An Integrated Multicriteria Decision-Making Approach for Collection Modes Selection in Remanufacturing Reverse Logistics
Abstract
:1. Introduction
2. Literature Review
2.1. RL Provider Selection Methods
2.2. RL Provider Selection Criteria
3. Methodology
3.1. Evaluation Criteria of RL Provider Selection
3.2. Selection Methodology for RL Provider
3.2.1. Analytic Hierarchy Process (AHP)
3.2.2. TOPSIS
4. Application in Case Study
4.1. Application of AHP
4.2. Application of TOPSIS
5. Discussions of Findings
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishizawa, O. Circulation Expenses: An Unknown Third Source of Profits; Koshinesha: Tokyo, Japan, 1970. [Google Scholar]
- Kaviani, M.A.; Tavana, M.; Kumar, A.; Michnik, J.; Niknam, R.; de Campos, E.A.R. An integrated framework for evaluating the barriers to successful implementation of reverse logistics in the automotive industry. J. Clean. Prod. 2020, 272, 122714. [Google Scholar] [CrossRef]
- Rogers, D.S.; Tibben-Lembke, R. Going Backwards: Reverse Logistics Trends and Practices; Reverse Logistics Executive Council: Reno, NV, USA, 1999. [Google Scholar]
- Lai, K.-h.; Wu, S.J.; Wong, C.W.Y. Did reverse logistics practices hit the triple bottom line of Chinese manufacturers? Int. J. Prod. Econ. 2013, 146, 106–117. [Google Scholar] [CrossRef]
- Jayaram, J.; Avittathur, B. Green supply chains: A perspective from an emerging economy. Int. J. Prod. Econ. 2015, 164, 234–244. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Remanufacturing of Auto Parts: The “First Year” Has Arrived, and the Future Can Be Expected; National Development and Reform Commission: Beijing, China, 2020.
- Cao, J.; Chen, X.; Zhang, X.; Gao, Y.; Zhang, X.; Kumar, S. Overview of remanufacturing industry in China: Government policies, enterprise, and public awareness. J. Clean. Prod. 2020, 242, 118450. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.; Mi, Y. Third-party remanufacturing mode selection for competitive closed-loop supply chain based on evolutionary game theory. J. Clean. Prod. 2020, 263, 121305. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, Z.; Zhang, H.; Wang, Y.; Yang, Y.; Li, Y. An integrated MCDM approach considering demands-matching for reverse logistics. J. Clean. Prod. 2019, 208, 199–210. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Wang, Y. A Review of the Criteria and Methods of Reverse Logistics Provider Selection. Processes 2020, 8, 705. [Google Scholar] [CrossRef]
- Schöggl, J.-P.; Stumpf, L.; Baumgartner, R.J. The narrative of sustainability and circular economy—A longitudinal review of two decades of research. Resour. Conserv. Recycl. 2020, 163, 105073. [Google Scholar] [CrossRef]
- Pieroni, M.P.P.; McAloone, T.C.; Pigosso, D.C.A. Circular economy business model innovation: Sectorial patterns within manufacturing companies. J. Clean. Prod. 2020, 286, 124921. [Google Scholar] [CrossRef]
- Saaty, T.L.; Tran, L.T. On the invalidity of fuzzifying numerical judgments in the Analytic Hierarchy Process. MComM 2007, 46, 962–975. [Google Scholar] [CrossRef]
- Haeri, S.A.S.; Rezaei, J. A grey-based green provider selection model for uncertain environments. J. Clean. Prod. 2019, 221, 768–784. [Google Scholar] [CrossRef]
- Govindan, K.; Mina, H.; Esmaeili, A.; Gholami-Zanjani, S.M. An Integrated Hybrid Approach for Circular provider selection and Closed loop Supply Chain Network Design under Uncertainty. J. Clean. Prod. 2020, 242, 118317. [Google Scholar] [CrossRef]
