Identification of Synbiotics Conducive to Probiotics Adherence to Intestinal Mucosa Using an In Vitro Caco-2 and HT29-MTX Cell Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Prebiotics
2.2. Isolation and Purification of HMOs
2.3. Adhesion to Caco-2 and HT29-MTX Cells
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reid, G.; Gadir, A.A.; Dhir, R. Probiotics: Reiterating what they are and what they are not. Front. Microbiol. 2019, 10, 424. [Google Scholar] [CrossRef] [Green Version]
- Zendeboodi, F.; Khorshidian, N.; Mortazavian, A.M.; da Cruz, A.G. Probiotic: Conceptualization from a new approach. Curr. Opin. Food Sci. 2020, 32, 103–123. [Google Scholar] [CrossRef]
- Taverniti, V.; Guglielmetti, S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept). Genes Nutr. 2011, 6, 261–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastro. Hepat. 2017, 14, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanty, D.; Misra, S.; Mohapatra, S.; Sahu, P.S. Prebiotics and synbiotics: Recent concepts in nutrition. Food Biosci. 2018, 26, 152–160. [Google Scholar] [CrossRef]
- Celebioglu, H.U.; Olesen, S.V.; Prehn, K.; Lahtinen, S.J.; Brix, S.; Hachem, M.A.; Svensson, B. Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM. J. Proteom. 2017, 163, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kranjčec, B.; Papeš, D.; Altarac, S. D-mannose powder for prophylaxis of recurrent urinary tract infections in women: A randomized clinical trial. World J. Urol. 2014, 32, 79–84. [Google Scholar] [CrossRef]
- Sharma, S.; Kanwar, S.S. Effect of prebiotics on growth behavior of Lactobacillus plantarum and their impact on adherence of strict anaerobic pathogens to intestinal cell lines. J. Food Saf. 2018, 38, e12384. [Google Scholar] [CrossRef] [Green Version]
- Shoaf, K.; Mulvey, G.L.; Armstrong, G.D.; Hutkins, R.W. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect. Immun. 2006, 74, 6920–6928. [Google Scholar] [CrossRef] [Green Version]
- Kadlec, R.; Jakubec, M. The effect of prebiotics on adherence of probiotics. J. Dairy Sci. 2014, 97, 1983–1990. [Google Scholar] [CrossRef]
- Krausova, G.; Hyrslova, I.; Jakubec, M.; Hynstova, I. In vitro evaluation of prebiotics on adherence of lactobacilli. Microb. Biochem. Technol. 2016, 8. [Google Scholar] [CrossRef]
- Altamimi, M.; Abdelhay, O.; Rastall, R.A. Effect of oligosaccharides on the adhesion of gut bacteria to human HT-29 cells. Anaerobe 2016, 39, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Van den Elsen, L.W.J.; Garssen, J.; Burcelin, R.; Verhasselt, V. Shaping the gut microbiota by breastfeeding: The gateway to allergy prevention? Front. Pediatr. 2019, 7, 47. [Google Scholar] [CrossRef]
- Walsh, C.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. From lab bench to formulated ingredient: Characterization, production, and commercialization of human milk oligosaccharides. J. Funct. Foods 2020, 72, 104052. [Google Scholar] [CrossRef]
- Walsh, C.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. J. Funct. Foods 2020, 72, 104074. [Google Scholar] [CrossRef]
- Vandenplas, Y.; Berger, B.; Carnielli, V.P.; Ksiazyk, J.; Lagström, H.; Luna, M.S.; Migacheva, N.; Mosselmans, J.M.; Picaud, J.C.; Possner, M.; et al. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 2018, 10, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, H.; Zhu, L.; Faden, H.S. The milk-based diet of infancy and the gut microbiome. Gastroenterol. Rep. 2019, 7, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Morrin, S.T.; Hickey, R.M. New insights on the colonization of the human gut by health-promoting bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 1511–1515. [Google Scholar] [CrossRef] [PubMed]
