Role of Yeasts in the Brewing Process: Tradition and Innovation
Abstract
:1. Introduction
2. Saccharomyces Yeasts in the Brewing Process
3. Non-Saccharomyces Yeasts in the Brewing Process
4. Role of Yeasts in Specialty Beers Production
4.1. Low-Alcohol Beer
4.2. Probiotic Beer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Iattici, F.; Catallo, M.; Solieri, L. Designing New Yeasts for Craft Brewing: When Natural Biodiversity Meets Biotechnology. Beverages 2020, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Albergaria, H.; Arneborg, N. Dominance of Saccharomyces Cerevisiae in Alcoholic Fermentation Processes: Role of Physiological Fitness and Microbial Interactions. Appl. Microbiol. Biotechnol. 2016, 100, 2035–2046. [Google Scholar] [CrossRef]
- Walker, G.M.; Stewart, G.G. Saccharomyces Cerevisiae in the Production of Fermented Beverages. Beverages 2016, 2, 30. [Google Scholar] [CrossRef]
- Rainieri, S.; Kodama, Y.; Kaneko, Y.; Mikata, K.; Nakao, Y.; Ashikari, T. Pure and Mixed Genetic Lines of Saccharomyces Bayanus and Saccharomyces Pastorianus and Their Contribution to the Lager Brewing Strain Genome. Appl. Environ. Microbiol. 2006, 72, 3968–3974. [Google Scholar] [CrossRef] [Green Version]
- Glover, B. The World Encyclopedia of Beer; Lorenz Books: Dayton, OH, USA, 2001; ISBN 978-0-7548-0933-3. [Google Scholar]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Zhao, H. Non-Alcoholic and Craft Beer Production and Challenges. Processes 2020, 8, 1382. [Google Scholar] [CrossRef]
- Garavaglia, C.; Swinnen, J. Economics of the Craft Beer Revolution: A Comparative International Perspective. In Economic Perspectives on Craft Beer: A Revolution in the Global Beer Industry; Garavaglia, C., Swinnen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–51. ISBN 978-3-319-58235-1. [Google Scholar]
- Garavaglia, C. The Emergence of Italian Craft Breweries and the Development of Their Local Identity. In The Geography of Beer: Culture and Economics; Hoalst-Pullen, N., Patterson, M.W., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 135–147. ISBN 978-3-030-41654-6. [Google Scholar]
- Jentsch, M. Top-Fermented Beer Specialities in Focus. Brauwelt. Int. 2007, 5, 332–334. [Google Scholar]
- Spitaels, F.; Wieme, A.D.; Janssens, M.; Aerts, M.; Daniel, H.-M.; Van Landschoot, A.; De Vuyst, L.; Vandamme, P. The Microbial Diversity of Traditional Spontaneously Fermented Lambic Beer. PLoS ONE 2014, 9, e95384. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.; Meier-Dörnberg, T.; Jacob, F.; Methner, F.-J.; Wagner, R.S.; Hutzler, M. Review: Pure Non-Saccharomyces Starter Cultures for Beer Fermentation with a Focus on Secondary Metabolites and Practical Applications. J. Inst. Brew. 2016, 122, 569–587. [Google Scholar] [CrossRef]
- Basso, R.F.; Alcarde, A.R.; Portugal, C.B. Could Non-Saccharomyces Yeasts Contribute on Innovative Brewing Fermentations? Food Res. Int. 2016, 86, 112–120. [Google Scholar] [CrossRef]
- Stewart, G.G. The Production of Secondary Metabolites with Flavour Potential during Brewing and Distilling Wort Fermentations. Fermentation 2017, 3, 63. [Google Scholar] [CrossRef] [Green Version]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not Your Ordinary Yeast: Non-Saccharomyces Yeasts in Wine Production Uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varela, C. The Impact of Non-Saccharomyces Yeasts in the Production of Alcoholic Beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef] [PubMed]
- Domizio, P.; Romani, C.; Lencioni, L.; Comitini, F.; Gobbi, M.; Mannazzu, I.; Ciani, M. Outlining a Future for Non-Saccharomyces Yeasts: Selection of Putative Spoilage Wine Strains to Be Used in Association with Saccharomyces Cerevisiae for Grape Juice Fermentation. Int. J. Food Microbiol. 2011, 147, 170–180. [Google Scholar] [CrossRef]
- Lombardi, S.J.; Pannella, G.; Iorizzo, M.; Moreno-Arribas, M.V.; Tremonte, P.; Succi, M.; Sorrentino, E.; Macciola, V.; Di Renzo, M.; Coppola, R. Sequential Inoculum of Hanseniaspora guilliermondii and Saccharomyces Cerevisiae for Winemaking Campanino on an Industrial Scale. World J. Microbiol. Biotechnol. 2018, 34, 161. [Google Scholar] [CrossRef]
- Testa, B.; Lombardi, S.J.; Iorizzo, M.; Letizia, F.; Di Martino, C.; Di Renzo, M.; Strollo, D.; Tremonte, P.; Pannella, G.; Ianiro, M.; et al. Use of Strain Hanseniaspora guilliermondii BF1 for Winemaking Process of White Grapes Vitis vinifera Cv Fiano. Eur. Food Res. Technol. 2020, 246, 549–561. [Google Scholar] [CrossRef]
- Lombardi, S.J.; Pannella, G.; Iorizzo, M.; Testa, B.; Succi, M.; Tremonte, P.; Sorrentino, E.; Di Renzo, M.; Strollo, D.; Coppola, R. Inoculum Strategies and Performances of Malolactic Starter Lactobacillus plantarum M10: Impact on Chemical and Sensorial Characteristics of Fiano Wine. Microorganisms 2020, 8, 516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callejo, M.J.; García Navas, J.J.; Alba, R.; Escott, C.; Loira, I.; González, M.C.; Morata, A. Wort Fermentation and Beer Conditioning with Selected Non-Saccharomyces Yeasts in Craft Beers. Eur. Food Res. Technol. 2019, 245, 1229–1238. [Google Scholar] [CrossRef]
- Naseeb, S.; James, S.A.; Alsammar, H.; Michaels, C.J.; Gini, B.; Nueno-Palop, C.; Bond, C.J.; McGhie, H.; Roberts, I.N.; Delneri, D. Saccharomyces jurei Sp. Nov., Isolation and Genetic Identification of a Novel Yeast Species from Quercus robur. Int. J. Syst. Evol. Microbiol. 2017, 67, 2046–2052. [Google Scholar] [CrossRef]
