy-Positive Sewage Treatment Based on Sludge Treatment Using Free Ammonia. ACS Sustain. Chem. Eng. 2017, 5, 9630–9633. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, L.; Jiang, G.; Hu, S.; Yuan, Z. Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway. Water Res. 2014, 55, 245–255. [Google Scholar] [CrossRef]
- Zeng, D.; Miao, J.; Wu, G.; Zhan, X. Nitrogen removal, microbial community and electron transport in an integrated nitrification and denitrification system for ammonium-rich wastewater treatment. Int. Biodeterior. Biodegrad. 2018, 133, 202–209. [Google Scholar] [CrossRef]
- Laloo, A.E.; Wei, J.; Wang, D.; Narayanasamy, S.; Vanwonterghem, I.; Waite, D.; Steen, J.; Kaysen, A.; Heintz-Buschart, A.; Wang, Q.; et al. Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria Nitrosomonas to the Biocide Free Nitrous Acid. Environ. Sci. Technol. 2018, 52, 5386–5397. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hao, X.; Yuan, Z. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid. Chemosphere 2016, 144, 1869–1873. [Google Scholar] [CrossRef]
- Pei, L.-Y.; Wan, Q.; Wang, Z.-F.; Wang, B.-B.; Zhang, X.-Y.; Hou, Y.-P. Effect of long-term bioaugmentation on nitrogen removal and microbial ecology for an A2O pilot-scale plant operated in low SRT. Desalin. Water Treat. 2014, 55, 1567–1574. [Google Scholar] [CrossRef]
- Cao, Y.; Van Loosdrecht, M.C.M.; Daigger, G.T. Mainstream partial nitritation–anammox in municipal wastewater treatment: Status, bottlenecks, and further studies. Appl. Microbiol. Biotechnol. 2017, 101, 1365–1383. [Google Scholar] [CrossRef] [PubMed]
- Stinson, B.; Murthy, S.; Bott, C.; Wett, B.; Al-Omari, A.; Bowden, G.; Mokhyerie, Y.; De Clippeleir, H. Roadmap toward energy neutrality & chemical optimization at enhanced nutrient removal facilities. In Proceedings of the WEF/IWA Nutrient Removal and Recovery 2013: Trends in Resource Recovery and Use, Vancouver, BC, Canada, 28–31 July 2013; pp. 702–731. [Google Scholar]
- Figueroa, M.; Vázquez-Padín, J.R.; Mosquera-Corral, A.; Campos, J.L.; Méndez, R. Is the CANON reactor an alternative for nitrogen removal from pre-treated swine slurry? Biochem. Eng. J. 2012, 65, 23–29. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Daverey, A.; Huang, Y.-T.; Sung, S.; Lin, J.-G. Treatment of semiconductor wastewater using single-stage partial nitrification and anammox in a pilot-scale reactor. J. Taiwan Inst. Chem. Eng. 2016, 63, 236–242. [Google Scholar] [CrossRef]
- Shourjeh, M.S.; Kowal, P.; Drewnowski, J.; Szeląg, B.; Szaja, A.; Łagód, G. Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization. Energies 2020, 13, 5808. [Google Scholar] [CrossRef]
- Bott, C.B.; Parker, D.S. WEF/WERF Study Quantifying Nutrient Removal Technology Performance; Water Environment Research Foundation: Alexandria, VA, USA, 2011; Volume 10. [Google Scholar] [CrossRef]
- Morales, N.; Val del Río, Á.; Vázquez-Padín, J.R.; Méndez, R.; Campos, J.L.; Mosquera-Corral, A. The granular bio-mass properties and the acclimation period affect the partial nitritation/anammox process stability at a low temperature and ammonium concentration. Process Biochem. 2016, 51, 2134–2142. [Google Scholar] [CrossRef]
- Regmi, P.; Miller, M.W.; Holgate, B.; Bunce, R.; Park, H.; Chandran, K.; Wett, B.; Murthy, S.; Bott, C.B. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res. 2014, 57, 162–171. [Google Scholar] [CrossRef]