- Chichlowski, M.; De Lartigue, G.; German, J.B.; Raybould, H.E.; Mills, D.A. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 321–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavanaugh, D.W.; O’Callaghan, J.; Buttó, L.F.; Slattery, H.; Lane, J.; Clyne, M.; Kane, M.; Joshi, L.; Hickey, R.M. Exposure of Bifidobacterium longum subsp. infantis to milk oligosaccharides increases adhesion to epithelial cells and induces a substantial transcriptional response. PLoS ONE 2013, 8, e67224. [Google Scholar] [CrossRef] [Green Version]
- Volstatova, T.; Havlik, J.; Potuckova, M.; Geigerova, M. Milk digesta and milk protein fractions influence the adherence of Lactobacillus gasseri R and Lactobacillus casei FMP to human cultured cells. Food Funct. 2016, 7, 3531–3538. [Google Scholar] [CrossRef]
- Guglielmetti, S.; Tamagnini, I.; Minuzzo, M.; Arioli, S.; Parini, C.; Comelli, E.; Mora, D. Study of the adhesion of Bifidobacterium bifidum MIMBb75 to human intestinal cell lines. Curr. Microbiol. 2009, 59, 167–172. [Google Scholar] [CrossRef]
- Kim, J.K.; Shin, E.C.; Park, H.G. Fructooligosaccharides decreased the ability of probiotic Escherichia coli Nissle 1917 to adhere to co-cultures of human intestinal cell lines. J. Korean Soc. Appl. Biol. 2015, 58, 45–52. [Google Scholar] [CrossRef]
- Foster, S.J. 257-N-acetylmuramoyl-L-alanineamidase. In Handbook of Proteolytic Enzymes, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 866–868. [Google Scholar]
- Que, Y.A.; Moreillon, P. 196-Staphylococcus aureus (Including staphylococcal toxic shock syndrome). In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2, pp. 2237–2271. [Google Scholar]
- Gnoth, M.J.; Kunz, C.; Kinne-Saffran, E.; Rudloff, S. Human milk oligosaccharides are minimally digested in vitro. J. Nutr. 2000, 130, 3014–3020. [Google Scholar] [CrossRef]
- Lesuffleur, T.; Barbat, A.; Dussaulx, E.; Zweibaum, A. Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res. 1990, 50, 6334–6343. [Google Scholar] [PubMed]
- Ouwehand, A.C.; Salminen, S. In vitro adhesion assays for probiotics and their in vivo relevance: A review. Microb. Ecol. Health Dis. 2003, 15, 175–184. [Google Scholar] [CrossRef]
- Laparra, J.M.; Sanz, Y. Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett. Appl. Microbiol. 2009, 49, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Cao, P.; Wu, L.; Wu, Z.; Pan, D.; Zeng, X.; Guo, Y.; Lian, L. Effects of oligosaccharides on the fermentation properties of Lactobacillus plantarum. J. Dairy Sci. 2019, 102, 2863–2872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiunn, E.M.; Slattery, H.; Thompson, A.P.; Kilcoyne, M.; Joshi, L.; Hickey, R.M. Mining milk for factors which increase the adherence of Bifidobacterium longum subsp. infantis to intestinal cells. Foods 2018, 7, 196. [Google Scholar]
- Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M.; Hassan, F.A. Prebiotics as functional foods: A review. J. Funct. Foods 2013, 5, 1542–1553. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Sun, Y.; Ye, H.; Hu, B.; Zeng, X. Lactosucrose and its analogues derived from lactose and sucrose: Influence of structure on human intestinal microbiota in vitro. J. Funct. Foods 2015, 17, 73–82. [Google Scholar] [CrossRef]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef] [Green Version]
- Servin, A.L.; Coconnier, M.-H. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 2003, 17, 741–754. [Google Scholar] [CrossRef]