- Borneman, A.R.; Pretorius, I.S. Genomic Insights into the Saccharomyces sensu stricto Complex. Genetics 2015, 199, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.G. Saccharomyces Species in the Production of Beer. Beverages 2016, 2, 34. [Google Scholar] [CrossRef]
- Stewart, G.G. Harvesting and Cropping Yeast: Flocculation and Centrifugation. In Brewing and Distilling Yeasts; Stewart, G.G., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 259–308. ISBN 978-3-319-69126-8. [Google Scholar]
- Petruzzi, L.; Rosaria Corbo, M.; Sinigaglia, M.; Bevilacqua, A. Brewer’s Yeast in Controlled and Uncontrolled Fermentations, with a Focus on Novel, Nonconventional, and Superior Strains. Food Rev. Int. 2016, 32, 341–363. [Google Scholar] [CrossRef]
- Larroque, M.N.; Carrau, F.; Fariña, L.; Boido, E.; Dellacassa, E.; Medina, K. Effect of Saccharomyces and Non-Saccharomyces Native Yeasts on Beer Aroma Compounds. Int. J. Food Microbiol. 2021, 337, 108953. [Google Scholar] [CrossRef] [PubMed]
- Lodolo, E.J.; Kock, J.L.F.; Axcell, B.C.; Brooks, M. The Yeast Saccharomyces Cerevisiae—The Main Character in Beer Brewing. FEMS Yeast Res. 2008, 8, 1018–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olaniran, A.O.; Maharaj, Y.R.; Pillay, B. Effects of Fermentation Temperature on the Composition of Beer Volatile Compounds, Organoleptic Quality and Spent Yeast Density. Electron. J. Biotechnol. 2011, 14, 5. [Google Scholar] [CrossRef] [Green Version]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-Active Volatile Compounds in Beer: Production, Regulation and Control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The Soul of Beer’s Aroma—A Review of Flavour-Active Esters and Higher Alcohols Produced by the Brewing Yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquié-Moreno, M.R.; Thevelein, J.M. The Molecular Biology of Fruity and Floral Aromas in Beer and Other Alcoholic Beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyrell, T. Strategies for Reducing Succinic Acid Concentrations in Beer. J. Am. Soc. Brew. Chem. 2014, 72, 246–252. [Google Scholar] [CrossRef]
- Tyrell, T.; Fischer, F. Influencing the Organic Acid Profile of Beer by Application of Adsorbent Materials. J. Inst. Brew. 2014, 120, 459–466. [Google Scholar] [CrossRef]
- Tyrell, T.; Reimann, S.; Folz, R.; Harms, D.; Hinrichs, J.; Offer, G. Screening of Brewery Yeast Strains Regarding Organic Acid Profile in Order to Find Low Succinic Acid Producer. Brew. Sci. 2013, 66, 75–84. [Google Scholar]
- Bruner, J.; Fox, G. Novel Non-Cerevisiae Saccharomyces Yeast Species Used in Beer and Alcoholic Beverage Fermentations. Fermentation 2020, 6, 116. [Google Scholar] [CrossRef]
- Molinet, J.; Cubillos, F.A. Wild Yeast for the Future: Exploring the Use of Wild Strains for Wine and Beer Fermentation. Front. Genet. 2020, 11, 1281. [Google Scholar] [CrossRef] [PubMed]
- Budroni, M.; Zara, G.; Ciani, M.; Comitini, F. Saccharomyces and non-Saccharomyces starter yeasts. In Brewing Technology; IntechOpen: London, UK, 2017. [Google Scholar]
- Tokpohozin, S.E.; Fischer, S.; Becker, T. Selection of a New Saccharomyces Yeast to Enhance Relevant Sorghum Beer Aroma Components, Higher Alcohols and Esters. Food Microbiol. 2019, 83, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Capece, A.; Romaniello, R.; Siesto, G.; Romano, P. Conventional and Non-Conventional Yeasts in Beer Production. Fermentation 2018, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.-V.; Gaillardin, C. Evolutionary Relationships between the Former Species Saccharomyces uvarum and the Hybrids Saccharomyces bayanus and Saccharomyces pastorianus; Reinstatement of Saccharomyces uvarum (Beijerinck) as a Distinct Species. FEMS Yeast Res. 2005, 5, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Libkind, D.; Hittinger, C.T.; Valério, E.; Gonçalves, C.; Dover, J.; Johnston, M.; Gonçalves, P.; Sampaio, J.P. Microbe Domestication and the Identification of the Wild Genetic Stock of Lager-Brewing Yeast. Proc. Natl. Acad. Sci. USA 2011, 108, 14539. [Google Scholar] [CrossRef] [Green Version]
- Alexander, W.G.; Peris, D.; Pfannenstiel, B.T.; Opulente, D.A.; Kuang, M.; Hittinger, C.T. Efficient Engineering of Marker-Free Synthetic Allotetraploids of Saccharomyces. Era Synth. Biol. Yeast Filam. Fungi 2016, 89, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebly, M.; Brickwedde, A.; Bolat, I.; Driessen, M.R.M.; de Hulster, E.A.F.; van den Broek, M.; Pronk, J.T.; Geertman, J.-M.; Daran, J.-M.; Daran-Lapujade, P.S. Cerevisiae × S. Eubayanus Interspecific Hybrid, the Best of Both Worlds and Beyond. FEMS Yeast Res. 2015, 15. [Google Scholar] [CrossRef]
- Krogerus, K.; Magalhães, F.; Vidgren, V.; Gibson, B. New Lager Yeast Strains Generated by Interspecific Hybridization. J. Ind. Microbiol. Biotechnol. 2015, 42, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Krogerus, K.; Arvas, M.; De Chiara, M.; Magalhães, F.; Mattinen, L.; Oja, M.; Vidgren, V.; Yue, J.-X.; Liti, G.; Gibson, B. Ploidy Influences the Functional Attributes of de Novo Lager Yeast Hybrids. Appl. Microbiol. Biotechnol. 2016, 100, 7203–7222. [Google Scholar] [CrossRef] [Green Version]
- Mertens, S.; Steensels, J.; Saels, V.; De Rouck, G.; Aerts, G.; Verstrepen, K.J. A Large Set of Newly Created Interspecific Saccharomyces Hybrids Increases Aromatic Diversity in Lager Beers. Appl. Environ. Microbiol. 2015, 81, 8202–8214. [Google Scholar] [CrossRef] [Green Version]
