State-of-Art Review of NO Reduction Technologies by CO, CH4 and H2
Abstract
:1. Introduction
2. Catalysts for NO Removal by CO
2.1. Precious Metal Catalyst
2.2. Non-Precious Metal Catalyst
2.2.1. Effect of Preparation Method
2.2.2. Effect of Doped Species and Its Loading
2.2.3. Effect of CeO2
2.2.4. Effect of Pretreatment Method
2.2.5. Semi-Coke Catalyst
2.2.6. Non-Precious Multi-Metal/Metal Oxide Catalyst
2.2.7. Effect of New Carriers
Catalyst | Maximum Conversion Temperature/°C | NO Conversion Rate/% | Reducing Agent | N2 Selectivity (at Maximum Conversion Temperature)/% | Active Temperature Window/°C | GHSV /h−1 | References |
---|---|---|---|---|---|---|---|
FeCo/ASC(CT-KOH) | 250 | 100 | 2000 ppmCO | 80 | 250–350 | 20,000 | [45] |
FeCo/ASC(CT-vapor) | 350 | 63 | 2000 ppmCO | 100 | 250–350 | 20,000 | [45] |
5Cu/AlPO4 | 400 | 85 | 1.5% CO | 300–500 | 12,000 | [51] | |
2.5Cu/AlPO4 | 450 | 38 | 1.5% CO | 300–500 | 12,000 | [51] | |
1Cu/AlPO4 | 450 | 25 | 1.5% CO | 300–500 | 12,000 | [51] | |
CuO/γ-Al2O3 | 300 | 98 | 10% CO | 98 | 250–300 | 12,000 | [35] |
CoOx/γ-Al2O3 | 300 | 0 | 10% CO | 100 | 250–300 | 12,000 | [35] |
CuO-CoOx/γ-Al2O3 | 300 | 100 | 10% CO | 100 | 250–300 | 12,000 | [35] |
CuCeAl/γ-Al2O3 | 400 | 100 | 10% CO | 100 | 300–400 | 24,000 | [34] |
CuAl/γ-Al2O3 | 400 | 20 | 10% CO | 85 | 300–400 | 24,000 | [34] |
CeAl/γ-Al2O3 | 400 | 6 | 10% CO | 50 | 300–400 | 24,000 | [34] |
Ni/TiO2 | 200 | 60 | 1% CO | 50–200 | 50,000 | [37] | |
Cu/TiO2 | 200 | 50 | 1% CO | 50–200 | 50,000 | [37] | |
Cr/TiO2 | 200 | 31 | 1% CO | 50–200 | 50,000 | [37] | |
Fe/TiO2 | 200 | 29 | 1% CO | 50–200 | 50,000 | [37] | |
Mn/TiO2 | 200 | 95 | 1% CO | 50–200 | 50,000 | [37] | |
Cu2Co9CeOx | 250 | 100 | 2%CO | 250–400 | 20000 | [53] | |
In/TiO2/γ-Al2O3 | 600 | 45 | 2.1%CO | 45 | 400–600 | 7000 | [27] |
Ag/TiO2/γ-Al2O3 | 600 | 43 | 2.1%CO | 43 | 400–600 | 7000 | [27] |
InAg/γ-Al2O3 | 600 | 46 | 2.1%CO | 46 | 400–600 | 7000 | [27] |
InAg/TiO2/γ-Al2O3 | 600 | 68 | 2.1%CO | 68 | 400–600 | 7000 | [27] |
CeZr/La2O3-Al2O3 | 700 | 80 | CO/NO = 1:1 | 55 | 500–700 | 2868 | [30] |
0.5Pd/CeZr/La2O3-Al2O3 | 300 | 100 | CO/NO = 1:1 | 25 | 250–700 | 2868 | [30] |
1.5Pd/CeZr/La2O3-Al2O3 | 300 | 100 | CO/NO = 1:1 | 30 | 250–700 | 2868 | [30] |
2.3. Reaction Mechanism
3. Catalysts for NO Removal by CH4
3.1. Precious Metal Catalyst
3.2. Non-Precious Metal Catalyst
3.2.1. Transitional Metal Catalysts
3.2.2. Effect of Reaction Conditions
Catalyst | Maximum Conversion Temperature/°C | NO Conversion Rate/% | Reducing Agent | O2 /% | N2 Selectivity/% | Active Temperature Window/°C | GHSV /h−1 | References |
---|---|---|---|---|---|---|---|---|
Pd/Co–HMOR | 500 | 42 | 4000 ppm | 10 | 450–550 | 60,000 | [60] | |
Pd/Co–SZ | 550 | 37 | 4000 ppm | 10 | 450–550 | 60,000 | [60] | |
Co1.0Pd0.15SiBEA | 420 | 26 | 1500 ppmCH4 | 7 | 400–450 | 40,000 | [70] | |
Co3.0Pd0.15SiBEA | 480 | 56 | 1500 ppmCH4 | 7 | 400–500 | 40,000 | [70] | |
Pd0.24/SCZ28 | 400 | 31 | 1500 ppmCH4 | 7 | 350–450 | 40,000 | [62] | |
Pd0.47/SCZ28 | 400 | 34.5 | 1500 ppmCH4 | 7 | 350–450 | 40,000 | [62] | |
Pd0.53/SCZ28 | 400 | 33.6 | 1000 ppmCH4 | 7 | 350–450 | 40,000 | [62] | |
Pd0.99/SCZ28 | 385 | 17 | 1000 ppmCH4 | 7 | 350–450 | 40,000 | [62] | |
Pd1.04/SCZ28 | 300 | 7 | 1000 ppmCH4 | 7 | 300–350 | 40,000 | [62] | |
Fe1.3Si/BEA | 350 | 18 | 2000 ppmCH4 | 2 | 85 | 300–400 | 40,000 | [79] |
Fe1.4Al/BEA | 400 | 30 | 2000 ppmCH4 | 2 | 95 | 300–500 | 40,000 | [79] |
Pt/La-Al2O3 | 600 | 100 | 2000 ppmCH4 | 0.5 | 500–600 | 40,000 | [73] | |
Pt/Ce0.67Zr0.33O2 | 450 | 100 | 2000 ppmCH4 | 0.5 | 450–600 | 40,000 | [73] | |
In/H-BEA | 552 | 98 | 600 ppmCH4 | 5 | 450–550 | 20,000 | [8] |
3.2.3. Effect of Carrier
3.2.4. Effect of Pore Size and Structure
3.2.5. Non-Precious Multi-Metal/Metal Oxide Catalyst
3.3. Reaction Mechanism
4. Catalysts for NO Removal by H2
4.1. Traditional Carrier
4.2. New Carrier
4.3. Reaction Mechanism
Catalyst | Maximum Conversion Temperature/°C | NO Conversion Rate/% | Reducing Agent | O2/% | N2 Selectivity/% | Active Temperature Window/°C | GHSV/h−1 | References |