- Tosarkani, B.M.; Amin, S.H. A multi-objective model to configure an electronic reverse logistics network and third party selection. J. Clean. Prod. 2018, 198, 662–682. [Google Scholar] [CrossRef]
- Tavana, M.; Zareinejad, M.; Santos-Arteaga, F.J.; Kaviani, M.A. A conceptual analytic network model for evaluating and selecting third-party reverse logistics providers. Int. J. Adv. Manuf. Technol. 2016, 86, 1705–1721. [Google Scholar] [CrossRef]
- Govindan, K.; Sarkis, J.; Palaniappan, M. An analytic network process-based multicriteria decision making model for a reverse supply chain. Int. J. Adv. Manuf. Technol. 2013, 68, 863–880. [Google Scholar] [CrossRef]
- Zarbakhshnia, N.; Jaghdani, T.J. Sustainable provider evaluation and selection with a novel two-stage DEA model in the presence of uncontrollable inputs and undesirable outputs: A plastic case study. Int. J. Adv. Manuf. Technol. 2018, 97, 2933–2945. [Google Scholar] [CrossRef]
- Azadi, M.; Saen, R.F. A new chance-constrained data envelopment analysis for selecting third-party reverse logistics providers in the existence of dual-role factors. Expert. Syst. Appl. 2011, 38, 12231–12236. [Google Scholar] [CrossRef]
- Momeni, E.; Azadi, M.; Saen, R. Measuring the efficiency of third party reverse logistics provider in supply chain by multi objective additive network DEA model. Int. J. Ship. Transp. Log. 2015, 7, 21–41. [Google Scholar] [CrossRef]
- Kannan, G.; Pokharel, S.; Sasi Kumar, P. A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resour. Conserv. Recycl. 2009, 54, 28–36. [Google Scholar] [CrossRef]
- Govindan, K.; Palaniappan, M.; Zhu, Q.; Kannan, D. Analysis of third party reverse logistics provider using interpretive structural modeling. Int. J. Prod. Econ. 2012, 140, 204–211. [Google Scholar] [CrossRef]
- Gardas, B.B.; Raut, R.D.; Narkhede, B.E. Analysing the 3PL service provider’s evaluation criteria through a sustainable approach. Int. J. Prod. Perf. Manag. 2019, 68, 958–980. [Google Scholar] [CrossRef]
- Liu, A.; Ji, X.; Lu, H.; Liu, H. The selection of 3PRLs on self-service mobile recycling machine: Interval-valued pythagorean hesitant fuzzy best-worst multi-criteria group decision-making. J. Clean. Prod. 2019, 230, 734–750. [Google Scholar] [CrossRef]
- Garg, C.P.; Sharma, A. Sustainable outsourcing partner selection and evaluation using an integrated BWM–VIKOR framework. Environ. Dev. Sustain. 2018, 22, 1529–1557. [Google Scholar] [CrossRef]
- Govindan, K.; Jha, P.C.; Agarwal, V.; Darbari, J.D. Environmental management partner selection for reverse supply chain collaboration: A sustainable approach. J. Environ. Manag. 2019, 236, 784–797. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, G. A novel hybrid MCDM framework for WEEE recycling partner evaluation on the basis of green competencies. J. Clean. Prod. 2019, 241, 118017. [Google Scholar] [CrossRef]
- Liu, A.; Xiao, Y.; Lu, H.; Tsai, S.-B.; Song, W. A fuzzy three-stage multi-attribute decision-making approach based on customer needs for sustainable provider selection. J. Clean. Prod. 2019, 239, 118043. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, X.; Lim, M.K.; He, Y.; Li, L. Sustainable recycling partner selection using fuzzy DEMATEL-AEW-FVIKOR: A case study in small-and-medium enterprises (SMEs). J. Clean. Prod. 2018, 196, 489–504. [Google Scholar] [CrossRef]