- Alperstein, L.; Gardner, J.M.; Sundstrom, J.F.; Sumby, K.M.; Jiranek, V. Yeast Bioprospecting versus Synthetic Biology—Which Is Better for Innovative Beverage Fermentation? Appl. Microbiol. Biotechnol. 2020, 104, 1939–1953. [Google Scholar] [CrossRef]
- Krogerus, K.; Magalhães, F.; Vidgren, V.; Gibson, B. Novel Brewing Yeast Hybrids: Creation and Application. Appl. Microbiol. Biotechnol. 2017, 101, 65–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera, L.; Aceña, L.; Guasch, J.; Boqué, R.; Mestres, M.; Busto, O. Characterization and Classification of the Aroma of Beer Samples by Means of an MS E-Nose and Chemometric Tools. Anal. Bioanal. Chem. 2011, 399, 2073–2081. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.M.; Guido, L.F. Impact of Wort Amino Acids on Beer Flavour: A Review. Fermentation 2018, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Gamero, A.; Dijkstra, A.; Smit, B.; de Jong, C. Aromatic Potential of Diverse Non-Conventional Yeast Species for Winemaking and Brewing. Fermentation 2020, 6, 50. [Google Scholar] [CrossRef]
- Li, H.; Liu, F. Changes in Organic Acids during Beer Fermentation. J. Am. Soc. Brew. Chem. 2015, 73, 275–279. [Google Scholar] [CrossRef]
- Siebert, K.J. Modeling the Flavor Thresholds of Organic Acids in Beer as a Function of Their Molecular Properties. Food Qual. Prefer. 1999, 10, 129–137. [Google Scholar] [CrossRef]
- Steensels, J.; Verstrepen, K.J. Taming Wild Yeast: Potential of Conventional and Nonconventional Yeasts in Industrial Fermentations. Annu. Rev. Microbiol. 2014, 68, 61–80. [Google Scholar] [CrossRef]
- Gibson, B.; Geertman, J.; Hittinger, C.; Krogerus, K.; Libkind, D.; Louis, E.J.; Magalhães, F.; Sampaio, J. New Yeasts—New Brews: Modern Approaches to Brewing Yeast Design and Development. FEMS Yeast Res. 2017, 17. [Google Scholar] [CrossRef]
- Krogerus, K.; Preiss, R.; Gibson, B. A Unique Saccharomyces Cerevisiae × Saccharomyces uvarum Hybrid Isolated From Norwegian Farmhouse Beer: Characterization and Reconstruction. Front. Microbiol. 2018, 9, 2253. [Google Scholar] [CrossRef] [Green Version]
- Mukai, N.; Nishimori, C.; Fujishige, I.W.; Mizuno, A.; Takahashi, T.; Sato, K. Beer Brewing Using a Fusant between a Sake Yeast and a Brewer’s Yeast. J. Biosci. Bioeng. 2001, 91, 482–486. [Google Scholar] [CrossRef]
- Choi, B.-J.; Jang, K.-I.; Kim, K.-Y. Fermentation Characteristics of Brewing Yeast HCS with Glucoamylase Expression by Rare Mating and Beer Analysis. Food Sci. Biotechnol. 2002, 11, 34–39. [Google Scholar]
- Sato, M.; Kishimoto, M.; Watari, J.; Takashio, M. Breeding of Brewer’s Yeast by Hybridization between a Top-Fermenting Yeast Saccharomyces Cerevisiae and a Cryophilic Yeast Saccharomyces bayanus. J. Biosci. Bioeng. 2002, 93, 509–511. [Google Scholar] [CrossRef]
- Sanchez, R.G.; Solodovnikova, N.; Wendland, J. Breeding of Lager Yeast with Saccharomyces Cerevisiae Improves Stress Resistance and Fermentation Performance. Yeast 2012, 29, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Steensels, J.; Meersman, E.; Snoek, T.; Saels, V.; Verstrepen, K.J. Large-Scale Selection and Breeding to Generate Industrial Yeasts with Superior Aroma Production. Appl. Environ. Microbiol. 2014, 80, 6965–6975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity. Front. Microbiol. 2016, 7, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benito, S.; Ruiz, J.; Belda, I.; Kiene, F.; Beisert, B.; Navascués, E.; Marquina, D.; Calderón, F.; Santos, A.; Rauhut, D. Application of non-Saccharomyces yeasts in wine production. In Non-Conventional Yeasts: From Basic Research to Application; Springer: Cham, Switzerland, 2019; pp. 75–89. [Google Scholar]
- Estela-Escalante, W.D. Perspectives and Uses of Non-Saccharomyces Yeasts in Fermented Beverages. In Frontiers and New Trends in the Science of Fermented Food and Beverages; IntechOpen: London, UK, 2018. [Google Scholar]
- Callejo, M.J.; Tesfaye, W.; González, M.C.; Morata, A. Craft Beers: Current Situation and Future Trends. In New Advances on Fermentation Processes; IntechOpen: London, UK, 2019. [Google Scholar]
- Colomer, M.S.; Funch, B.; Forster, J. The Raise of Brettanomyces Yeast Species for Beer Production. Curr. Opin. Biotechnol. 2019, 56, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Crauwels, S.; Steensels, J.; Aerts, G.; Willems, K.; Verstrepen, K.; Lievens, B. Brettanomyces Bruxellensis, Essential Contributor in Spontaneous Beer Fermentations Providing Novel Opportunities for the Brewing Industry. BrewingScience 2015, 68, 110–121. [Google Scholar]
- Steensels, J.; Daenen, L.; Malcorps, P.; Derdelinckx, G.; Verachtert, H.; Verstrepen, K.J. Brettanomyces Yeasts—From Spoilage Organisms to Valuable Contributors to Industrial Fermentations. Int. J. Food Microbiol. 2015, 206, 24–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, M.; Esteve-Zarzoso, B.; Arroyo, T. Non-Saccharomyces Yeasts: Biotechnological Role for Wine Production. Grape Wine Biotechnol. 2016, 249–271. [Google Scholar]
- Johnson, E.A. Biotechnology of Non-Saccharomyces Yeasts—The Ascomycetes. Appl. Microbiol. Biotechnol. 2013, 97, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Iorizzo, M.; Testa, B.; Lombardi, S.J.; García-Ruiz, A.; Muñoz-González, C.; Bartolomé, B.; Moreno-Arribas, M.V. Selection and Technological Potential of Lactobacillus plantarum Bacteria Suitable for Wine Malolactic Fermentation and Grape Aroma Release. LWT 2016, 73, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Tolosa, J.J.M.; Prieto, S.M. Chapter 25—Non-Saccharomyces Yeasts: An Enzymatic Unexplored World to be Exploited. In Enzymes in Food Biotechnology; Kuddus, M., Ed.; Academic Press: San Diego, CA, USA, 2019; pp. 433–450. ISBN 978-0-12-813280-7. [Google Scholar]