---|---|---|---|---|---|---|---|---|
1%Pt/ZSM-35 | 120 | 80 | 5000 ppm H2 | 6.7 | 72 | 75–150, 300–400 | 80,000 | [94] |
1%Pt/Beta | 120 | 58 | 5000 ppm H2 | 6.7 | 45 | 75–150, 300–400 | 80,000 | [94] |
0.5%Pt/H-FER | 110 | 90 | 5000 ppm H2 | 10 | 5 | 75–150 | 36,000 | [96] |
0.1 Pt/MgO–CeO2 | 140 | 99 | 0.8% H2 | 2 | 94 | 120–180 | 33,000 | [115] |
0.1 Pt/MgO–CeO2 | 155 | 94 | 0.2% H2 | 2 | 68 | 140–180 | 33,000 | [115] |
0.1 Pt/MgO–CeO2 | 155 | 97 | 0.4% H2 | 2 | 82 | 120–180 | 33,000 | [115] |
Pt5MIL-96/CP | 60 | 100 | 2% H2 | 2 | 60–90 | [104] | ||
Pt1.5MIL-96/CP | 90 | 75 | 2% H2 | 2 | 70–90 | [104] | ||
Pt3MIL-96/CP | 80 | 100 | 2% H2 | 2 | 60–90 | [104] | ||
0.5%Pt–1%Cr/ZSM-35 | 120 | 95 | 0.5% H2 | 6.7 | 66 | 100–180 | 80,000 | [95] |
0.5%Pt–2%Cr/ZSM-35 | 140 | 88 | 0.5% H2 | 6.7 | 72 | 120–180 | 80,000 | [95] |
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Ihl Woo, S. Recent advances in catalytic DeNOX science and technology. Catal. Rev. 2006, 48, 43–89. [Google Scholar] [CrossRef]
- Han, L.; Cai, S.; Gao, M.; Hasegawa, J.-Y.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem. Rev. 2019, 119, 10916–10976. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Li, C.; Li, J.; Shi, Y.; Meng, X. A Review on Selective Catalytic Reduction of NOx by NH3 over Mn–Based Catalysts at Low Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculations. Catalyst 2017, 7, 199. [Google Scholar] [CrossRef]
- Deng, C.; Huang, Q.; Zhu, X.; Hu, Q.; Su, W.; Qian, J.; Dong, L.; Li, B.; Fan, M.; Liang, C. The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO + CO model reaction. Appl. Surf. Sci. 2016, 389, 1033–1049. [Google Scholar] [CrossRef]
- Broqvist, P.; Panas, I.; Persson, H. A DFT study on CO oxidation over Co3O4. J. Catal. 2002, 210, 198–206. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, L.; Shen, M.; Liu, D.; Wang, J.; Ding, W.; Chen, Y. Influence of supports on the activities of copper oxide species in the low-temperature NO+CO reaction. Appl. Catal. B Environ. 2001, 31, 61–69. [Google Scholar] [CrossRef]
- Mendes, A.N.; Matynia, A.; Toullec, A.; Capela, S.; Ribeiro, M.F.; Henriques, C.; Da Costa, P. Potential synergic effect be-tween MOR and BEA zeolites in NOx SCR with methane: A dual bed design approach. Appl. Catal. A Gen. 2015, 506, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Jian, Y.; Yu, Y.; Chen, N.; He, C.; He, C. Promotional mechanism of propane on selective catalytic reduction of NOx by methane over In/H-BEA at low temperature. Appl. Surf. Sci. 2016, 390, 608–616. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, R.T. 110th Anniversary: Recent Progress and Future Challenges in Selective Catalytic Reduction of NO by H2 in the Presence of O2. Ind. Eng. Chem. Res. 2019, 58, 10140–10153. [Google Scholar] [CrossRef]
- Hong, Z.; Wang, Z.; Chen, D.; Sun, Q.; Li, X. Hollow ZSM-5 encapsulated Pt nanoparticles for selective catalytic re-duction of NO by hydrogen. Appl. Surf. Sci. 2018, 440, 1037–1046. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, X.; Su, D.; Wang, Z.; Chang, J.; Ma, C. NO reduction by CO over copper catalyst supported on mixed CeO2 and Fe2O3: Catalyst design and activity test. Appl. Catal. B Environ. 2018, 239, 485–501. [Google Scholar] [CrossRef]
- Higo, T.; Omori, Y.; Shigemoto, A.; Ueno, K.; Ogo, S.; Sekine, Y. Promotive effect of H2O on low-temperature NO re-duction by CO over Pd/La0.9Ba0.1AlO3-δ. Catal. Today 2020, 352, 192–197. [Google Scholar] [CrossRef]
- Lin, R.; Su, Y.; Cheng, J.; Zhang, X.; Wen, N.; Deng, W.; Zhou, H.; Zhao, B. Performance of Fe/Ga2O3-Al2O3 catalysts on methane selective catalysis and NO reduction. Chin. J. Environ. Eng. 2020, 14, 1592–1604. [Google Scholar]
- Li, Z. Study on Poisoning and Anti-Posioning Mechanism of CH4-SCR on In/H-Beta Catalyst; Harbin Institute of Technology: Harbin, China, 2019. [Google Scholar]
