The “ReWaste4.0” Project—A Review
Abstract
:1. Introduction
- 65% recycling of municipal waste by 2035;
- 70% recycling of packaging waste by 2030.
- there are no net emissions of greenhouse gases by 2050;
- economic growth is decoupled from resource use;
- no person and no place are left behind.
1.1. Municipal and Commercial Waste Management
1.2. Plastics and Their Importance in the EU
1.3. Digitalisation in the Waste Management Sector
“Digitalisation” generally describes the integration of digital technologies into everyday life. This integration is called “Industry 4.0” because it embodies the fourth industrial revolution. The English term is “Internet of Things” (IoT) and is divided into two parts: “Industrial Internet of Things” and “Consumer Internet of Things”.
“Industry 4.0 describes the widespread introduction of information and communication technology (ICT) as well as its connection to an Internet of Things, Services and Data with the goal of real-time control of production and value chain networks”.
“Individual companies or corporate groups that use ICT for product development, production, logistics and interface coordination with customers in order to respond more flexibly to incoming requests. A smart factory masters complexity, is less disruptive and enables a more efficient production. The communication between people, machines and resources is self-evident and comparable to a social network.”
“The SWFN4.0 describes a system consisting of several waste treatment plants, which perform different tasks in the waste management system and are interconnected via data streams and logistics systems (e.g., sorting plants, production plants for Solid Recovered Fuels, etc.). The individual processes and machines within the plants as well as the individual plants are digitally connected with each other. This connection of the individual machines and systems and the real-time analysis of the waste streams enable dynamic process control and various actuator systems actively intervene in the processes. In addition, people can cooperate interactively with the technology around them.”
- Contaminants in mixed waste and technical possibilities for their reduction as well as removal;
- Secondary raw and energy materials in mixed waste;
- Digitalization in waste characterization and treatment processes for mixed waste.
2. Materials and Methods
3. Results and Discussion
3.1. Contaminants in Mixed Waste and Technical Possibilities for Their Reduction as Well as Removal
- A: Negative linear correlation—higher concentrations in smaller particle size classes,
- B: No linear correlation—low concentration in smallest and largest particle size classes,
- C: Positive linear correlation—higher concentrations in medium to large particle size classes.
3.2. Secondary Raw and Energy Materials in Mixed Waste
3.2.1. Plastics
- physical properties like density determination;
- rheological properties like melt-mass flow rate;
- mechanical properties like tensile properties, especially modulus of elasticity and notch impact strength.
- melting temperature;
- colour distribution and colour composition;
- size and form of the granulated material (e.g., lenses, cylinder);
- moisture content;
- filtration fineness;
- ash content;
- heavy metal content.
- Thermal properties: determination of the crystallization temperature (TC) with the respective crystallization enthalpy (ΔHC), melting temperatures (Tm1 and Tm2) with the respective melting enthalpy (ΔHm1 and ΔHm2), and the glass transition temperature (Tg) with differencial scanning calorimetry (DSC);
- Mechanical properties: impact strength and notched impact strength, tensile test (Young’s modulus (E), tensile strengths (σM), elongations at break (εB)), bulk density of flakes after shredding and granulate after extrusion, determination of ash content;
- Rheological properties: melt flow rate (MFR) [45].
- Dry mechanical waste treatment with pre-screening prior further processing by ballistic separation and sensor-based sorting for generation of a 3D plastics pre-concentrates for recycling [42].
- 2.
- Wet mechanical processing of plastic rich 2D-fractions with a focus on polyolefins (POs) from mixed waste for chemical recycling [46]:
3.2.2. Solid Recovered Fuels (SRF)
- It is solid fuel;
- It is prepared from non-hazardous waste only;
- It is to be utilized for energy recovery in incineration or co-incineration plants;
- It must meet certain quality criteria (i.e., lower heating value (expressed as mean), chlorine content (expressed as mean) and mercury content (expressed as median and 80th percentile value) and to be allocated in one of total five classes depending on the measured values for each mentioned parameter.
- SRF for secondary firing (SRF “secondary”): SRF with a lower heating value between 12 and 18 MJ/kgOS (corresponding to class NCV 3 or 4 in EN 15359) suitable for the use in secondary firing (calciner, kiln inlet, or hot disc combustion chamber, etc.) in the kiln system of cement manufacturing plants. Particle sizes can range up to 80 mm when used in a calciner or at the kiln inlet and up to 300 mm for a hot disc combustion chamber.