- Piló, F.B.; Carvajal-Barriga, E.J.; Guamán-Burneo, M.C.; Portero-Barahona, P.; Dias, A.M.M.; de Freitas, L.F.D.; Gomes, F.d.C.O.; Rosa, C.A. Saccharomyces Cerevisiae Populations and Other Yeasts Associated with Indigenous Beers (Chicha) of Ecuador. Braz. J. Microbiol. 2018, 49, 808–815. [Google Scholar] [CrossRef]
- Canonico, L.; Agarbati, A.; Comitini, F.; Ciani, M. Torulaspora delbrueckii in the Brewing Process: A New Approach to Enhance Bioflavour and to Reduce Ethanol Content. Food Microbiol. 2016, 56, 45–51. [Google Scholar] [CrossRef]
- Michel, M.; Kopecká, J.; Meier-Dörnberg, T.; Zarnkow, M.; Jacob, F.; Hutzler, M. Screening for New Brewing Yeasts in the Non-Saccharomyces Sector with Torulaspora delbrueckii as Model. Yeast 2016, 33, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Ravasio, D.; Carlin, S.; Boekhout, T.; Groenewald, M.; Vrhovsek, U.; Walther, A.; Wendland, J. Adding Flavor to Beverages with Non-Conventional Yeasts. Fermentation 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Sannino, C.; Mezzasoma, A.; Buzzini, P.; Turchetti, B. Non-conventional Yeasts for Producing Alternative Beers. In Non-Conventional Yeasts: From Basic Research to Application; Sibirny, A., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 361–388. ISBN 978-3-030-21110-3. [Google Scholar]
- Roudil, L.; Russo, P.; Berbegal, C.; Albertin, W.; Spano, G.; Capozzi, V. Non-Saccharomyces Commercial Starter Cultures: Scientific Trends, Recent Patents and Innovation in the Wine Sector. Recent Pat. Food Nutr. Agric. 2019, 11, 27–39. [Google Scholar] [CrossRef]
- Toh, D.W.K.; Chua, J.Y.; Lu, Y.; Liu, S.Q. Evaluation of the Potential of Commercial Non-Saccharomyces Yeast Strains of Torulaspora delbrueckii and Lachancea thermotolerans in Beer Fermentation. Int. J. Food Sci. Technol. 2020, 55, 2049–2059. [Google Scholar] [CrossRef]
- Colomer, M.S.; Chailyan, A.; Fennessy, R.T.; Olsson, K.F.; Johnsen, L.; Solodovnikova, N.; Forster, J. Assessing Population Diversity of Brettanomyces Yeast Species and Identification of Strains for Brewing Applications. Front. Microbiol. 2020, 11, 637. [Google Scholar] [CrossRef]
- Schifferdecker, A.J.; Dashko, S.; Ishchuk, O.P.; Piškur, J. The Wine and Beer Yeast Dekkera bruxellensis. Yeast 2014, 31, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Ciosek, A.; Rusiecka, I.; Poreda, A. Sour Beer Production: Impact of Pitching Sequence of Yeast and Lactic Acid Bacteria. J. Inst. Brew. 2020, 126, 53–58. [Google Scholar] [CrossRef]
- Daenen, L.; Sterckx, F.; Delvaux, F.R.; Verachtert, H.; Derdelinckx, G. Evaluation of the Glycoside Hydrolase Activity of a Brettanomyces Strain on Glycosides from Sour Cherry (Prunus cerasus L.) Used in the Production of Special Fruit Beers. FEMS Yeast Res. 2008, 8, 1103–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokulich, N.A.; Bamforth, C.W.; Mills, D.A. Brewhouse-Resident Microbiota Are Responsible for Multi-Stage Fermentation of American Coolship Ale. PLoS ONE 2012, 7, e35507. [Google Scholar] [CrossRef]
- Lentz, M.; Putzke, T.; Hessler, R.; Luman, E. Genetic and Physiological Characterization of Yeast Isolated from Ripe Fruit and Analysis of Fermentation and Brewing Potential. J. Inst. Brew. 2014, 120, 559–564. [Google Scholar] [CrossRef]
- Spitaels, F.; Wieme, A.D.; Janssens, M.; Aerts, M.; Van Landschoot, A.; De Vuyst, L.; Vandamme, P. The Microbial Diversity of an Industrially Produced Lambic Beer Shares Members of a Traditionally Produced One and Reveals a Core Microbiota for Lambic Beer Fermentation. Food Microbiol. 2015, 49, 23–32. [Google Scholar] [CrossRef]
- Holt, S.; Mukherjee, V.; Lievens, B.; Verstrepen, K.J.; Thevelein, J.M. Bioflavoring by Non-Conventional Yeasts in Sequential Beer Fermentations. Food Microbiol. 2018, 72, 55–66. [Google Scholar] [CrossRef] [PubMed]
- De Roos, J.; Vandamme, P.; De Vuyst, L. Wort Substrate Consumption and Metabolite Production During Lambic Beer Fermentation and Maturation Explain the Successive Growth of Specific Bacterial and Yeast Species. Front. Microbiol. 2018, 9, 2763. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, L.; Ball, T.; Yu, L.; Li, Y.; Xing, F. Revealing a 5,000-y-Old Beer Recipe in China. Proc. Natl. Acad. Sci. USA 2016, 113, 6444–6448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokpohozin, S.E.; Lauterbach, A.; Fischer, S.; Behr, J.; Sacher, B.; Becker, T. Phenotypical and Molecular Characterization of Yeast Content in the Starter of “Tchoukoutou”, a Beninese African Sorghum Beer. Eur. Food Res. Technol. 2016, 242, 2147–2160. [Google Scholar] [CrossRef]
- Domizio, P.; House, J.F.; Joseph, C.M.L.; Bisson, L.F.; Bamforth, C.W. Lachancea Thermotolerans as an Alternative Yeast for the Production of Beer. J. Inst. Brew. 2016, 122, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Zdaniewicz, M.; Satora, P.; Pater, A.; Bogacz, S. Low Lactic Acid-Producing Strain of Lachancea Thermotolerans as a New Starter for Beer Production. Biomolecules 2020, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- N’guessan, K.F.; Brou, K.; Jacques, N.; Casaregola, S.; Dje, K.M. Identification of Yeasts during Alcoholic Fermentation of Tchapalo, a Traditional Sorghum Beer from Côte d’Ivoire. Antonie Van Leeuwenhoek 2011, 99, 855–864. [Google Scholar] [CrossRef]