- Sierra-Pereira, C.A.; Urquieta-González, E.A. Reduction of NO with CO on CuO or Fe2O3 catalysts supported on TiO2 in the presence of O2, SO2 and water steam. Fuel 2014, 118, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-Q.; Fu, H.-Q.; Su, B.-F.; Xiang, B.; Xu, Q.-Q.; Hu, C.-W. Theoretical Study on the Catalytic Reduction Mechanism of NO by CO on Tetrahedral Rh4 Subnanocluster. J. Phys. Chem. A 2015, 119, 11548–11564. [Google Scholar] [CrossRef] [PubMed]
- Lónyi, F.; Solt, H.E.; Pászti, Z.; Valyon, J. Mechanism of NO-SCR by methane over Co,H-ZSM-5 and Co,H-mordenite catalysts. Appl. Catal. B Environ. 2014, 150–151, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Huai, L.-Y.; He, C.-Z.; Wang, H.; Wen, H.; Yi, W.-C.; Liu, J.-Y. NO dissociation and reduction by H2 on Pd (111): A first-principles study. J. Catal. 2015, 322, 73–83. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Zhou, L.; Luo, G.; Wei, F. NO reduction by CO over a Fe-based catalyst in FCC regenerator conditions. Chem. Eng. J. 2014, 255, 126–133. [Google Scholar] [CrossRef]
- Kudo, S.; Maki, T.; Yamada, M.; Mae, K. A new preparation method of Au/ferric oxide catalyst for low temperature CO oxidation. Chem. Eng. Sci. 2010, 65, 214–219. [Google Scholar] [CrossRef]
- Hosokawa, S.; Matsuki, K.; Tamaru, K.; Oshino, Y.; Aritani, H.; Asakura, H.; Teramura, K.; Tanaka, T. Selective reduction of NO over Cu/Al2O3: Enhanced catalytic activity by infinitesimal loading of Rh on Cu/Al2O3. Mol. Catal. 2017, 442, 74–82. [Google Scholar] [CrossRef]
- Liotta, L.; Pantaleo, G.; Di Carlo, G.; Marcì, G.; Deganello, G. Structural and morphological investigation of a cobalt catalyst supported on alumina-baria: Effects of redox treatments on the activity in the NO reduction by CO. Appl. Catal. B Environ. 2004, 52, 1–10. [Google Scholar] [CrossRef]
- Salker, A.; Desai, M.F. Catalytic activity and mechanistic approach of NO reduction by CO over M0.05Co2.95O4 (M = Rh, Pd & Ru) spinel system. Appl. Surf. Sci. 2016, 389, 344–353. [Google Scholar] [CrossRef]
- Ding, W.; Li, W. First-principles study of NO reduction by CO on transition metal atoms-doped CeO2(111). Chin. J. Catal. 2014, 35, 1937–1943. [Google Scholar] [CrossRef]
- Sui, C.; Yuan, F.; Zhang, Z.; Wang, N.; Niu, X.; Zhu, Y. Catalytic activity of Ru/La1.6Ba0.4NiO4 perovskite-like catalyst for NO + CO reaction: Interaction between Ru and La1.6Ba0.4NiO4. Mol. Catal. 2017, 437, 37–46. [Google Scholar] [CrossRef]
- Oton, L.F.; Oliveira, A.C.; de Araujo, J.C.S.; Araujo, R.S.; de Sousa, F.F.; Saraiva, G.D.; Lang, R.; Otubo, L.; Carlos da Silva Duarte, G.; Campos, A. Selective catalytic reduction of NOx by CO (CO-SCR) over metal-supported nanoparticles dis-persed on porous alumina. Adv. Powder Technol. 2020, 31, 464–476. [Google Scholar] [CrossRef]
- Wu, S.; Li, X.; Fang, X.; Sun, Y.; Sun, J.; Zhou, M.; Zang, S. NO reduction by CO over TiO2-Γ-Al2O3 supported In/Ag catalyst under lean burn conditions. Chin. J. Catal. 2016, 37, 2018–2024. [Google Scholar] [CrossRef]
- Ilieva, L.; Pantaleo, G.; Velinov, N.; Tabakova, T.; Petrova, P.; Ivanov, I.; Avdeev, G.; Paneva, D.; Venezia, A.M. NO reduction by CO over gold catalysts supported on Fe-loaded ceria. Appl. Catal. B Environ. 2015, 174–175, 176–184. [Google Scholar] [CrossRef]
- Huang, K.; Lin, L.; Yang, K.; Dai, W.; Chen, X.; Fu, X. Promotion effect of ultraviolet light on NO + CO reaction over Pt/TiO2 and Pt/CeO2–TiO2 catalysts. Appl. Catal. B Environ. 2015, 179, 395–406. [Google Scholar] [CrossRef]
- Ferrer, V.; Finol, D.; Solano, R.; Moronta, A.; Ramos, M. Reduction of NO by CO using Pd–CeTb and Pd–CeZr catalysts supported on SiO2 and La2O3–Al2O3. J. Environ. Sci. 2015, 27, 87–96. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Maeda, N.; Baiker, A. Striking activity enhancement of gold supported on Al-Ti mixed oxide by promotion with ceria in the reduction of NO with CO. Appl. Catal. B Environ. 2017, 209, 62–68. [Google Scholar] [CrossRef]
- Shin, H.U.; Lolla, D.; Nikolov, Z.; Chase, G.G. Pd–Au nanoparticles supported by TiO2 fibers for catalytic NO decom-position by CO. J. Ind. Eng. Chem. 2016, 33, 91–98. [Google Scholar] [CrossRef]