- Wett, B. Development and implementation of a robust deammonification process. Water Sci. Technol. 2007, 56, 81–88. [Google Scholar] [CrossRef]
- Salmistraro, M.; Fernández, I.; Dosta, J.; Plaza, E.; Mata, J. Mainstream Deammonification: Preliminary Experi-ence Employing Granular AOB-Enriched Biomass at Low DO Values. Water Air Soil Pollut. 2017, 228, 178. [Google Scholar] [CrossRef]
- Al-Hazmi, H.; Grubba, D.; Majtacz, J.; Kowal, P.; Makinia, J. Evaluation of Partial Nitritation/Anammox (PN/A) Process Performance and Microorganisms Community Composition under Different C/N Ratio. Water 2019, 11, 2270. [Google Scholar] [CrossRef] [Green Version]
- De Prá, M.C.; Kunz, A.; Bortoli, M.; Scussiato, L.A.; Coldebella, A.; Vanotti, M.; Soares, H.M. Kinetic models for nitrogen in-hibition in ANAMMOX and nitrification process on deammonification system at room temperature. Bioresour. Technol. 2016, 202, 33–41. [Google Scholar] [CrossRef]
- Mattei, M.; Frunzo, L.; D’Acunto, B.; Esposito, G.; Pirozzi, F. Modelling microbial population dynamics in multispecies biofilms including Anammox bacteria. Ecol. Model. 2015, 304, 44–58. [Google Scholar] [CrossRef]
- Gu, J.; Yang, Q.; Liu, Y. Mainstream anammox in a novel A-2B process for energy-efficient municipal wastewater treatment with minimized sludge production. Water Res. 2018, 138, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tanyolaç, D.; Salih, B.; Tanyolaç, A. Inhibition kinetics of a commercial mixed culture by ammonium sulfate. Biochem. Eng. J. 2001, 7, 177–182. [Google Scholar] [CrossRef]
- Simsek, H.; Kasi, M.; Ohm, J.-B.; Murthy, S.; Khan, E. Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater. Water Res. 2016, 92, 44–51. [Google Scholar] [CrossRef]
- Edwards, V.H. The influence of high substrate concentrations on microbial kinetics. Biotechnol. Bioeng. 1970, 12, 679–712. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.H.; Kim, H.J. Mathematical model for simultaneous nitrification and denitrification (SND) in mem-brane bioreactor (MBR) under Low Dissolved Oxygen (DO) concentrations. Biotechnol. Bioprocess Eng. 2013, 18, 104–110. [Google Scholar] [CrossRef]
- Bournazou, M.C.; Hooshiar, K.; Arellano-Garcia, H.; Wozny, G.; Lyberatos, G. Model based optimization of the intermittent aeration profile for SBRs under partial nitrification. Water Res. 2013, 47, 3399–3410. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.J.; Peng, L.; Law, Y.; Guo, J.; Yuan, Z. Modeling of nitrous oxide production by autotrophic ammo-nia-oxidizing bacteria with multiple production pathways. Environ. Sci. Technol. 2014, 48, 3916–3924. [Google Scholar] [CrossRef]
- Massara, T.M.; Solís, B.; Guisasola, A.; Katsou, E.; Baeza, J.A. Development of an ASM2d-N2O model to describe nitrous oxide emissions in municipal WWTPs under dynamic conditions. Chem. Eng. J. 2018, 335, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, J.; Wisniewski, K.; Szaja, A.; Lagod, G.; Vega, C. The process generation of WWTP models for opti-mization of activated sludge systems. In Environmental Engineering V; CRC Press: London, UK, 2017; pp. 187–195. [Google Scholar]
- Zheng, M.; Wu, S.; Zuo, Z.; Wang, Z.; Qiu, Y.; Liu, Y.-C.; Huang, X.; Yuan, Z. Predictions of the Influent and Operational Conditions for Partial Nitritation with a Model Incorporating pH Dynamics. Environ. Sci. Technol. 2018, 52, 6457–6465. [Google Scholar] [CrossRef]