- Saerens, S.; Swiegers, J.H. Enhancement of Beer Flavor by a Combination of Pichia Yeast and Different Hop Varieties. WO2013030398A1, 7 March 2013. [Google Scholar]
- Saerens, S.; Swiegers, J.H. Production of Low-Alcohol or Alcohol-Free Beer with Pichia Kluyveri Yeast Strains. WO2014135673A2, 12 September 2014. [Google Scholar]
- Brányik, T.; Vicente, A.A.; Dostálek, P.; Teixeira, J.A. A Review of Flavour Formation in Continuous Beer Fermentations. J. Inst. Brew. 2008, 114, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, H.; Du, J. Non-Alcoholic Beer Production by Saccharomycodes ludwigii. Food Sci. 2011, 32, 186–190. [Google Scholar]
- De Francesco, G.; Turchetti, B.; Sileoni, V.; Marconi, O.; Perretti, G. Screening of New Strains of Saccharomycodes ludwigii and Zygosaccharomyces rouxii to Produce Low-alcohol Beer. J. Inst. Brew. 2015, 121, 113–121. [Google Scholar] [CrossRef]
- Gibson, B.; Liti, G. Saccharomyces pastorianus: Genomic Insights Inspiring Innovation for Industry. Yeast 2015, 32, 17–27. [Google Scholar] [CrossRef]
- Bellut, K.; Michel, M.; Zarnkow, M.; Hutzler, M.; Jacob, F.; De Schutter, D.P.; Daenen, L.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Application of Non-Saccharomyces Yeasts Isolated from Kombucha in the Production of Alcohol-Free Beer. Fermentation 2018, 4, 66. [Google Scholar] [CrossRef] [Green Version]
- Azzolini, M.; Fedrizzi, B.; Tosi, E.; Finato, F.; Vagnoli, P.; Scrinzi, C.; Zapparoli, G. Effects of Torulaspora delbrueckii and Saccharomyces Cerevisiae Mixed Cultures on Fermentation and Aroma of Amarone Wine. Eur. Food Res. Technol. 2012, 235, 303–313. [Google Scholar] [CrossRef]
- Tataridis, P.; Kanellis, A.; Logothetis, S.; Nerantzis, E. Use of Non-Saccharomyces Torulaspora delbrueckii Yeast Strains in Winemaking and Brewing. Matica Srp. J. Nat. Sci. 2013, 124, 415–426. [Google Scholar] [CrossRef]
- Einfalt, D. Barley-Sorghum Craft Beer Production with Saccharomyces Cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima Yeast Strains. Eur. Food Res. Technol. 2021, 247, 385–393. [Google Scholar] [CrossRef]
- Sohrabvandi, S.; Razavi, S.H.; Mousavi, S.M.; Mortazavian, A.; Rezaei, K. Application of Saccharomyces rouxii for the Production of Non-Alcoholic Beer. Food Sci. Biotechnol. 2009, 18, 1132–1137. [Google Scholar]
- Bourbon-Melo, N.; Palma, M.; Rocha, M.P.; Ferreira, A.; Bronze, M.R.; Elias, H.; Sá-Correia, I. Use of Hanseniaspora guilliermondii and Hanseniaspora opuntiae to Enhance the Aromatic Profile of Beer in Mixed-Culture Fermentation with Saccharomyces Cerevisiae. Food Microbiol. 2021, 95, 103678. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-Q.; Hui Quek, A.Y. Evaluation of Beer Fermentation with a Novel Yeast Williopsis saturnus. Food Technol. Biotechnol. 2016, 54, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Van Rijswijck, I.M.H.; Wolkers-Rooijackers, J.C.M.; Abee, T.; Smid, E.J. Performance of Non-Conventional Yeasts in Co-Culture with Brewers’ Yeast for Steering Ethanol and Aroma Production. Microb. Biotechnol. 2017, 10, 1591–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- N’Guessan, F.K.; N’Dri, D.Y.; Camara, F.; Djè, M.K. Saccharomyces Cerevisiae and Candida tropicalis as Starter Cultures for the Alcoholic Fermentation of Tchapalo, a Traditional Sorghum Beer. World J. Microbiol. Biotechnol. 2010, 26, 693–699. [Google Scholar] [CrossRef]
- Alloue-Boraud, W.A.M.; N’Guessan, K.F.; Djeni, N.T.; Hiligsmann, S.; Djè, K.M.; Delvigne, F. Fermentation Profile of Saccharomyces Cerevisiae and Candida tropicalis as Starter Cultures on Barley Malt Medium. J. Food Sci. Technol. 2015, 52, 5236–5242. [Google Scholar] [CrossRef] [Green Version]
- De Francesco, G.; Sannino, C.; Sileoni, V.; Marconi, O.; Filippucci, S.; Tasselli, G.; Turchetti, B. Mrakia Gelida in Brewing Process: An Innovative Production of Low Alcohol Beer Using a Psychrophilic Yeast Strain. Food Microbiol. 2018, 76, 354–362. [Google Scholar] [CrossRef]
- Estela-Escalante, W.D.; Moscosa-Santillán, M.; González-Ramírez, J.E.; Rosales-Mendoza, S. Evaluation of the Potential Production of Ethanol by Candida zemplinina Yeast with Regard to Beer Fermentation. J. Am. Soc. Brew. Chem. 2017, 75, 130–135. [Google Scholar]
- Estela-Escalante, W.D.; Rosales-Mendoza, S.; Moscosa-Santillán, M.; González-Ramírez, J.E. Evaluation of the Fermentative Potential of Candida zemplinina Yeasts for Craft Beer Fermentation. J. Inst. Brew. 2016, 122, 530–535. [Google Scholar] [CrossRef] [Green Version]
- Varela, J.; Varela, C. Microbiological Strategies to Produce Beer and Wine with Reduced Ethanol Concentration. Curr. Opin. Biotechnol. 2019, 56, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Iglesias, C.; Montero, O.; Sancho, D.; Blanco, C.A. New Trends in Beer Flavour Compound Analysis. J. Sci. Food Agric. 2015, 95, 1571–1576. [Google Scholar] [CrossRef]
- Sohrabvandi, S.; Mousavi, S.M.; Razavi, S.H.; Mortazavian, A.M.; Rezaei, K. Alcohol-Free Beer: Methods of Production, Sensorial Defects, and Healthful Effects. Food Rev. Int. 2010, 26, 335–352. [Google Scholar] [CrossRef]
- Blanco, C.A.; Andrés-Iglesias, C.; Montero, O. Low-Alcohol Beers: Flavor Compounds, Defects, and Improvement Strategies. Crit. Rev. Food Sci. Nutr. 2016, 56, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Neves, L.E.; Gomes, L.; Guimarães, M.; Ghesti, G. Processes for Alcohol-Free Beer Production: A Review. Food Sci. Technol. 2020, 40, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Montanari, L.; Marconi, O.; Mayer, H.; Fantozzi, P. Chapter 6—Production of Alcohol-Free Beer. In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 61–75. ISBN 978-0-12-373891-2. [Google Scholar]