- Liotta, L.; Deganello, G.; Sannino, D.; Gaudino, M.; Ciambelli, P.; Gialanella, S. Influence of barium and cerium oxides on alumina supported Pd catalysts for hydrocarbon combustion. Appl. Catal. A Gen. 2002, 229, 217–227. [Google Scholar] [CrossRef]
- Sun, J.; Ge, C.; Yao, X.; Zou, W.; Hong, X.; Tang, C.; Dong, L. Influence of different impregnation modes on the properties of CuO CeO2 /γ-Al2O3 catalysts for NO reduction by CO. Appl. Surf. Sci. 2017, 426, 279–286. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, X.; Lu, Y.; Sun, C.; Tang, C.; Gao, F.; Dong, L. Effect of precursors on the structure and activity of CuO-CoOx/γ-Al2O3 catalysts for NO reduction by CO. J. Colloid Interface Sci. 2018, 509, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Cha, B.J.; Kim, I.H.; Park, C.H.; Choi, C.M.; Sung, J.Y.; Choi, M.C.; Kim, Y.D. Reduction of NO by CO catalyzed by Fe-oxide/Al2O3: Strong catalyst-support interaction for enhanced catalytic activity. Appl. Surf. Sci. 2020, 509. [Google Scholar] [CrossRef]
- Boningari, T.; Pavani, S.M.; Ettireddy, P.R.; Chuang, S.S.; Smirniotis, P.G. Mechanistic investigations on NO reduction with CO over Mn/TiO2 catalyst at low temperatures. Mol. Catal. 2018, 451, 33–42. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, C.; Cheng, X.; Wang, Z. Performance of Fe-Ba/ZSM-5 catalysts in NO + O2 adsorption and NO + CO reduction. Int. J. Hydrogen Energy 2017, 42, 7077–7088. [Google Scholar] [CrossRef]
- Yoshida, H.; Okabe, Y.; Yamashita, N.; Hinokuma, S.; Machida, M. Catalytic CO–NO reaction over Cr–Cu embedded CeO2 surface structure. Catal. Today 2017, 281, 590–595. [Google Scholar] [CrossRef]
- Savereide, L.; Gosavi, A.; Hicks, K.E.; Notestein, J.M. Identifying properties of low-loaded CoOx/CeO2 via X-ray ab-sorption spectroscopy for NO reduction by CO. J. Catal. 2020, 381, 355–362. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; Tan, W.; Liu, A.; Ji, J.; Wan, H.; Sun, C.; Tang, C.; Dong, L. Insights into the precursor effect on the surface structure of γ-Al2O3 and NO + CO catalytic performance of CO-pretreated CuO/MnOx/γ-Al2O3 catalysts. J. Colloid Interface Sci. 2019, 554, 611–618. [Google Scholar] [CrossRef]
- Xianrui, G.; Hao, L.; Lichen, L.; Changjin, T.; Fei, G.; Lin, D. Promotional effect of CO pretreatment on CuO/CeO2 catalyst for catalytic reduction of NO by CO. J. Rare Earths 2014, 32, 139–145. [Google Scholar]
- Zhang, S.; Lee, J.; Kim, D.H.; Kim, T. NO reduction by CO over CoOx/CeO2 catalysts: Effect of support calcination temperature on activity. Mol. Catal. 2020, 482, 110703. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, X.; Wang, Z.; Ma, C.; Qin, Y. Investigation on Fe-Co binary metal oxides supported on activated semi-coke for NO reduction by CO. Appl. Catal. B Environ. 2017, 201, 636–651. [Google Scholar] [CrossRef]
- Cheng, X.; Cheng, Y.; Wang, Z.; Ma, C. Comparative study of coal based catalysts for NO adsorption and NO reduction by CO. Fuel 2018, 214, 230–241. [Google Scholar] [CrossRef]
- Du, Q.; Cheng, X.; Tahir, M.H.; Su, D.; Wang, Z.; Chen, S. Investigation on NO reduction by CO and H2 over metal oxide catalysts Cu2M9CeOx. Int. J. Hydrogen Energy 2020, 45, 16469–16481. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Mu, J.; Fan, S.; Wang, L.; Gan, G.; Qin, M.; Li, J.; Li, Z.; Zhang, D. Facile Design of Highly Effective CuCexCo1–xOy Catalysts with Diverse Surface/Interface Structures toward NO Reduction by CO at Low Temperatures. Ind. Eng. Chem. Res. 2019, 58, 15459–15469. [Google Scholar] [CrossRef]
- Yun, L.; Li, Y.; Zhou, C.; Lan, L.; Zeng, M.; Mao, M.; Liu, H.; Zhao, X. The formation of CuO/OMS-2 nanocomposite leads to a significant improvement in catalytic performance for NO reduction by CO. Appl. Catal. A Gen. 2017, 530, 1–11. [Google Scholar] [CrossRef]
- Qin, Y.-H.; Huang, L.; Zheng, J.-X.; Ren, Q. Low-temperature selective catalytic reduction of NO with CO over A-Cu-BTC and AOx/CuOy/C catalyst. Inorg. Chem.Commun. 2016, 72, 78–82. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Li, R.; He, H.; Wang, H.; Huang, L. MOFs-based coating derived Me-ZIF-67@ CuOx materials as low-temperature NO-CO catalysts. Chem. Eng. J. 2020, 381, 122757. [Google Scholar] [CrossRef]