- SRF for primary firing (SRF “primary”): SRF with a lower heating value between 18 and 25 MJ/kgOS (corresponding to class NCV 1, 2, or 3 in EN 15359), and particle sizes below 30 (35) mm suitable for the use as a main burner fuel in the rotary kiln of cement manufacturing plants.
3.2.3. Co-Processing of SRF–Ash Constituents of SRF as a Valuable Secondary Raw Material
3.3. Digitalisation in Waste Characterization and Treatment Processes for Mixed Waste
- Digitalization as a modern tool for innovative data-based development of smart processes;
- Online–Ontime material particle characterization and quality assurance;
- Experimental monitoring of waste flows and machine performance in waste treatment plants.
3.3.1. Digitalization as a Modern Tool for Innovative Data-Based Development of Smart Processes
3.3.2. Online-Ontime Material Particle Characterization and Quality Assurance
3.3.3. Experimental Monitoring of Waste Flows and Machine Performance in Waste Treatment Plants
- Short-term fluctuations (expressed as throughput change in intervals <15 s);
- Mid-term fluctuations (expressed as throughput change in intervals of 15–600 s);
- Long-term fluctuations (expressed as throughput change in intervals >600 s).
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Austrian Research Promotion Agency (FFG). COMET—Competence Centers for Excellent Technologies—General Information, Factsheets and Success Stories. 2021. Available online: https://www.ffg.at/en/comet-competence-centers-excellent-technologies (accessed on 18 April 2021).
- Sarc, R. ReWaste4.0—Recycling and Recovery of Waste 4.0. Application K-Project, Project Description, Version 1.1. 9 February 2017. [Google Scholar]
- EC (European Commission). Closing the Loop: Commission Adopts Ambitious New Circular Economy Package to Boost Competitiveness, Create Jobs and Generate Sustainable Growth. 2015. Available online: http://europa.eu/rapid/press-release_IP-15-6203_en.htm (accessed on 1 March 2021).
- EC (European Commission). Circular Economy Package. 2018. Available online: https://ec.europa.eu/environment/circular-economy/first_circular_economy_action_plan.html (accessed on 1 March 2021).
- Sarc, R. ReWaste F—Recycling and Recovery of Waste for Future. Application Comet-Projects, Project Description, Version 1.0. 22 June 2020. [Google Scholar]
- Pomberger, R.; Sarc, R.; Lorber, K.E. Dynamic visualisation of municipal waste management performance in the EU using Ternary Diagram method. Waste Manag. 2017, 61, 558–571. [Google Scholar] [CrossRef]
- EC (European Commission). A European Green Deal. 2019. Available online: https://ec.europa.eu/info/node/123797 (accessed on 1 March 2021).
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Eurostat. Municipal Waste by Waste Management Operations, Last Updated: 16-02-2021. 2021. Available online: http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (accessed on 1 March 2021).
- Weißenbach, T.; Graf, J.; Pomberger, R.; Sarc, R. Calculation of the additional recycling potential in the European Union by implementing the Circular Economy Package. Environ. Waste Manag. Recycl. 2020, 3, 1–9. [Google Scholar]
- Austrian Standard Institute (ASI). ÖNORM S 2100:2005 10 01, 2005. Abfallverzeichnis [Waste List].
- BMU. Verordnung über die Bewirtschaftung von Gewerblichen Siedlungsabfällen und von Bestimmten Bau- und Abbruchabfällen (Gewerbeabfallverordnung) [Commercial Waste Ordinance]. Amendment 2017: BGBl. I S. 896. Available online: https://www.gesetze-im-internet.de/gewabfv_2017/BJNR089600017.html (accessed on 1 March 2021).
- Weißenbach, T. Development of an Online/Ontime Method for the Characterization of Waste Streams in Waste Pre-Treatment Plants. Ph.D. Thesis, Montanuniversitaet Leoben, Leoben, Austria, 2021. [Google Scholar]
- Weißenbach, T.; Pomberger, R.; Sarc, R. Composition of mixed commercial waste with focus on recyclable fractions. In Proceedings of the 7th International Conference on Sustainable Solid Waste Management, Heraklion, Greece, 26–29 June 2019. [Google Scholar]
- Sarc, R.; Lorber, K.E. Production, quality and quality assurance of refuse derived fuels (RDFs). Waste Manag. 2013, 33, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- Sarc, R.; Lorber, K.E.; Pomberger, R.; Rogetzer, M.; Sipple, E.M. Design, quality and quality assurance of solid recovered fuels (SRF) for the substitution of fossil feedstock in the cement industry. Waste Manag. Res. 2014, 32. [Google Scholar] [CrossRef]
- Sarc, R.; Seidler, I.M.; Kandlbauer, L.; Lorber, K.E.; Pomberger, R. Design, quality and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry—Update 2019. Waste Manag. Res. 2019, 37, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Sarc, R.; Kandlbauer, L.; Lorber, K.E.; Pomberger, R. Production and Characterisation of SRF Premium Quality from Municipal and Commercial Solid non-hazardous Wastes in Austria, Croatia, Slovenia and Slovakia. Detritus 2020, 9, 125–137. [Google Scholar] [CrossRef]
- BKA (Bundeskanzleramt Österreich). Bundesgesetz über eine Nachhaltige Abfallwirtschaft (Abfallwirtschaftsgesetz 2002—AWG 2002) [Waste Management Act]. BGBl. I Nr. 102/2002, as Amended BGBl. I Nr. 24/2020. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20002086 (accessed on 1 March 2021).