- Luthra, S.; Govindan, K.; Kannan, D.; Mangla, S.K.; Garg, C.P. An integrated framework for sustainable provider selection and evaluation in supply chains. J. Clean. Prod. 2017, 140, 1686–1698. [Google Scholar] [CrossRef]
- Sasikumar, P.; Haq, A.N. Integration of closed loop distribution supply chain network and 3PRLP selection for the case of battery recycling. IJPR 2011, 49, 3363–3385. [Google Scholar] [CrossRef]
- Prakash, C.; Barua, M.K. A combined MCDM approach for evaluation and selection of third-party reverse logistics partner for Indian electronics industry. Sustain. Prod. Consump. 2016, 7, 66–78. [Google Scholar] [CrossRef]
- Dos Santos, B.M.; Godoy, L.P.; Campos, L.M.S. Performance evaluation of green providers using entropy-TOPSIS-F. J. Clean. Prod. 2019, 207, 498–509. [Google Scholar] [CrossRef]
- Senthil, S.; Srirangacharyulu, B.; Ramesh, A. A robust hybrid multi-criteria decision making methodology for contractor evaluation and selection in third-party reverse logistics. Expert Syst. Appl. 2014, 41, 50–58. [Google Scholar] [CrossRef]
- Prakash, C.; Barua, M.K. An analysis of integrated robust hybrid model for third-party reverse logistics partner selection under fuzzy environment. Resour. Conserv. Recycl. 2016, 108, 63–81. [Google Scholar] [CrossRef]
- Govindan, K.; Agarwal, V.; Darbari, J.D.; Jha, P.C. An integrated decision making model for the selection of sustainable forward and reverse logistic providers. AnOR 2017, 273, 607–650. [Google Scholar] [CrossRef]
- Chen, K.; Yu, X.; Yang, L. GI-TOPSIS Based on Combinational Weight Determination and its Application to Selection of Reverse Logistics Service Providers. J. Grey Syst. 2013, 25, 16–33. [Google Scholar]
- Zarbakhshnia, N.; Wu, Y.; Govindan, K.; Soleimani, H. A novel hybrid multiple attribute decision-making approach for outsourcing sustainable reverse logistics. J. Clean. Prod. 2020, 242, 118461. [Google Scholar] [CrossRef]
- Mavi, R.K.; Goh, M.; Zarbakhshnia, N. Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. Int. J. Adv. Manuf. Technol. 2017, 91, 2401–2418. [Google Scholar] [CrossRef]
- Luo, Z.; Li, Z. A MAGDM Method Based on Possibility Distribution Hesitant Fuzzy Linguistic Term Set and Its Application. Mathematics 2019, 7, 1063. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-L.; Ying, C.-S.; Chin, K.-S.; Yang, H.-T.; Xu, J. Third-party reverse logistics provider selection approach based on hybrid-information MCDM and cumulative prospect theory. J. Clean. Prod. 2018, 195, 573–584. [Google Scholar] [CrossRef]
- Zarbakhshnia, N.; Soleimani, H.; Ghaderi, H. Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria. Appl. Soft. Comput. 2018, 65, 307–319. [Google Scholar] [CrossRef]
- Sen, D.K.; Datta, S.; Mahapatra, S.S. Decision Support Framework for Selection of 3PL Service Providers: Dominance-Based Approach in Combination with Grey Set Theory. Int. J. Inf. Technol. Decis. 2017, 16, 25–57. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, H.; Feng, Y.; Jia, H.; Zhang, C.; Jiang, Z.; Li, Z.; Li, P. Operation patterns analysis of automotive components remanufacturing industry development in China. J. Clean. Prod. 2017, 164, 1363–1375. [Google Scholar] [CrossRef]
- Pourjavad, E.; Mayorga, R.V. A fuzzy rule-based approach to prioritize third-party reverse logistics based on sustainable development pillars. J. Intell. Fuzzy Syst. 2018, 35, 3125–3138. [Google Scholar] [CrossRef]