- Kacimi, M.; Ziyad, M.; Liotta, L.F. Cu on amorphous AlPO4: Preparation, characterization and catalytic activity in NO reduction by CO in presence of oxygen. Catal. Today 2015, 241, 151–158. [Google Scholar] [CrossRef]
- Dharmarathna, S.; King’ondu, C.K.; Pedrick, W.; Pahalagedara, L.; Suib, S.L. Direct Sonochemical Synthesis of Manga-nese Octahedral Molecular Sieve (OMS-2) Nanomaterials Using Cosolvent Systems, Their Characterization, and Cata-lytic Applications. Chem. Mater. 2012, 24, 705–712. [Google Scholar] [CrossRef]
- Salker, A.; Desai, M.F. CO-NO/O2 redox reactions over Cu substituted cobalt oxide spinels. Catal. Commun. 2016, 87, 116–119. [Google Scholar] [CrossRef]
- Zhu, C.; Gong, Z.-J.; Jin, K.; Luo, H.-J.; Wu, W.-F. Research on Catalytic Denitrification Performance of Rare Earth Tailings in CO Atmosphere. Rare Met. Cem. Carbides 2019, 47, 25–32. [Google Scholar]
- Wang, Y.; Zhu, A.; Zhang, Y.; Au, C.; Yang, X.; Shi, C. Catalytic reduction of NO by CO over NiO/CeO2 catalyst in stoichiometric NO/CO and NO/CO/O2 reaction. Appl. Catal. B Environ. 2008, 81, 141–149. [Google Scholar] [CrossRef]
- Yao, X.; Xiong, Y.; Zou, W.; Zhang, L.; Wu, S.; Dong, X.; Gao, F.; Deng, Y.; Tang, C.; Chen, Z.; et al. Correlation between the physicochemical properties and catalytic performances of CexSn1–xO2 mixed oxides for NO reduction by CO. Appl. Catal. B Environ. 2014, 144, 152–165. [Google Scholar] [CrossRef]
- Zou, W.; Liu, L.; Zhang, L.; Li, L.; Cao, Y.; Wang, X.; Tang, C.; Gao, F.; Dong, L. Crystal-plane effects on surface and catalytic properties of Cu2O nanocrystals for NO reduction by CO. Appl. Catal. A Gen. 2015, 505, 334–343. [Google Scholar] [CrossRef]
- Deng, C.; Li, B.; Dong, L.; Zhang, F.; Fan, M.; Jin, G.; Gao, J.; Gao, L.; Zhang, F.; Zhou, X. NO reduction by CO over CuO supported on CeO2-doped TiO2: The effect of the amount of a few CeO2. Phys. Chem. Chem. Phys. 2015, 17, 16092–16109. [Google Scholar] [CrossRef]
- Sakmeche, M.; Belhakem, A.; Kessas, R.; Ghomari, S.A. Effect of parameters on NO reduction by methane in presence of excess O2 and functionalized AlMCM-41 as catalysts. J. Taiwan Inst. Chem. Eng. 2017, 80, 333–341. [Google Scholar] [CrossRef]
- Cano, M.; Guarín, F.; Aristizábal, B.; Villa, A.-L.; González, L.-M. Catalytic activity and stability of Pd/Co catalysts in simultaneous selective catalytic reduction of NOx with methane and oxidation of o -dichlorobenzene. Catal. Today 2017, 296, 105–117. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Li, N.; Wang, A.; Wang, X.; Zhang, T. In situ FT-IR investigation on the selective catalytic reduction of NO with CH4 over Pd/sulfated alumina catalyst. Appl. Catal. B Environ. 2011, 110, 171–177. [Google Scholar] [CrossRef]
- Azambre, B.; Zenboury, L.; Da Costa, P.; Capela, S.; Carpentier, S.; Westermann, A. Palladium catalysts supported on sulfated ceria–zirconia for the selective catalytic reduction of NOx by methane: Catalytic performances and nature of active Pd species. Catal. Today 2011, 176, 242–249. [Google Scholar] [CrossRef]
- Decolatti, H.; Solt, H.; Lónyi, F.; Valyon, J.; Miró, E.; Gutiérrez, L. The role of Pd–In interactions on the performance of PdIn-Hmordenite in the SCR of NOx with CH4. Catal. Today 2011, 172, 124–131. [Google Scholar] [CrossRef]
- Sowade, T.; Liese, T.; Schmidt, C.; Schütze, F.-W.; Yu, X.; Berndt, H.; Grünert, W. Relations between structure and catalytic activity of Ce–In-ZSM-5 catalysts for the selective reduction of NO by methane: II. Interplay between the CeO2 promoter and different indium sites. J. Catal. 2004, 225, 105–115. [Google Scholar] [CrossRef]