- Brányik, T.; Silva, D.P.; Baszczyňski, M.; Lehnert, R.; Almeida e Silva, J.B. A Review of Methods of Low Alcohol and Alcohol-Free Beer Production. J. Food Eng. 2012, 108, 493–506. [Google Scholar] [CrossRef]
- Kutyna, D.R.; Varela, C.; Henschke, P.A.; Chambers, P.J.; Stanley, G.A. Microbiological Approaches to Lowering Ethanol Concentration in Wine. Trends Food Sci. Technol. 2010, 21, 293–302. [Google Scholar] [CrossRef]
- Kochláňová, T.; Kij, D.; Kopecká, J.; Kubizniaková, P.; Matoulková, D. Non-Saccharomyces Yeasts and Their Importance in the Brewing Industry Part I-Brettanomyces (Dekkera). Kvas. Prům. 2016, 62, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Contreras, A.; Hidalgo, C.; Schmidt, S.; Henschke, P.; Curtin, C.; Varela, C. The Application of Non-Saccharomyces Yeast in Fermentations with Limited Aeration as a Strategy for the Production of Wine with Reduced Alcohol Content. Int. J. Food Microbiol. 2015, 205, 7–15. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, B.; Liu, X.; Zhang, S.; Shan, J.; Liu, J.; Wang, X. A Novel Approach for the Production of a Non-Alcohol Beer (≤0.5% Abv) by a Combination of Limited Fermentation and Vacuum Distillation. J. Inst. Brew. 2017, 123, 533–536. [Google Scholar] [CrossRef] [Green Version]
- Jackowski, M.; Trusek, A. Non-Alcoholic Beer Production—An Overview. Pol. J. Chem. Technol. 2018, 20, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Meier-Dörnberg, T.; Hutzler, M. Alcohol-Free Wheat Beer with Maltose Negative Yeast Strain Saccharomycodes ludwigii. In Proceedings of the Conference: Young Scientists Symposium on Malting, Brewing and Distilling, Ghent, Belgium; 2014; Volume 3. [Google Scholar]
- Bellut, K.; Arendt, E.K. Chance and Challenge: Non-Saccharomyces Yeasts in Nonalcoholic and Low Alcohol Beer Brewing—A Review. J. Am. Soc. Brew. Chem. 2019, 77, 77–91. [Google Scholar] [CrossRef]
- Strejc, J.; Siříšťová, L.; Karabín, M.; Almeida e Silva, J.B.; Brányik, T. Production of Alcohol-Free Beer with Elevated Amounts of Flavouring Compounds Using Lager Yeast Mutants. J. Inst. Brew. 2013, 119, 149–155. [Google Scholar] [CrossRef]
- Tilloy, V.; Ortiz-Julien, A.; Dequin, S. Reduction of Ethanol Yield and Improvement of Glycerol Formation by Adaptive Evolution of the Wine Yeast Saccharomyces Cerevisiae under Hyperosmotic Conditions. Appl. Environ. Microbiol. 2014, 80, 2623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellut, K.; Krogerus, K.; Arendt, E.K. Lachancea Fermentati Strains Isolated from Kombucha: Fundamental Insights, and Practical Application in Low Alcohol Beer Brewing. Front. Microbiol. 2020, 11, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Liu, Y.; Zhang, W. Method for Manufacturing Alcohol-Free Beer through Candida shehatae. CN102220198B, 06 February 2013. [Google Scholar]
- Arroyo-López, F.N.; Pérez-Torrado, R.; Querol, A.; Barrio, E. Modulation of the Glycerol and Ethanol Syntheses in the Yeast Saccharomyces kudriavzevii Differs from That Exhibited by Saccharomyces Cerevisiae and Their Hybrid. Food Microbiol. 2010, 27, 628–637. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Pietrafesa, A.; Siesto, G.; Pietrafesa, R.; Zambuto, M.; Romano, P. Use of Saccharomyces Cerevisiae var. boulardii in Co-Fermentations with S. Cerevisiae for the Production of Craft Beers with Potential Healthy Value-Added. Int. J. Food Microbiol. 2018, 284, 22–30. [Google Scholar] [CrossRef]
- McFarland, L.V. Systematic Review and Meta-Analysis of Saccharomyces boulardii in Adult Patients. World J. Gastroenterol. 2010, 16, 2202–2222. [Google Scholar] [CrossRef]
- Im, E.; Pothoulakis, C. Recent Advances in Saccharomyces boulardii Research. Intest. Microbiota Equilib. Disord. 2010, 34, S62–S70. [Google Scholar] [CrossRef]
- Czerucka, D.; Piche, T.; Rampal, P. Review Article: Yeast as Probiotics—Saccharomyces boulardii. Aliment Pharmacol. 2007, 26, 767–778. [Google Scholar] [CrossRef]
- Kelesidis, T.; Pothoulakis, C. Efficacy and Safety of the Probiotic Saccharomyces boulardii for the Prevention and Therapy of Gastrointestinal Disorders. Ther. Adv. Gastroenterol. 2011, 5, 111–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCullough, M.J.; Clemons, K.V.; McCusker, J.H.; Stevens, D.A. Species Identification and Virulence Attributes of Saccharomyces boulardii. J. Clin. Microbiol. 1998, 36, 2613. [Google Scholar] [CrossRef] [Green Version]
- Kabbani, T.A.; Pallav, K.; Dowd, S.E.; Villafuerte-Galvez, J.; Vanga, R.R.; Castillo, N.E.; Hansen, J.; Dennis, M.; Leffler, D.A.; Kelly, C.P. Prospective Randomized Controlled Study on the Effects of Saccharomyces boulardii CNCM I-745 and Amoxicillin-Clavulanate or the Combination on the Gut Microbiota of Healthy Volunteers. Gut Microbes 2017, 8, 17–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenhill, C. Probiotic Helps to Eradicate H. Pylori. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 362. [Google Scholar] [CrossRef]
- De Paula, B.P.; Chávez, D.W.H.; Lemos Junior, W.J.F.; Guerra, A.F.; Corrêa, M.F.D.; Pereira, K.S.; Coelho, M.A.Z. Growth Parameters and Survivability of Saccharomyces boulardii for Probiotic Alcoholic Beverages Development. Front. Microbiol. 2019, 10, 2092. [Google Scholar] [CrossRef]