- Drewnowski, J.; Makinia, J.; Kopec, L.; Fernandez-Morales, F.-J. Modelization of Nutrient Removal Processes at a Large WWTP Using a Modified ASM2d Model. Int. J. Environ. Res. Public Health 2018, 15, 2817. [Google Scholar] [CrossRef] [Green Version]
- Pérez, J.; Lotti, T.; Kleerebezem, R.; Picioreanu, C.; Van Loosdrecht, M.C. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: A model-based study. Water Res. 2014, 66, 208–218. [Google Scholar] [CrossRef]
- Wu, J.; He, C.; Van Loosdrecht, M.C.; Pérez, J. Selection of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates. Chem. Eng. J. 2016, 304, 953–961. [Google Scholar] [CrossRef]
- Al-Omari, A.; Wett, B.; Nopens, I.; De Clippeleir, H.; Han, M.; Regmi, P.; Bott, C.; Murthy, S. Model-based evaluation of mecha-nisms and benefits of mainstream shortcut nitrogen removal processes. Water Sci. Technol. 2015, 71, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; He, S.; Zhang, Y.; Xu, J.; Yang, X.J.; Li, Y. Optimisation for Enriching Ammonium Oxidizing Bacteria in Membrane Partial Nitrification Reactor: Mathematical Simulation. Water Sustain. 2016, 6, 125–137. [Google Scholar]
- Smets, B.F. Suppression of Nitrite-Oxidizing Bacteria in Intermittently 2 Membrane-Aerated Biofilms: A Model-Based Explanation. Environ. Sci. Technol. 2017, 51, 6146–6155. [Google Scholar]
- Cui, F.; Park, S.; Mo, K.; Lee, W.; Lee, H.; Kim, M. Experimentation and Mathematical Models for Partial Nitrifica-tion in Aerobic Granular Sludge Process. Civ. Eng. 2017, 21, 127–133. [Google Scholar]
- Peng, L.; Liu, Y.; Ni, B.-J. Nitrous oxide production in completely autotrophic nitrogen removal biofilm process: A simulation study. Chem. Eng. J. 2016, 287, 217–224. [Google Scholar] [CrossRef]
- Mannina, G.; Cosenza, A.; Viviani, G.; Ekama, G.A. Sensitivity and uncertainty analysis of an integrated ASM2d MBR model for wastewater treatment. Chem. Eng. J. 2018, 351, 579–588. [Google Scholar] [CrossRef]
- Ma, B.; Wang, S.; Zhang, S.; Li, X.; Bao, P.; Peng, Y. Achieving nitritation and phosphorus removal in a continuous-flow anaerobic/oxic reactor through bio-augmentation. Bioresour. Technol. 2013, 139, 375–378. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, J.; Ma, J.; Du, J.; Bian, W.; Li, Y.; Zhang, Y.; Zhao, B. Nitrogen removal via simultaneous partial nitrification, anam-mox and denitrification (SNAD) process under high DO condition. Biodegradation 2016, 27, 195–208. [Google Scholar] [CrossRef]
- Laureni, M.; Weissbrodt, D.G.; Villez, K.; Robin, O.; de Jonge, N.; Rosenthal, A.; Wells, G.; Nielsen, J.L.; Morgenroth, E.; Joss, A. Biomass segregation between biofilm and flocs improves the control of nitrite-oxidizing bacteria in mainstream partial nitritation and anammox processes. Water Res. 2019, 154, 104–116. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Peng, Y.; Yang, S.; Wang, X.; Li, X.; Zhang, Q. NOB suppression in partial nitritation-anammox (PNA) process by discharging aged flocs: Performance and microbial community dynamics. Chemosphere 2019, 227, 26–33. [Google Scholar] [CrossRef]
- Wang, J.; Qian, F.; Liu, X.; Liu, W.; Wang, S.; Shen, Y. Cultivation and characteristics of partial nitrification granular sludge in a sequencing batch reactor inoculated with heterotrophic granules. Appl. Microbiol. Biotechnol. 2016, 100, 9381–9391. [Google Scholar] [CrossRef]