- Nakagawa, K.; Arai, Y.; Umezaki, Y.; Yoshida, A.; Kajiwara, Y.; Aoyagi, S.; Matsuyama, H.; Sugiyama, S. Template effect of phosphate surfactant on formation of hydroxyapatite nanostructures with various shapes. Mater. Chem. Phys. 2018, 213, 183–190. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, G.; He, J.; Wen, Z.; Li, Z.; Gu, T.; Ding, R.; Zhu, Y.; Zhu, R. Effect of preparation and reaction conditions on the performance of In/H-Beta for selective catalytic reduction of NOx with CH4. Chemosphere 2020, 252, 126458. [Google Scholar] [CrossRef]
- Azizi, Y.; Kambolis, A.; Boréave, A.; Giroir-Fendler, A.; Retailleau-Mevel, L.; Guiot, B.; Marchand, O.; Walter, M.; Desse, M.-L.; Marchin, L.; et al. NOx abatement in the exhaust of lean-burn natural gas engines over Ag-supported γ-Al2O3 catalysts. Surf. Sci. 2016, 646, 186–193. [Google Scholar] [CrossRef]
- Mendes, A.N.; Zholobenko, V.L.; Thibault-Starzyk, F.; Da Costa, P.; Henriques, C. On the enhancing effect of Ce in Pd-MOR catalysts for NOx CH4-SCR: A structure-reactivity study. Appl. Catal. B Environ. 2016, 195, 121–131. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Ma, Q.; Bin, L.; Zhao, Y.; Tian, Y.; Hong, W.; Chi, Y.; Cuiqing, L.; Yongji, S. Catalytic performance of Ag(x)/ZSM-5 catalysts for selective catalytic reduction of nitric oxide by methane. J. Fuel Chem. Technol. 2020, 48, 197–204. [Google Scholar]
- Rodrigues, A.; da Costa, P.; Méthivier, C.; Dzwigaj, S. Controlled preparation of CoPdSiBEA zeolite catalysts for se-lective catalytic reduction of NO with methane and their characterisation by XRD, DR UV–vis, TPR, XPS. Catal.Today 2011, 176, 72–76. [Google Scholar] [CrossRef]
- Costilla, I.O.; Sánchez, M.D.; Volpe, M.A.; Gigola, C.E. Ce effect on the selective catalytic reduction of NO with CH4 on Pd-mordenite in the presence of O2 and H2O. Catal. Today 2011, 172, 84–89. [Google Scholar] [CrossRef]
- Gómez-García, M.; Zimmermann, Y.; Pitchon, V.; Kiennemann, A. Multifunctional catalyst for de-NOx processes: The selective reduction of NOx by methane. Catal. Commun. 2007, 8, 400–404. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, K.; Zhang, X.; Wang, J.; Cao, H.; Gong, M.; Chen, Y. Study on methane selective catalytic reduction of NO on Pt/Ce0.67Zr0.33O2 and its application. J. Nat. Gas Chem. 2009, 18, 66–70. [Google Scholar] [CrossRef]
- Li, H.; Jiang, X.; Zheng, X. Plasma-assisted CuO/CeO2/TiO2-γ-Al2O3 catalysts for NO+CH4 reaction and NO temperature programmed desorption studies. Appl. Surf. Sci. 2013, 280, 273–281. [Google Scholar] [CrossRef]
- Ren, L.L.; Zhang, T. Reduction of NO with methane over Fe/ZSM-5 catalysts. Chin. Chem. Lett. 2010, 21, 674–677. [Google Scholar] [CrossRef]
- Su, Y.; Zhao, B.; Deng, W. NO reduction by methane over iron oxides: Characteristics and mechanisms. Fuel 2015, 160, 80–86. [Google Scholar] [CrossRef]
- Campa, M.C.; Pietrogiacomi, D.; Occhiuzzi, M. The simultaneous selective catalytic reduction of N2O and NOx with CH4 on Co-and Ni-exchanged mordenite. Appl. Catal. B Environ. 2015, 168, 293–302. [Google Scholar] [CrossRef]
- Hong, W.; Bin, L.; Lu, X.-B.; Li, C.-Q.; Ding, F.-C.; Song, Y.-J. Selective catalytic reduction of NO by methane over the Co/MOR catalysts in the presence of oxygen. J. Fuel Chem. Technol. 2015, 43, 1106–1112. [Google Scholar]
- Janas, J.; Dzwigaj, S. Physico-chemical properties of FeAlBEA and FeSiBEA zeolites and their catalytic activity in the SCR of NO with ethanol or methane. Catal. Today 2011, 176, 272–276. [Google Scholar] [CrossRef]
- Charrad, R.; Solt, H.E.; Domján, A.; Ayari, F.; Mhamdi, M.; Valyon, J.; Lónyi, F. Selective catalytic reduction of NO by methane over Co,H-SSZ-13 catalysts: Types and catalytic functions of active Co sites. J. Catal. 2020, 385, 87–102. [Google Scholar] [CrossRef]
- Bin Lim, J.; Shin, J.; Ahn, N.H.; Heo, I.; Hong, S.B. Selective catalytic reduction of NO with CH4 over cobalt-exchanged cage-based, small-pore zeolites with different framework structures. Appl. Catal. B Environ. 2020, 267, 118710. [Google Scholar] [CrossRef]
- Li, Y.; Su, J.; Ma, J.; Yu, F.; Chen, J.; Li, R. Novel straight synthesis of super-microporous Cu/Al2O3 catalyst with high CH4-SCR-NO activity. Catal. Commun. 2015, 65, 6–9. [Google Scholar] [CrossRef]
