Advances in the Development of Sol-Gel Materials Combining Small-Angle X-ray Scattering (SAXS) and Machine Learning (ML)
Abstract
:1. Introduction
- Finding new materials or promising material combinations;
- Classifying materials or properties by recognizing patterns;
- Predicting structural or performance properties from data subsets.
2. Sol-Gel Materials: Synthesis and Characterization
2.1. Synthesis of Sol-Gel Materials
2.2. Structural, Mechanical and Thermal Analysis of the Materials
3. Machine Learning in Material Development
3.1. Machine Learning Meta Models
- Numerical representation of inputs (e.g., synthesis parameters and characterization results);
- Establishing the mapping/learning between inputs and target properties (e.g., mechanical/thermal properties).
3.2. Machine Learning in Sol-Gel Processes
- Synthesis parameters;
- Synthesis parameters and wet gel SAXS data;
- Dry gel SAXS data;
- Synthesis parameters and dry gel SAXS data.
4. Results and Discussion
4.1. Fast Structural Characterization—Results
4.2. Machine Learning Results
5. Conclusions and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaturvedi, S.; Dave, P.N. Design process for nanomaterials. J. Mater. Sci. 2013, 48, 3605–3622. [Google Scholar] [CrossRef]
- Aegerter, M.A.; Leventis, N.; Koebel, M.M. Aerogels Handbook. In Advances in Sol-Gel Derived Materials and Technologies; Aegerter, M.A., Prassas, M., Eds.; Springer Science and Business Media: New York, NY, USA, 2011; p. 932. [Google Scholar]
- Hüsing, N.; Schubert, U. Aerogels; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005. [Google Scholar]
- Emmerling, A.; Fricke, J. Scaling properties and structure of aerogels. J. Sol-Gel. Sci. Technol. 1997, 8, 781–788. [Google Scholar] [CrossRef]
- Weigold, L.; Reichenauer, G. Correlation between mechanical stiffness and thermal transport along the solid framework of a uniaxially compressed polyurea aerogel. J. Non-Crystall. Solids 2014, 406, 73–78. [Google Scholar] [CrossRef]
- Weigold, L.; Reichenauer, G. Correlation between the elastic modulus and heat transport along the solid phase in highly porous materials: Theoretical approaches and experimental validation using polyurea aerogels. J. Supercrit. Fluid 2015, 106, 69–75. [Google Scholar] [CrossRef]
- Karakoç, A.; Keleş, Ö. A predictive failure framework for brittle porous materials via machine learning and geometric matching methods. J. Mater. Sci. 2020, 55, 4734–4747. [Google Scholar] [CrossRef]
- Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: Recent applications and prospects. NPJ Comput. Mater. 2017, 3, 1–13. [Google Scholar] [CrossRef]
- Dimiduk, D.M.; Holm, E.A.; Niezgoda, S.R. Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering. Integr. Mater. Manuf. Innov. 2018, 7, 157–172. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Marques, M.R.; Botti, S.; Marques, M.A. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 2019, 5, 1–36. [Google Scholar] [CrossRef]
- Roth, S.V.; Rothkirch, A.; Autenrieth, T.; Gehrke, R.; Wroblewski, T.; Burghammer, M.C.; Riekel, C.; Schulz, L.; Hengstler, R.; Muller-Buschbaum, P. Spatially resolved investigation of solution cast nanoparticle films by X-ray scattering and multidimensional data set classification. Langmuir 2010, 26, 1496–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franke, D.; Jeffries, C.M.; Svergun, D.I. Machine learning methods for X-ray scattering data analysis from biomacromolecular solutions. Biophys. J. 2018, 114, 2485–2492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherer, G.W.; Smith, D.M.; Qiu, X.; Anderson, J.M. Compression of aerogels. J. Non-Crystall. Solids 1995, 186, 316–320. [Google Scholar] [CrossRef]
- Scherdel, C.; Reichenauer, G. The impact of residual adsorbate on the characterization of microporous carbons with small angle scattering. Carbon 2012, 50, 3074–3082. [Google Scholar] [CrossRef]
- Emmerling, A.; Fricke, J. Small-angle scattering and the structure of aerogels. J. Non-Crystall. Solids 1992, 145, 113–120. [Google Scholar] [CrossRef]
- Glatter, O.; Kratky, O. Small Angle X-Ray Scattering; Academic Press Inc.: London, UK, 1982; pp. 136–137. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman and Company: New York, NY, USA, 1982. [Google Scholar]