- De Souza, B.M.S.; Borgonovi, T.F.; Casarotti, S.N.; Todorov, S.D.; Penna, A.L.B. Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella cheese: Probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. Probiotics Antimicrob. Proteins 2019, 11, 382–396. [Google Scholar] [CrossRef]
- Chaffanel, F.; Charron-Bourgoin, F.; Soligot, C.; Kebouchi, M.; Bertin, S.; Payot, S.; le Roux, Y.; Leblond-Bourget, N. Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl. Microbiol. Biotechnol. 2018, 102, 2851–2865. [Google Scholar] [CrossRef] [Green Version]
- Fallani, M.; Young, D.; Scott, J.; Norin, E.; Amarri, S.; Adam, R.; Aguilera, M.; Khanna, S.; Gil, A.; Edwards, C.A.; et al. Intestinal microbiota of 6-week-old infants across Europe: Geographic influence beyond delivery mode, breast-feeding, and antibiotics. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bode, L. Human milk oligosaccharides: Prebiotics and beyond. Nutr. Rev. 2009, 67 (Suppl. S2), S183–S191. [Google Scholar] [CrossRef] [PubMed]
- Musilova, S.; Modrackova, N.; Doskocil, I.; Svejstil, R.; Rada, V. Influence of human milk oligosaccharides on adherence of bifidobacteria and clostridia to cell lines. Acta Microbiol. Immunol. Hung. 2017, 64, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Angeloni, S.; Ridet, J.L.; Kusy, N.; Gao, H.; Crevoisier, F.; Guinchard, S.; Kochhar, S.; Sigrist, H.; Sprenger, N. Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 2005, 15, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Coppa, G.V.; Zampini, L.; Galeazzi, T.; Facinelli, B.; Ferrante, L.; Capretti, R.; Orazio, G. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr. Res. 2006, 59, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Sicard, J.F.; Volgeleer, P.; Le Bihan, G.; Olivera, Y.R.; Beaudry, F.; Jacquez, M.; Harel, J. N-acetyl-glucosamine influences the biofilm formation of Escherichia coli. Gut Pathog. 2018, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Bode, L.; Jantscher-Krenn, E. Structure-function relationships of human milk oligosaccharides. Adv. Nutr. 2012, 3, 383S–391S. [Google Scholar] [CrossRef] [PubMed]
- Rubio-del-Campo, A.; Alcántara, C.; Collado, M.C.; Rodríguez-Díaz, J.; Yebra, M.J. Human milk and mucosa-associated disaccharides impact on cultured infant fecal microbiota. Sci. Rep. 2020, 10, 11845. [Google Scholar] [CrossRef] [PubMed]
- Lodinová-Zádníková, R.; Prokesová, L.; Tlaskalová, H.; Kocourková, I.; Zizka, J.; Stranák, Z. Influence of oral colonization with probiotic E. coli strain after birth on frequency of recurrent infections, allergy and development of some immunologic parameters. Long-term studies. Ceska Gynekol. 2004, 69, 91–97. [Google Scholar]
- Ventura, M.; Turroni, F.; Zomer, A.; Foroni, E.; Giubellini, V.; Bottacini, F.; Canchaya, C.; Claesson, M.J.; He, F.; Mantzourani, M.; et al. The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet. 2009, 5, e1000785. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.Z.; Takahashi, S.; Nishimoto, M.; Odamaki, T.; Yaeshima, T.; Iwatsuki, K.; Kitaoka, M. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl. Environ. Microbiol. 2010, 76, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Downes, J.; Mantzourani, M.; Beighton, D.; Hooper, S.; Wilson, M.J.; Nicholson, A.; Wade, W.G. Scardovia wiggsiae sp. nov., isolated from the human oral cavity and clinical material, and emended descriptions of the genus Scardovia and Scardovia inopinata. Int. J. Syst. Evol. Microbiol 2011, 61 Pt 1, 25–29. [Google Scholar] [CrossRef]