- Senkarcinova, B.; Graça Dias, I.A.; Nespor, J.; Branyik, T. Probiotic Alcohol-Free Beer Made with Saccharomyces Saccharomyces Cerevisiae var. boulardii. LWT 2019, 100, 362–367. [Google Scholar] [CrossRef]
- Mulero-Cerezo, J.; Briz-Redón, Á.; Serrano-Aroca, Á. Saccharomyces Cerevisiae var. boulardii: Valuable Probiotic Starter for Craft Beer Production. Appl. Sci. 2019, 9, 3250. [Google Scholar] [CrossRef] [Green Version]
- De Paula, B.P.; de Souza Lago, H.; Firmino, L.; Júnior, W.J.F.L.; Corrêa, M.F.D.; Guerra, A.F.; Pereira, K.S.; Coelho, M.A.Z. Technological Features of Saccharomyces Cerevisiae var. boulardii for Potential Probiotic Wheat Beer Development. LWT 2021, 135, 110233. [Google Scholar] [CrossRef]
- Ramírez-Cota, G.Y.; López-Villegas, E.O.; Jiménez-Aparicio, A.R.; Hernández-Sánchez, H. Modeling the Ethanol Tolerance of the Probiotic Yeast Saccharomyces Cerevisiae var. boulardii CNCM I-745 for Its Possible Use in a Functional Beer. Probiotics Antimicrob. Proteins 2021, 13, 187–194. [Google Scholar] [CrossRef]
- Agarbati, A.; Canonico, L.; Marini, E.; Zannini, E.; Ciani, M.; Comitini, F. Potential Probiotic Yeasts Sourced from Natural Environmental and Spontaneous Processed Foods. Foods 2020, 9, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Pacheco, P.; Cueva, C.; Arévalo-Villena, M.; Moreno-Arribas, M.V.; Pérez, A.B. Saccharomyces Cerevisiae and Hanseniaspora Osmophila Strains as Yeast Active Cultures for Potential Probiotic Applications. Food Funct. 2019, 10, 4924–4931. [Google Scholar] [CrossRef] [PubMed]
- Perricone, M.; Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M. Technological Characterization and Probiotic Traits of Yeasts Isolated from Altamura Sourdough to Select Promising Microorganisms as Functional Starter Cultures for Cereal-Based Products. Food Microbiol. 2014, 38, 26–35. [Google Scholar] [CrossRef]
- Arevalo-Villena, M.; Briones-Perez, A.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Biotechnological Application of Yeasts in Food Science: Starter Cultures, Probiotics and Enzyme Production. J. Appl. Microbiol. 2017, 123, 1360–1372. [Google Scholar] [CrossRef] [Green Version]
- Pennacchia, C.; Blaiotta, G.; Pepe, O.; Villani, F. Isolation of Saccharomyces Cerevisiae Strains from Different Food Matrices and Their Preliminary Selection for a Potential Use as Probiotics. J. Appl. Microbiol. 2008, 105, 1919–1928. [Google Scholar] [CrossRef]
- Ochangco, H.S.; Gamero, A.; Smith, I.M.; Christensen, J.E.; Jespersen, L.; Arneborg, N. In Vitro Investigation of Debaryomyces hansenii Strains for Potential Probiotic Properties. World J. Microbiol. Biotechnol. 2016, 32, 141. [Google Scholar] [CrossRef] [PubMed]
- Ogunremi, O.R.; Sanni, A.I.; Agrawal, R. Probiotic Potentials of Yeasts Isolated from Some Cereal-Based Nigerian Traditional Fermented Food Products. J. Appl. Microbiol. 2015, 119, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Binetti, A.; Carrasco, M.; Reinheimer, J.; Suárez, V. Yeasts from Autochthonal Cheese Starters: Technological and Functional Properties. J. Appl. Microbiol. 2013, 115, 434–444. [Google Scholar] [CrossRef] [PubMed]
Metabolite Class | Principal Compounds | Comments | References |
---|---|---|---|
Higher alcohols | amyl alcohol, n-propanol, isobutanol, isoamyl alcohol, 2-phenylethanol | Higher alcohols can contribute floral, fruity or herbal aromas. Amyl alcohol (alcoholic, solvent), n-propanol (Alcohol, sweet), isobutanol (solvent), isoamyl alcohol (Alcoholic, banana), 2-phenylethanol (Roses). | [29,49,50,51] |
Esters | ethyl acetate, isoamyl acetate, isobutyl acetate phenylethyl acetate, ethyl hexanoate and ethyl octanoate | They contribute to a wide range of fruity flavors to the composition of fermented beverages. Ethyl acetate (solvent-like aroma), isoamyl acetate (banana aroma), isobutyl acetate (fruity aroma), phenylethyl acetate (roses and honey aroma), ethyl hexanoate (sweet apple aroma) and ethyl octanoate (sour apple aroma). | [29,49,50,51] |
Carbonyls | acetaldehyde, diacetyl, 2,3-pentanedione | Excessive concentrations of acetaldehyde carbonyl compounds cause stale flavor in beer and impart an undesirable “cut grass” or “green apple” character. Diacetyl contributes negatively with a buttery flavor to the beer | [49,51] |
Organic acids | Succinic, citric, acetic, malic and pyruvic acids | The balance between sourness and sweetness of a beer is of great importance. | [52,53] |
Polyols | Glycerol | Contribute to the smoothness | [49] |
Sulphur compounds | Hydrogen sulphide, Dimethyl sulphide, Sulphur dioxide, Thiols | Small amounts of sulphur compounds can be acceptable, or even desirable in some beers, in excess they give rise to unpleasant off-flavors. | [49,50] |
Species | Comments | References |
---|---|---|
S. cerevisiae ale/S. cerevisiae sake | Beer brewed using hybrids contained more ethanol and esters compared to beer brewed using the parent strains. | [57] |
S. cerevisiae ale/S. cerevisiae (syn S. cerevisiae var. diastaticus) | Hybrid had higher osmotolerance and higher ethanol yield than the parent strain. | [58] |
S. cerevisiae ale/Cold-tolerant S. bayanus | Hybridization with S. bayanus is useful to improve low-temperature fermentability of the top-fermenting yeast S. cerevisiae. | [59] |
S. cerevisiae ale/S. bayanus | Hybrid strains, compared to the lager parent strain, showed improved stress resistance (osmo- and temperature tolerance), fermentation performance and improved survival at the end of fermentation. | [60] |