- Möllnitz, S.; Khodier, K.; Pomberger, R.; Sarc, R. Grain size dependent distribution of different plastic types in coarse shredded mixed commercial and municipal waste. Waste Manag. 2020, 103, 388–398. [Google Scholar] [CrossRef]
- BMK. Die Bestandsaufnahme der Abfallwirtschaft in Österreich, Statusbericht 2020 (Referenzjahr 2018) [Inventory of Waste Management in Austria, Status Report 2020 (Reference Year 2018)]; Federal Ministry for Climate Protection, Environment, Energy, Mobility, Innovation and Technology: Vienna, Austria, 2020.
- European Commission. Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions a European Strategy for Plastics in a Circular Economy {SWD (2018) 16 Final}. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1516265440535&uri=COM:2018:28:FIN (accessed on 1 March 2021).
- Tschandl, M.; Peßl, E.; Sorko, S.; Lenart, K. Roadmap Industrie 4.0 für Unternehmen aus dem Umwelt- bzw. Abfallbereich (Roadmap industry 4.0 for companies in the environmental and waste management sector). 2019. [Google Scholar]
- Curtis, A.; Sarc, R. Definition of the Term “Smart Waste Factory Network” within the Project ReWaste4.0, Montanuniversitaet Leoben on 8 October 2018.
- Sarc, R.; Curtis, A.; Kandlbauer, L.; Khodier, K.; Lorber, K.E.; Pomberger, R. Digitalisation and Intelligent Robotics in Value Chain of Circular Economy Oriented Waste Management—A Review. Waste Manag. 2019, 95, 476–492. [Google Scholar] [CrossRef] [PubMed]
- Green Tech Cluster. Digitale Abfallwirtschaft—Mehrwert Entlang der Gesamten Wertschöpfungskette (Digital Waste Management—Added Value along the Entire Value Chain). 2018. Available online: www.greentech.at (accessed on 1 March 2021).
- Abdallah, M.; Abu Talib, M.; Feroz, S.; Nasir, Q.; Abdalla, H.; Mahfood, B. Artificial intelligence applications in solid waste management: A systematic research review. Waste Manag. 2020, 109, 231–246. [Google Scholar] [CrossRef]
- ASI (Austrian Standards Institute). ÖNORM EN 15442—Solid Recovered Fuels—Methods for Sampling; ASI: Vienna, Austria, 2011. [Google Scholar]
- Viczek, S. Origins, Distribution, and Fate of Contaminants and Ash Constituents in Waste for SRF Production and Co-Processing. Ph.D. Thesis, Montanuniversitaet Leoben, Leoben, Austria, 2021. [Google Scholar]
- Khodier, K.; Viczek, S.A.; Curtis, A.; Aldrian, A.; O’Leary, P.; Lehner, M.; Sarc, R. Sampling and Analysis of Coarsely Shredded Mixed Commercial Waste. Part I: Procedure, Particle Size and Sorting Analysis. Int. J. Environ. Sci. Technol. 2019, 17, 959–972. [Google Scholar] [CrossRef] [Green Version]
- Viczek, S.A.; Kandlbauer, L.; Khodier, K.; Aldrian, A.; Sarc, R. Sampling and analysis of coarsely shredded mixed commercial waste. Part II: Particle size-dependent element determination. Int. J. Environ. Sci. Technol. 2021. under review. [Google Scholar]
- Khodier, K. Empirical Modelling for the Optimized Operation and Real-Time Control of Coarse Shredders for Mixed Commercial Waste. Ph.D. Thesis, Montanuniversitaet Leoben, Leoben, Austria, 2021. [Google Scholar]
- European Union (EU). Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008; Waste and Repealing Certain Directives: Brussels, Belgium, 2008. [Google Scholar]
- BMLFUW. Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft und des Bundesministers für Wirtschaft, Familie und Jugend über die Verbrennung von Abfällen (Abfallverbrennungsverordnung—AVV) [Waste Incineration Ordinance] BGBl. II Nr. 389/2002, as Amended BGBl. II Nr. 135/2013. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20002239 (accessed on 1 March 2021).