- Engevik, M.A.; Luck, B.; Visuthranukul, C.; Ihekweazu, F.D.; Engevik, A.C.; Shi, Z.; Danhof, H.A.; Chang-Graham, A.L.; Hall, A.; Endres, B.T.; et al. Human-derived Bifidobacterium dentium modulates the mammalian serotonergic system and gut-brain axis. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 221–248. [Google Scholar] [CrossRef]
- Quintero, M.; Maldonado, M.; Perez-Munoz, M.; Jimenez, R.; Fangman, T.; Rupnow, J.; Wittke, A.; Russell, M.; Hutkins, R. Adherence inhibition of Cronobacter sakazakii to intestinal epithelial cells by prebiotic oligosaccharides. Curr. Microbiol. 2011, 62, 1448–1454. [Google Scholar] [CrossRef]
- Bunešová, V.; Vlková, E.; Rada, V.; Kňazovická, V.; Ročková, Š.; Geigerová, M.; Božik, M. Growth of infant fecal bacteria on commercial prebiotics. Folia Microbiol. 2012, 57, 273–275. [Google Scholar] [CrossRef] [PubMed]
- Kunova, G.; Rada, V.; Lisova, I.; Ročková, Š.; Vlkova, E. In vitro fermentability of prebiotic oligosaccharides by lactobacilli. Czech J. Food Sci. 2012, 29, S49–S54. [Google Scholar] [CrossRef] [Green Version]
- Rada, V.; Nevoral, J.; Trojanová, I.; Tománková, E.; Smehilová, M.; Killer, J. Growth of infant faecal bifidobacteria and clostridia on prebiotic oligosaccharides in in vitro conditions. Anaerobe 2008, 14, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, G.T.; Steed, H.; Macfarlane, S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 2008, 104, 305–344. [Google Scholar] [CrossRef] [PubMed]
- Sarabia-Sainz, H.M.; Armenta-Ruiz, C.; Sarabia-Sainz, J.A.-I.; Guzmán-Partida, A.M.; Ledesma-Osuna, A.I.; Vázquez-Moreno, L.; Montfort, G.R.-C. Adhesion of enterotoxigenic Escherichia coli strains to neoglycans synthesised with prebiotic galactooligosaccharides. Food Chem. 2013, 141, 2727–2734. [Google Scholar] [CrossRef]
- Gerbino, E.; Ghibaudo, F.; Tymczyszyn, E.E.; Gomez-Zavaglia, A.; Hugo, A.A. Probiotics, Galacto-oligosaccharides, and zinc antagonize biological effects of enterohaemorrhagic Escherichia coli on cultured cells and brine shrimp model. LWT 2020, 128, 109435. [Google Scholar] [CrossRef]
Strain | Source |
---|---|
Escherichia coli O83 | original culture |
L. delbrueckii subsp. bulgaricus CCDM 66 | yoghurt |
Lactobacillus acidophilus CCDM 382 | raw goat milk |
Lactobacillus fermentum RL-25 | human feces |
Lactobacillus casei subsp. paracasei DM1TA6-P | colon biopsy |
Lactobacillus casei subsp. paracasei PE1TB-P | colon biopsy |
B. bifidum CCDM 559 | human feces |
B. dentium CCDM 318 | dental caries |
B. breve CCDM 562 | gastrointestinal tract of a child |
B. bifidum BBM | infant feces |
B. bifidum BBV | infant feces |
B. animalis subsp. lactis Bb12 | original culture |
Prebiotic | O83 | CCDM 66 | CCDM 382 | PE 1TB-P | RL 25 | DM1TA6-P |
---|---|---|---|---|---|---|
Control | 29.1 ± 13.6 | 35.2 ± 17.1 | 27.9 ± 6.1 | 32.8 ± 8.4 | 18.2 ± 8.2 | 30.1 ± 7.1 |
Lactose | 45.5 ± 24.0 ↑ | 13.5 ± 9.2 ↓ | 9.8 ± 2.4 ↓* | 10.8 ± 3.4 ↓* | 16.6 ± 5.4 ↓ | 10.1 ± 3.6 ↓* |
Glucose | 42 ± 14.1 ↑ | 10.8 ± 7.1 ↓ | 7.6 ± 1.6 ↓* | 7.9 ± 2.1 ↓* | 17.6 ± 8.1 ↓ | 13.9 ± 2.8 ↓ |
Orafti® P95 | 34.1 ± 11.9 ↑ | 26.8 ± 14.7 ↓ | 7.4 ± 1.6 ↓* | 10.6 ± 4.1 ↓* | 13.6 ± 4.9 ↓ | 17.2 ± 4.0 ↓ |
Orafti® GR | 38.2 ± 10.5 ↑ | 17.8 ± 8.7 ↓ | 6.8 ± 2.4 ↓* | 7.7 ± 2.4 ↓* | 9.5 ± 3.1 ↓ | 20.2 ± 3.8 ↓ |
Vivinal® | 40.3 ± 22.0 ↑ | 47.4 ± 19.9 ↑ | 15.5 ± 3.5 ↓* | 23.2 ± 5.1 ↓ | 30.3 ± 13.2 ↑ | 30.5 ± 11.9 ↑ |
HMO | N | 16.8 ± 5.1 ↓ | 18.8 ± 5.0 ↓ | N | 20.1 ± 6.7 ↑ | N |
Prebiotic | CCDM 559 | CCDM 318 | CCDM 562 | BBM | BBV | Bb12 |
---|---|---|---|---|---|---|