S. cerevisiae, S. paradoxus, and S. pastorianus | Some hybrids show a distinct heterosis (hybrid vigor) effect and produce greater quantities of isoamyl acetate than the best parental strains, while retaining their overall fermentation performance. | [61] |
S. cerevisiae/S. eubayanus | The hybrid had improved tolerance to low temperatures and the capacity of oligosaccharide utilization, compared to the parent strains. | [43] |
S. cerevisiae/S. eubayanus | Hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigor, fermenting faster and producing beer with higher alcohol content than the parent strains. | [44] |
S. cerevisiae ale and wine strains/S. eubayanus | Hybrids produced a greater diversity of aroma compounds compared to traditional lager yeast and parent strains. | [46] |
S. cerevisiae ale strain/S. eubayanus type strain | Some hybrids showed increased fermentation rates and produced higher concentration of flavor-active esters. | [45] |
S.cerevisiae/S.uvarum | The hybrid strain possesses a range of industrially desirable phenotypic properties, including broad temperature tolerance, good ethanol tolerance, and efficient carbohydrate use. | [56] |
Species | Comments | References |
---|---|---|
Brettanomyces bruxellensis/Dekkera bruxellensis | Significant esters production: ethyl acetate, ethyl caprate, ethyl caprylate and ethyl lactate. | [66,67,68,73,75,83,84,85,86,87,88,89] |
Debaryomyces hansenii | Significant production of glycerol, acetic acid, ethanol, isoamyl alcohol, hexanol, isoamyl acetate, ethyl octanoate, ethyl hexanoate | [86,87,90] |
Lachancea thermotolerans | Low acetic acid and high lactic acid and glycerol productions. | [87,91,92] |
Pichia kluyveri | Low ethanol production with significant production of isoamyl acetate, isoamyl alcohol, ethyl butyrate, ethyl hexanoate, and ethyloctanoate, ethyl acetate | [84,87,93,94,95] |
Saccharomycodes ludwigii | Low production of ethanol, significant production of ethyl acetate, isoamyl acetate and 4-vinylguaiacol, but high quantities of amyl alcohols and higher alcohols | [96,97,98] |
Torulaspora delbrueckii | Ethanol up to 9–11% v/v, significant production of β-phenylethanol, n-propanol, iso-butanol, amyl alcohol, and ethyl acetate, ability to convert hop monoterpene alcohols into linalool | [12,73,74,75,87,99,100,101,102,103] |
Wickerhamomyces anomalus | Low ethanol and significant production of ethyl propanoate, phenyl ethanol, 2-phenylethyl acetate, and ethyl acetate | [12,86,87,88] |
Zygosaccharomyces rouxii | Low ethanol and significant production of ethyl acetate, amyl alcohols, isoamyl alcohols, and other esters and higher alcohol | [98,104] |
Hanseniaspora guilliermondii, Hanseniaspora opuntiae | Significant production of ethyl acetate and phenylethyl acetate, producing a beer with a pleasant ‘honey’ aroma | [105] |
Williopsis saturnus var. mrakii | Low ethanol with higher levels of acetate esters, terpenes and terpenoids | [106] |
Cyberlindnera fabianii and Pichia kudriavzevii | Low ethanol production, decrease in high alcohols and volatile esters (ethyl acetate, 3-methylbutyl acetate, methylpropyl acetate, phenylethyl acetate, ethyl hexanoate and ethyl octanoate) compared to S. cerevisiae | [107] |
Pichia anomala and Zygoascus meyerae | Production of aromatic compounds such as 4-vinylguaiacol, β-phenylethyl alcohol and isoamyl alcohol | [26] |
Hanseniaspora vineae | Low- alcohol and high esters production (in particular, 2-phenylethyl acetate) | [26] |
Candida tropicalis | Higher alcohols and acetaldehyde, low amount of succinate and lactate, and reduced aroma-active compounds. | [108,109] |
Mrakia gelida and Mrakia blollopis | Low-alcohol production; sensory profile fruitier | [110] |
Candida zemplinina | Higher ethanol production | [111,112] |
Species | Beer Ethanol Content % Vol | References |
---|---|---|
Lachancea fermentati | <1.3 | [129] |
Saccharomycodes ludwigii | <0.4 | [96,97,98] |
Torulaspora delbrueckii | 0.5–2.7 | [74,75,100,122] |
Pichia kluyveri | <0.2 | [84,87,93,94,95] |
Wickerhamomyces anomalus | <0.2 | [12,86,87,88] |
Zygosaccharomyces rouxii, Zygosaccharomyces bailii, Zygosaccharomyces kombuchaensis | <0.5 | [98,100,104] |
Hanseniaspora vineae, Hanseniaspora valbyensis | <0.5 | [26,100] |
Mrakia gelida | <1.5 | [110] |
Candida shehatae | <0.5 | [130] |
Candida zemplinina (Starmerella bacillaris) | ~1.5 | [111,112] |
Cyberlindnera fabianii (Candida fabianii) Cyberlindnera mrakii (Williopsis saturnus var. mrakii) | 0.6; 1.7 | [107] |
Pichia kudriavzevii | <1 | [107] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorizzo, M.; Coppola, F.; Letizia, F.; Testa, B.; Sorrentino, E. Role of Yeasts in the Brewing Process: Tradition and Innovation. Processes 2021, 9, 839. https://doi.org/10.3390/pr9050839
Iorizzo M, Coppola F, Letizia F, Testa B, Sorrentino E. Role of Yeasts in the Brewing Process: Tradition and Innovation. Processes. 2021; 9(5):839. https://doi.org/10.3390/pr9050839
Chicago/Turabian StyleIorizzo, Massimo, Francesca Coppola, Francesco Letizia, Bruno Testa, and Elena Sorrentino. 2021. "Role of Yeasts in the Brewing Process: Tradition and Innovation" Processes 9, no. 5: 839. https://doi.org/10.3390/pr9050839
APA StyleIorizzo, M., Coppola, F., Letizia, F., Testa, B., & Sorrentino, E. (2021). Role of Yeasts in the Brewing Process: Tradition and Innovation. Processes, 9(5), 839. https://doi.org/10.3390/pr9050839