- Guarnieri, P.; Sobreiro, V.A.; Nagano, M.S.; Marques Serrano, A.L. The challenge of selecting and evaluating third-party reverse logistics providers in a multicriteria perspective: A Brazilian case. J. Clean. Prod. 2015, 96, 209–219. [Google Scholar] [CrossRef]
- Silva, A.L.E.; Moraes, J.A.R.; Machado, Ê.L. Proposta de produção mais limpa voltada às práticas de ecodesign e logística reversa. Eng. Sanit. Ambient. 2015, 20, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Singhal, D.; Tripathy, S.; Jena, S.K. Remanufacturing for the circular economy: Study and evaluation of critical factors. Resour. Conserv. Recycl. 2020, 156, 104681. [Google Scholar] [CrossRef]
- Meherishi, L.; Narayana, S.A.; Ranjani, K.S. Sustainable packaging for supply chain management in the circular economy: A review. J. Clean. Prod. 2019, 237, 117582. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill Book, Co.: New York, NY, USA, 1980. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attributes Decision Making Methods and Applications; Springer: Berlin, Germany, 1981. [Google Scholar]
- Li, S. Research on remanufacturing technology and Development Trend of Automobile engine. Intern. Combust. Engine Parts 2019, 18, 203–204. [Google Scholar]
- Jiang, Z.; Ding, Z.; Zhang, H.; Cai, W.; Liu, Y. Data-driven ecological performance evaluation for remanufacturing process. Energ. Convers. Manag. 2019, 198, 111844. [Google Scholar] [CrossRef]
- Chu, J.W. Automotive Recycling Engineering, 2nd ed.; People Transportation Press: Beijing, China, 2012. [Google Scholar]
- Jiang, Z.; Jiang, Y.; Wang, Y.; Zhang, H.; Cao, H.; Tian, G. A hybrid approach of rough set and case-based reasoning to remanufacturing process planning. J. Intell. Manuf. 2016, 30, 19–32. [Google Scholar] [CrossRef]
- Ding, Z.; Jiang, Z.; Zhang, H.; Cai, W.; Liu, Y. An integrated decision-making method for selecting machine tool guideways considering remanufacturability. Int. J. Comput. Integr. Manuf. 2020, 33, 686–700. [Google Scholar] [CrossRef]
Factors | Relevant Characteristics in the Literature | References |
---|---|---|
Sustainability | The evaluation criteria are determined based on the three dimensions of economy, environment and society | [20,21,22,23,24,25,27,29,37,38] |
GSCM | Green recycling, green purchasing, green transportation, resource and environmental management capabilities, social responsibility benefits, green core competencies | [14,26,33] |
CE | Air pollution, environmental standards, eco-friendly raw materials, eco-design, eco-friendly packaging, eco-friendly transportation, clean technology | [13] |
Performance dimensions | Reverse logistics services, reverse logistics functions, organizational role, user satisfaction, RL activities, organizational performance criteria, IT application | [15,16,32,34] |
Scale | Explanation |
---|---|
1 | Two factors are of equal importance compared to each other |
3 | One factor is slightly more important than the other |
5 | One factor is obviously more important than the other |
7 | One factor is strongly more important than the other |
9 | One factor is extremely more important than the other |
2, 4, 6, 8 | Intermediate values |
Reciprocals | Reciprocals for inverse comparison |
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 |
Dimensions | Pairwise Comparisons | Weights | Rank | |||
---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | |||
Economy (A1) | 1 | 0.5 | 0.2 | 0.25 | 0.0749 | 4 |
Society (A2) | 2 | 1 | 0.25 | 0.8 | 0.1419 | 3 |