- Li, N.; Wang, A.; Liu, Z.; Wang, X.; Zheng, M.; Huang, Y.; Zhang, T. On the catalytic nature of Mn/sulfated zirconia for selective reduction of NO with methane. Appl. Catal. B Environ. 2006, 62, 292–298. [Google Scholar] [CrossRef]
- Chou, Z. Experimental Study on the Denox Technology of Ch4-Scr and Co-Scr Based on Copper-Based Catalyst; North China Electric Power University: Beijing, China, 2018. [Google Scholar]
- Sun, Z.; Xu, J.; Su, S.; Qing, M.; Wang, L.; Cui, X.; Mostafa, M.E.; Zhang, C.; Hu, S.; Wang, Y.; et al. Formation and re-duction of NO from the oxidation of NH3/CH4 with high concentration of H2O. Fuel 2019, 247, 19–25. [Google Scholar] [CrossRef]
- Jing, G.; Li, J.; Yang, D.; Hao, J. Promotional mechanism of tungstation on selective catalytic reduction of NOx by methane over In/WO3/ZrO2. Appl. Catal. B Environ. 2009, 91, 123–134. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Xu, Y.; Liu, Y.; Wang, X. Influence of support properties on H2 selective catalytic reduction activities and N2 selectivities of Pt catalysts. Chin. J. Catal. 2015, 36, 197–203. [Google Scholar] [CrossRef]
- Park, S.M.; Kim, M.-Y.; Kim, E.S.; Han, H.-S.; Seo, G. H2-SCR of NO on Pt–MnOx catalysts: Reaction path via NH3 formation. Appl. Catal. A Gen. 2011, 395, 120–128. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Zhao, X.; Xu, Y.; Liu, Y.; Yu, Q. Promotion effect of tungsten on the activity of Pt/HZSM-5 for H2-SCR. Chem. Eng. J. 2015, 260, 419–426. [Google Scholar] [CrossRef]
- Challagulla, S.; Payra, S.; Rameshan, R.; Roy, S. Low temperature catalytic reduction of NO over porous Pt/ZIF-8. J. Environ. Chem. Eng. 2020, 8, 103815. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Zhao, X.; Xu, Y.; Gao, H.; Zhang, F. An investigation on N2O formation route over Pt/HY in H2-SCR. Chem. Eng. J. 2014, 252, 288–297. [Google Scholar] [CrossRef]
- Xu, C.; Sun, W.; Cao, L.; Li, T.; Cai, X.; Yang, J. Highly efficient Pd-doped aluminate spinel catalysts with different di-valent cations for the selective catalytic reduction of NO with H2 at low temperature. Chem. Eng. J. 2017, 308, 980–987. [Google Scholar] [CrossRef]
- Furfori, S.; Russo, N.; Fino, D.; Saracco, G.; Specchia, V. NO SCR reduction by hydrogen generated in line on perov-skite-type catalysts for automotive diesel exhaust gas treatment. Chem. Eng. Sci. 2010, 65, 120–127. [Google Scholar] [CrossRef]
- Yu, Q.; Richter, M.; Kong, F.; Li, L.; Wu, G.; Guan, N. Selective catalytic reduction of NO by hydrogen over Pt/ZSM-35. Catal. Today 2010, 158, 452–458. [Google Scholar] [CrossRef]
- Yu, Q.; Richter, M.; Li, L.; Kong, F.; Wu, G.; Guan, N. The promotional effect of Cr on catalytic activity of Pt/ZSM-35 for H2-SCR in excess oxygen. Catal. Commun. 2010, 11, 955–959. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.; Chu, W.; Song, Z.; Zhao, S. An investigation of the surface intermediates of H2-SCR of NOx over Pt/H-FER. Appl. Catal. B Environ. 2011, 107, 380–385. [Google Scholar] [CrossRef]
- Mihet, M.; Lazar, M. Effect of Pd and Rh promotion on Ni/Al2O3 for NO reduction by hydrogen for stationary applications. Chem. Eng. J. 2014, 251, 310–318. [Google Scholar] [CrossRef]
- Zhou, Z.; Duan, K.; Wang, Z.; Liu, Z. Study on H2-SCR on Pd—Based catalyst. In Proceedings of the 11th National Conference on Environmental Catalysis and Environmental Materials, Chinese Chemical Society, Catalytic Committee of Chinese Chemical Society, Shenyang, China, 20–23 July 2018; pp. 1–5. [Google Scholar]
- Chatziiona, V.K.; Constantinou, B.K.; Savva, P.G.; Olympiou, G.G.; Kapnisis, K.; Anayiotos, A.; Costa, C.N. Regulating the catalytic properties of Pt/Al2O3 through nanoscale inkjet printing. Catal. Commun. 2018, 103, 69–73. [Google Scholar] [CrossRef]
- Duan, K.; Liu, Z.; Li, J.; Yuan, L.; Hu, H.; Woo, S.I. Novel Pd–Au/TiO2 catalyst for the selective catalytic reduction of NOx by H2. Catal. Commun. 2014, 57, 19–22. [Google Scholar] [CrossRef]