- Porod, G. Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. I. Teil. Colloid Polym. Sci. 1951, 124, 83–114. [Google Scholar] [CrossRef]
- Ebert, H.P.; Bock, V.; Nilsson, O.; Fricke, J. The hot-wire method applied to porous materials of low thermal conductivity. High Temp. High Press. 1993, 25, 391–402. [Google Scholar]
- Ashino, T. Materials ontology: An infrastructure for exchanging materials information and knowledge. Data Sci. J. 2010, 9, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Wirth, R.; Hipp, J. CRISP-DM: Towards a Standard Process Model for Data Mining. In Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining, Manchester, UK, 11–13 April 2000; Springer: London, UK, 2000; pp. 29–39. [Google Scholar]
- Doan, T.; Kalita, J. Selecting Machine Learning Algorithms Using Regression Models. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015; pp. 1498–1505. [Google Scholar]
- Bessa, M.A.; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, D.W.; Brinson, C.; Liu, W.K. A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Comput. Methods Appl. Mech. Eng. 2017, 320, 633–667. [Google Scholar] [CrossRef]
- Sparks, T.D.; Gaultois, M.W.; Oliynyk, A.; Brgoch, J.; Meredig, B. Data mining our way to the next generation of thermoelectrics. Scr. Mater. 2016, 111, 10–11. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Nickisch, H. Gaussian processes for machine learning (GPML) toolbox. J. Mach. Learn. Res. 2010, 11, 3011–3015. [Google Scholar]
- Kavitha, S.; Varuna, S.; Ramya, R. A Comparative Analysis on Linear Regression and Support Vector Regression. In Online International Conference on Green Engineering and Technologies (IC-GET); IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Rasmussen, C.E. Gaussian processes in machine learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; pp. 363–371. [Google Scholar]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef] [PubMed]
ML Strategy | Strategy Description | Predictor | Response |
---|---|---|---|
I | Synthesis parameters | ρtarget, pH, xHT | λs |
II | Synthesis parameters and wet gel SAXS data | ρtarget, pH, xHT df,wet, dCluster,wet | λs |
III | Dry gel SAXS data | SSAXS,df, dCluster | λs |
IV | Synthesis parameters and dry gel SAXS data | ρtarget, pH, xHT, SSAXS, df, dCluster | λs |
# | Synthesis Parameter | SAXS Wet Gels | |||
---|---|---|---|---|---|
ρtarget (kgm−³) | pH | xHT | df,wet | dCluster,wet (nm) | |
A | 120 | 11.0 | 2.2 | 2.18 | 10.3 |
B | 180 | 11.0 | 2.2 | 2.11 | 7.0 |
C | 120 | 12.6 | 2.2 | 2.25 | 9.4 |
D | 180 | 12.6 | 2.2 | 2.14 | 6.2 |
E | 120 | 11.0 | 3.2 | 2.22 | 10.3 |
F | 180 | 11.0 | 3.2 | 2.12 | 6.9 |
G | 120 | 12.6 | 3.2 | 2.16 | 8.6 |
H | 180 | 12.6 | 3.2 | 2.11 | 5.8 |
I | 150 | 11.8 | 2.7 | 2.14 | 7.8 |
# | ρ (kgm-³) | SSAXS (m²g−1) | df | dCluster (nm) | λs (10−3 W(mK)−1) |
---|---|---|---|---|---|
A | 708 | 1384 | 2.90 | 8.3 | 73.2 |
B | 586 | 1693 | 2.72 | 5.6 | 68.8 |
C | 260 | 1752 | 2.37 | 9.2 | 17.8 |
D | 310 | 1575 | 2.31 | 6.0 | 22.1 |
E | 346 | 1320 | 2.57 | 9.2 | 31.5 |
F | 408 | 1607 | 2.49 | 6.5 | 41.4 |
G | 206 | 1525 | 2.30 | 8.3 | 12.8 |
H | 267 | 1343 | 2.17 | 6.0 | 20.6 |
I | 708 | 1384 | 2.90 | 8.3 | 73.2 |
βi | Value |
---|---|
df | 146.000 |
xHT | 14.270 |
pH | 11.796 |
SSAXS | 0.025 |
ρtarget | −0.047 |
dCluster | −6.365 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scherdel, C.; Miller, E.; Reichenauer, G.; Schmitt, J. Advances in the Development of Sol-Gel Materials Combining Small-Angle X-ray Scattering (SAXS) and Machine Learning (ML). Processes 2021, 9, 672. https://doi.org/10.3390/pr9040672
Scherdel C, Miller E, Reichenauer G, Schmitt J. Advances in the Development of Sol-Gel Materials Combining Small-Angle X-ray Scattering (SAXS) and Machine Learning (ML). Processes. 2021; 9(4):672. https://doi.org/10.3390/pr9040672
Chicago/Turabian StyleScherdel, Christian, Eddi Miller, Gudrun Reichenauer, and Jan Schmitt. 2021. "Advances in the Development of Sol-Gel Materials Combining Small-Angle X-ray Scattering (SAXS) and Machine Learning (ML)" Processes 9, no. 4: 672. https://doi.org/10.3390/pr9040672
APA StyleScherdel, C., Miller, E., Reichenauer, G., & Schmitt, J. (2021). Advances in the Development of Sol-Gel Materials Combining Small-Angle X-ray Scattering (SAXS) and Machine Learning (ML). Processes, 9(4), 672. https://doi.org/10.3390/pr9040672