- Reino, C.; Suárez-Ojeda, M.E.; Pérez, J.; Carrera, J. Kinetic and microbiological characterization of aerobic granules performing partial nitritation of a low-strength wastewater at 10 °C. Water Res. 2016, 101, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Liang, Y.; Ma, Y.; Du, J.; Pang, L.; Zhang, H. Ammonia removal and microbial characteristics of partial nitrification in biofilm and activated sludge treating low strength sewage at low temperature. Ecol. Eng. 2016, 93, 104–111. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, C.; Rong, H.; Zheng, G.; Zhao, L. The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR). Water Res. 2017, 108, 86–94. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, L.; Zhang, Q.; Li, X.; Peng, Y. Stable partial nitrification of domestic sewage achieved through activated sludge on exposure to nitrite. Bioresour. Technol. 2019, 278, 435–439. [Google Scholar] [CrossRef]
- Chen, R.; Ji, J.; Chen, Y.; Takemura, Y.; Liu, Y.; Kubota, K.; Ma, H.; Li, Y.-Y. Successful operation performance and syntrophic micro-granule in partial nitritation and anammox reactor treating low-strength ammonia wastewater. Water Res. 2019, 155, 288–299. [Google Scholar] [CrossRef] [PubMed]
Functional Group | Electron Donor | Electron Acceptor |
---|---|---|
AOB | NH4+ | O2 |
NOB | NO2− | O2 |
AnAOB | NH4+ | NO2− |
Reference | Main AOB | Main NOB | Characteristic Strategy | Ammonium Conversion Efficiency% | Biomass Type | Reactor |
---|---|---|---|---|---|---|
[36] | Nitrosospira | Nitrospira | k-strategists/k-strategists | Completely | Aerobic granulation | SBR |
[37] | Nitrosomonas | Nitrobacter | k-strategists/r-strategists | 90 | Activated sludge + biofilm | lab-scale continuous-flow bioreactors |
[16] | Nitrosomonas europaea | Nitrospira | r-strategists/k-strategists | 99.4 | Biofilm | SBR |
[4] | Nitrosomonas sp. | - | r-strategists | 91.9 | Granular biomass | SBRs |
[38] | Nitrosospira sp. | - | k-strategists | 87.8 | Cultivated activated sludge | MMBR |
[39] | Nitrosomonas | Nitrobacter | r-strategists/r-strategists | >93 | Granular biomass | SBR |
[40] | Nitrosomonas eutropha | Nitrobacter alkalicus | k-strategists/r-strategists | From 21% to 99% * | Activated sludge | continuously stirred tank reactor (CSTR) |
Reference | Type of Reactor | DO (mg O2/L) | pH | Temperature (°C) | Efficiency (%) | Strategy |
---|---|---|---|---|---|---|
[50] | Nitritation–anammox-one stage-MBBR-Biofilm | 1.1–1.7 | 7.2–8.2 | 19–10 | N removal 74–54 | The process could recover under low temperature and stay stable by increasing DO concentration from 1.1–1.7 mg O2/L. |
[38] | MBR-one stage-activated sludge | Optimal 0.8–0.9 | 7.25–7.35 | 32–35 | Nitrite accumulation in average 90.1 | Low DO concentration together with elevated temperature and FA-FNA control were crucial factors for PN process. |
[51] | IFAS | 0.4–1.5 | 7.2–7.5 | 15 or 17 | N removal 51 | The attribution of intermittent aeration strategy with high DO concentration more than 1 mg O2/L considered for controlling NOB activity. |
[52] | One-stage deammonification systems | 0.1–0.12 | 7.6–8.3 | 32 | Ammonium removal in average, 72 | The low range of DO was recovered by applying high temperature and FA (0.1–3 mg O2/L) was effective for NOB inhibition. |