Control | 11.1 ± 7.4 | 24.0 ± 8.0 | 28.6 ± 7.2 | 57.8 ± 15.5 | 48.8 ± 6.8 | 32.8 ± 13.4 |
Lactose | 5.8 ± 1.2 ↓ | 6.9 ± 2.5 ↓* | 7.3 ± 2.0 ↓* | 51 ± 14.0 ↓ | 40.7 ± 5.9 ↓ | 8.5 ± 2.7 ↓* |
Glucose | 4 ± 1.1 ↓ | 5.0 ± 1.8 ↓* | 4.8 ± 0.9 ↓* | 45.9 ± 10.1 ↓ | 31.5 ± 9.7 ↓ | 6.4 ± 2.2 ↓* |
Orafti® P95 | 6.7 ± 3.2 ↓ | 5.4 ± 2.0 ↓* | 5 ± 1.0 ↓* | 46.3 ± 6.9 ↓ | 38.6 ± 6.8 ↓ | 6.2 ± 2.0 ↓* |
Orafti® GR | 4.5 ± 2.7 ↓ | 4.7 ± 1.5 ↓* | 6.5 ± 1.6 ↓* | 36.9 ± 11.5 ↓ | 37.7 ± 4.2 ↓ | 5.8 ± 1.8 ↓* |
Vivinal® | 7.2 ± 2.8 ↓ | 15.9 ± 4.0 ↓ | 13 ± 7.3 ↓* | 72.0 ± 16.4 ↑ | 50.3 ± 8.2 ↑ | 17.1 ± 3.2 ↓ |
HMO | N | 8.2 ± 5.1 ↓* | 7.4 ± 4.0 ↓* | 56.3 ± 16.1 ↓ | 40.5 ± 7.3 ↓ | 11.5 ± 3.9 ↓* |
Bifidobacteria | API® 50 CH Test | ||||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
CCDM 318 | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||||
CCDM 559 | + | + | + | + | |||||||||||||||||||||
CCDM 562 | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||
Bb12 | + | + | + | + | + | + | + | + | |||||||||||||||||
BBM | + | + | + | + | |||||||||||||||||||||
BBV | + | + | + | + | |||||||||||||||||||||
API® 50 CH Test | |||||||||||||||||||||||||
26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | |
CCDM 318 | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||||
CCDM 559 | + | + | |||||||||||||||||||||||
CCDM 562 | + | + | + | + | + | + | + | + | + | + | |||||||||||||||
Bb12 | + | + | + | + | + | + | + | + | + | ||||||||||||||||
BBM | + | + | |||||||||||||||||||||||
BBV | + | + |
Lactobacilli and E. coli | API® 50 CH Test | ||||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
DM1TA6-P | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||
CCDM 382 | (+) | + | + | + | + | + | + | (+) | + | ||||||||||||||||
RL25 | + | + | + | + | + | + | |||||||||||||||||||
CCDM 66 | + | + | + | ||||||||||||||||||||||
PE1TB-P | + | + | + | + | + | + | + | (+) | + | + | (+) | + | + | + | + | ||||||||||
E. coli O83 | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||||
API® 50 CH test | |||||||||||||||||||||||||
26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | |
DM1TA6-P | + | + | + | + | + | + | + | + | + | (+) | |||||||||||||||
CCDM 382 | + | + | + | + | + | + | + | + | |||||||||||||||||
RL25 | + | + | + | + | + | (+) | |||||||||||||||||||
CCDM 66 | + | ||||||||||||||||||||||||
PE1TB-P | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||||
E. coli O83 | + | + | + | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krausova, G.; Hynstova, I.; Svejstil, R.; Mrvikova, I.; Kadlec, R. Identification of Synbiotics Conducive to Probiotics Adherence to Intestinal Mucosa Using an In Vitro Caco-2 and HT29-MTX Cell Model. Processes 2021, 9, 569. https://doi.org/10.3390/pr9040569
Krausova G, Hynstova I, Svejstil R, Mrvikova I, Kadlec R. Identification of Synbiotics Conducive to Probiotics Adherence to Intestinal Mucosa Using an In Vitro Caco-2 and HT29-MTX Cell Model. Processes. 2021; 9(4):569. https://doi.org/10.3390/pr9040569
Chicago/Turabian StyleKrausova, Gabriela, Iveta Hynstova, Roman Svejstil, Iva Mrvikova, and Robert Kadlec. 2021. "Identification of Synbiotics Conducive to Probiotics Adherence to Intestinal Mucosa Using an In Vitro Caco-2 and HT29-MTX Cell Model" Processes 9, no. 4: 569. https://doi.org/10.3390/pr9040569
APA StyleKrausova, G., Hynstova, I., Svejstil, R., Mrvikova, I., & Kadlec, R. (2021). Identification of Synbiotics Conducive to Probiotics Adherence to Intestinal Mucosa Using an In Vitro Caco-2 and HT29-MTX Cell Model. Processes, 9(4), 569. https://doi.org/10.3390/pr9040569