Technology (A3) | 5 | 4 | 1 | 5 | 0.5950 | 1 |
Circularity (A4) | 4 | 1.25 | 0.2 | 1 | 0.1883 | 2 |
Dimensions | Criteria | Relative Weights | Relative Rank | Global Weights | Global Rank |
---|---|---|---|---|---|
Economy | E1 | 0.1250 | 2 | 0.0094 | 13 |
E2 | 0.8750 | 1 | 0.0655 | 5 | |
Society | E3 | 0.2857 | 2 | 0.0405 | 8 |
E4 | 0.5714 | 1 | 0.0811 | 3 | |
E5 | 0.1429 | 3 | 0.0203 | 10 | |
Technology | E6 | 0.5000 | 1 | 0.2975 | 1 |
E7 | 0.1000 | 3 | 0.0595 | 6 | |
E8 | 0.4000 | 2 | 0.2380 | 2 | |
Circularity | E9 | 0.2034 | 3 | 0.0383 | 9 |
E10 | 0.0508 | 5 | 0.0096 | 12 | |
E11 | 0.4068 | 1 | 0.0766 | 4 | |
E12 | 0.0678 | 4 | 0.0128 | 11 | |
E13 | 0.2712 | 2 | 0.0511 | 7 |
E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 | E11 | E12 | E13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MT | 2.875 | 2 | 6.25 | 6.375 | 6.125 | 7 | 7.5 | 6.375 | 7 | 7 | 7.125 | 7.5 | 7.375 |
TPT | 3.75 | 4 | 6.375 | 6.625 | 6.5 | 6.625 | 6.375 | 6.875 | 6.875 | 6.5 | 6 | 5.625 | 6.375 |
RT | 3.125 | 3.375 | 6.125 | 6.25 | 6.5 | 5.25 | 5 | 6.25 | 6.125 | 5.625 | 5.5 | 5.125 | 5.25 |
E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 | E11 | E12 | E13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MT | 0.5075 | 0.3570 | 0.5773 | 0.5734 | 0.5545 | 0.6378 | 0.6793 | 0.5658 | 0.6052 | 0.6314 | 0.6587 | 0.7020 | 0.6661 |
TPT | 0.6619 | 0.7139 | 0.5888 | 0.5959 | 0.5884 | 0.6036 | 0.5774 | 0.6101 | 0.5944 | 0.5863 | 0.5547 | 0.5265 | 0.5758 |
RT | 0.5516 | 0.6024 | 0.5657 | 0.5622 | 0.5884 | 0.4784 | 0.4529 | 0.5547 | 0.5296 | 0.5074 | 0.5084 | 0.4797 | 0.4742 |
E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 | E11 | E12 | E13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MT | 0.0048 | 0.0234 | 0.0234 | 0.0465 | 0.0113 | 0.1897 | 0.0404 | 0.1347 | 0.0232 | 0.0061 | 0.0505 | 0.0090 | 0.0340 |
TPT | 0.0062 | 0.0468 | 0.0238 | 0.0483 | 0.0119 | 0.1796 | 0.0344 | 0.1452 | 0.0228 | 0.0056 | 0.0425 | 0.0067 | 0.0294 |
RT | 0.0052 | 0.0395 | 0.0229 | 0.0456 | 0.0119 | 0.1423 | 0.0269 | 0.1320 | 0.0203 | 0.0049 | 0.0389 | 0.0061 | 0.0242 |
= (0.0062, 0.0468, 0.0238, 0.0483, 0.0119, 0.1897, 0.0404, 0.1452, 0.0232, 0.0061, 0.0505, 0.0090, 0.0340) = (0.0048, 0.0234, 0.0229, 0.0456, 0.0113, 0.1423, 0.0269, 0.1320, 0.0203, 0.0049, 0.0389, 0.0061, 0.0242) |
Alternatives | CCi | Rank | ||
---|---|---|---|---|
MT | 0.0258 | 0.0518 | 0.6679 | 2nd |
TPT | 0.0152 | 0.0471 | 0.7565 | 1st |
RT | 0.0540 | 0.0161 | 0.2296 | 3rd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, Z.; Wang, Y.; Yan, W. An Integrated Multicriteria Decision-Making Approach for Collection Modes Selection in Remanufacturing Reverse Logistics. Processes 2021, 9, 631. https://doi.org/10.3390/pr9040631
Zhang X, Li Z, Wang Y, Yan W. An Integrated Multicriteria Decision-Making Approach for Collection Modes Selection in Remanufacturing Reverse Logistics. Processes. 2021; 9(4):631. https://doi.org/10.3390/pr9040631
Chicago/Turabian StyleZhang, Xumei, Zhizhao Li, Yan Wang, and Wei Yan. 2021. "An Integrated Multicriteria Decision-Making Approach for Collection Modes Selection in Remanufacturing Reverse Logistics" Processes 9, no. 4: 631. https://doi.org/10.3390/pr9040631
APA StyleZhang, X., Li, Z., Wang, Y., & Yan, W. (2021). An Integrated Multicriteria Decision-Making Approach for Collection Modes Selection in Remanufacturing Reverse Logistics. Processes, 9(4), 631. https://doi.org/10.3390/pr9040631