Reference | Type of Reactor | Process | Ammonium Concentration (mg N/L) | Optimum DO (mg O2/L) | Model Type | Strategy |
---|---|---|---|---|---|---|
[130] | Granular sludge | single-stage nitritation-anammox | - | 1 | One-dimensional multispecies biofilm model | Applying different DO and ammonium concentration |
[136] | complete autotrophic nitrogen removal biofilm reactor | nitritation and anammox | <50 | 0.5 | One-dimensional biofilm model | Biofilm characteristic, DO changes, ammonium concentrations effects on |
[133] | membrane biological reactor | anaerobic-anoxic -aerobic | - | 1–3 | ASM1 | Effect of DO, SRT and temperature |
[134] | membrane-aerated biofilm reactors (MABRs) | nitritation | 33 | A pH-explicit 1-D multi-species nitrifying biofilm model (MSNBM) | Intermittent aeration, considering DO limitation, direct and indirect pH effects | |
[137] | UCT-MBR | nitrification and denitrification | - | <1.5 | ASM2d | The prediction of based on uncertanity for optimizing plant processes |
[128] | SBR | partial nitritation | 19–84 | 2 | ASM3 | Predicting the behavior of operating and influent conditions for partial nitrification process |
Reference | Type of Reactor | Type of Biomass | AOB/NOB | DO (mg O2/L) | Temperature (°C) | Removal Efficiency |
---|---|---|---|---|---|---|
[53] | PN-A | Biofilm | (AOB/NOB) > 1 Within >17 °C | 0.44 ± 0.15 | 10–20 | - |
[31] | partial nitritation | Granules | 72 ± 8 to 81/19 to 1 | 1–5 | 12.5 | - |
[139] | partial nitrification granules | Granules | 0.4/- | 2.5–7 | 25 ± 1 | 7.8–8.2% |
[140] | partial nitritation | Granules | 41 and 65/1.4 And 92 ± 4/1 ± 1 | 0.5–2.5 | 10 | - |
[141] | PN | Biofilm (R2) + Activated sludge(R1) | R1(62.5/6.5–1.8) R2(47.3/0.8–2.6) | 0.3 | 14–16 | ARE = 100% |
[142] | SND | Biofilm | 0.082 in DO = 4.5/0.766 in DO = 2.5 | 1.5–5.5 | 30 ± 2 | 83.73% |
[143] | SBR | Activated sludge | 3.93/1.09 | 0.1–0.6 | 26.6–16.6 | Average of ammonium removal, 93% |
[144] | PN/A | micro-granule | 10.5/8.2 | 0.1–0.2 | 25 | 72 ± 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharif Shourjeh, M.; Kowal, P.; Lu, X.; Xie, L.; Drewnowski, J. Development of Strategies for AOB and NOB Competition Supported by Mathematical Modeling in Terms of Successful Deammonification Implementation for Energy-Efficient WWTPs. Processes 2021, 9, 562. https://doi.org/10.3390/pr9030562
Sharif Shourjeh M, Kowal P, Lu X, Xie L, Drewnowski J. Development of Strategies for AOB and NOB Competition Supported by Mathematical Modeling in Terms of Successful Deammonification Implementation for Energy-Efficient WWTPs. Processes. 2021; 9(3):562. https://doi.org/10.3390/pr9030562
Chicago/Turabian StyleSharif Shourjeh, Mehdi, Przemysław Kowal, Xi Lu, Li Xie, and Jakub Drewnowski. 2021. "Development of Strategies for AOB and NOB Competition Supported by Mathematical Modeling in Terms of Successful Deammonification Implementation for Energy-Efficient WWTPs" Processes 9, no. 3: 562. https://doi.org/10.3390/pr9030562
APA StyleSharif Shourjeh, M., Kowal, P., Lu, X., Xie, L., & Drewnowski, J. (2021). Development of Strategies for AOB and NOB Competition Supported by Mathematical Modeling in Terms of Successful Deammonification Implementation for Energy-Efficient WWTPs. Processes, 9(3), 562. https://doi.org/10.3390/pr9030562