- Hu, Z.; Yong, X.; Li, D.; Yang, R.T. Synergism between palladium and nickel on Pd-Ni/TiO2 for H2-SCR: A transient DRIFTS study. J. Catal. 2020, 381, 204–214. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, Y.; Yan, Q.; Wang, Q. Fundamental investigation on layered double hydroxides derived mixed metal oxides for selective catalytic reduction of NOx by H2. Catal. Today 2020, 355, 450–457. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Qian, Q.; Chen, Q. Studies on B sites in Fe-doped LaNiO3 perovskite for SCR of NOx with H2. Int. J. Hydrogen Energy 2014, 39, 15836–15843. [Google Scholar] [CrossRef]
- Xue, Y.; Sun, W.; Wang, Q.; Cao, L.; Yang, J. Sparsely loaded Pt/MIL-96(Al) MOFs catalyst with enhanced activity for H2-SCR in a gas diffusion reactor under 80 °C. Chem. Eng. J. 2018, 335, 612–620. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, Z.; Zhou, D.; Shen, W.; Naito, S. Effect of cobalt substitution on nanoporous nickel phosphate VSB-5 catalyst for the catalytic reduction of NO by H 2. Catal. Today 2017, 297, 64–69. [Google Scholar] [CrossRef]
- Wang, L.; Yin, C.; Yang, R.T. Selective catalytic reduction of nitric oxide with hydrogen on supported Pd: Enhancement by hydrogen spillover. Appl. Catal. A Gen. 2016, 514, 35–42. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, Z. Preparation of a supported noble metal catalyst and its removal of NOx by H2-SCR. In Proceedings of the 16th National Industrial Catalytic Technology and Application Annual Conference, Tenzhou, China, 29 July–1 August 2019. [Google Scholar]
- Ryou, Y.; Lee, J.; Cho, S.J.; Lee, H.; Kim, C.H.; Kim, D.H. Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application. Appl. Catal. B Environ. 2017, 212, 140–149. [Google Scholar] [CrossRef]
- Cao, L.; Wang, Q.; Yang, J. Ultrafine Pt particles directed by polyvinylpyrrolidone on zeolite beta as an efficient low-temperature H2-SCR catalyst. J. Environ. Chem. Eng. 2020, 8, 103631. [Google Scholar] [CrossRef]
- Väliheikki, A.; Petallidou, K.C.; Kalamaras, C.M.; Kolli, T.; Huuhtanen, M.; Maunula, T.; Keiski, R.L.; Efstathiou, A.M. Se-lective catalytic reduction of NOx by hydrogen (H2-SCR) on WOx-promoted CezZr1-zO2 solids. Appl. Catal. B Environ. 2014, 156, 72–83. [Google Scholar] [CrossRef]
- Kalamaras, C.M.; Olympiou, G.G.; Pârvulescu, V.I.; Cojocaru, B.; Efstathiou, A.M. Selective catalytic reduction of NO by H2/C3H6 over Pt/Ce1-xZrxO2-δ: The synergy effect studied by transient techniques. Appl. Catal. B Environ. 2017, 206, 308–318. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Yuan, L.; Ma, L.; Zheng, L.; Zhang, J.; Hu, T. Selective catalytic reduction of NOx with H2 over WO3 promoted Pt/TiO2 catalyst. Appl. Catal. B Environ. 2016, 188, 189–197. [Google Scholar] [CrossRef]
- Patel, V.K.; Sharma, S. Effect of oxide supports on palladium based catalysts for NO reduction by H2-SCR. Catal. Today 2020. [Google Scholar] [CrossRef]
- Wang, L.; Chen, H.; Yuan, M.-H.; Rivillon, S.; Klingenberg, E.H.; Li, J.X.; Yang, R.T. Selective catalytic reduction of nitric oxide by hydrogen over Zn-ZSM-5 and Pd and Pd/Ru based catalysts. Appl. Catal. B Environ. 2014, 152–153, 162–171. [Google Scholar] [CrossRef]
- Olympiou, G.G.; Efstathiou, A.M. Industrial NOx control via H2-SCR on a novel supported-Pt nanocatalyst. Chem. Eng. J. 2011, 170, 424–432. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Wang, Z.; Cheng, X.; Wang, X. State-of-Art Review of NO Reduction Technologies by CO, CH4 and H2. Processes 2021, 9, 563. https://doi.org/10.3390/pr9030563
Song J, Wang Z, Cheng X, Wang X. State-of-Art Review of NO Reduction Technologies by CO, CH4 and H2. Processes. 2021; 9(3):563. https://doi.org/10.3390/pr9030563
Chicago/Turabian StyleSong, Jialin, Ziliang Wang, Xingxing Cheng, and Xiuping Wang. 2021. "State-of-Art Review of NO Reduction Technologies by CO, CH4 and H2" Processes 9, no. 3: 563. https://doi.org/10.3390/pr9030563
APA StyleSong, J., Wang, Z., Cheng, X., & Wang, X. (2021). State-of-Art Review of NO Reduction Technologies by CO, CH4 and H2. Processes, 9(3), 563. https://doi.org/10.3390/pr9030563