- Lorber, K.E.; Sarc, R.; Aldrian, A. Design and quality assurance for solid recovered fuel. Waste Manag. Res. 2012, 30, 370–380. [Google Scholar] [CrossRef]
- Viczek, S.A.; Aldrian, A.; Pomberger, R.; Sarc, R. Origins and carriers of Sb, As, Cd, Cl, Cr, Co, Pb, Hg, and Ni in mixed solid waste—A literature-based evaluation. Waste Manag. 2020, 103, 87–112. [Google Scholar] [CrossRef] [PubMed]
- Viczek, S.A.; Khodier, K.; Kandlbauer, L.; Aldrian, A.; Redhammer, G.; Tippelt, G.; Sarc, R. The particle size-dependent distribution of chemical elements in mixed commercial waste and implications for enhancing SRF quality. Sci. Total Environ. 2021, 776, 145343. [Google Scholar] [CrossRef]
- Curtis, A.; Adam, J.; Pomberger, R.; Sarc, R. Grain size-related Characterization of Various Non-hazardous Municipal and Commercial Waste for Solid Recovered Fuel (SRF) Production. Detritus 2019, 7, 55–67. [Google Scholar] [CrossRef]
- Viczek, S.A.; Lorber, K.E.; Pomberger, R.; Sarc, R. Production of contaminant-depleted solid recovered fuel from mixed commercial waste. Fuel 2021, 294, 120414. [Google Scholar] [CrossRef]
- Viczek, S.A.; Sarc, R.; Pomberger, R. Grain Size Dependent Distribution of Contaminants in Coarse-Shredded Commercial Waste; Thiel, S., Thomé-Kozmiensky, E., Winter, F., Juchelková, D., Eds.; IRRC, Waste Management: Neuruppin, Germany, 2019; ISBN 978-3-944310-48-0. [Google Scholar]
- Khodier, K.; Feyerer, C.; Möllnitz, S.; Curtis, A.; Sarc, R. Efficient derivation of significant results from mechanical processing experiments with mixed solid waste: Coarse-shredding of commercial waste. Waste Manag. 2020, 121, 164–174. [Google Scholar] [CrossRef]
- Möllnitz, S.; Küppers, B.; Curtis, A.; Khodier, K.; Sarc, R. Influence of Pre-Screening on Down-Stream Processing for the Production of Plastic Enriched Fractions for Recycling from Mixed Commercial and Municipal Waste. Waste Manag. 2020, 119, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Letcher, T.M. Plastic Waste and Recycling—Environmental Impact, Societal Issues, Prevention, and Solutions; Elsevier: London, UK, 2020. [Google Scholar]
- Friedrich, K.; Möllnitz, S.; Holzschuster, S.; Pomberger, R.; Vollprecht, D.; Sarc, R. Benchmark Analysis for Plastic Recyclates in Austrian Waste Management. Detritus 2020, 9, 105–112. [Google Scholar] [CrossRef]
- Möllnitz, S.; Feuchter, M.; Duretek, I.; Schmidt, G.; Sarc, R. Verification of the processability of different polymer fractions recovered from mixed wastes and determination of material properties. Polym. Recycl. Spec. Issue Polym. Waste Recycl. Manag. 2021, 13, 457. [Google Scholar] [CrossRef]
- Möllnitz, S.; Bauer, M.; Schwabel, D.; Schmidt, G.; Sarc, R. Wet-mechanical processing of plastic-rich 2D-fractions from mixed wastes for recycling purposes. Waste Manag. Res. 2021, 1–13. [Google Scholar] [CrossRef]
- Bauer, M.; Lehner, M.; Schwabl, D.; Flachberger, H.; Kranzinger, L.; Pomberger, R.; Hofer, W. Sink–float density separation of post-consumer plastics for feedstock recycling. J. Mater. Cycles Waste Manag. 2018, 20, 1781–1791. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Lehner, M. Post-consumer plastics in Austria and their potential for chemical recycling. In Proceedings of the ISWA World Congress 2013 Vienna, Vienna, Austria, 7–11 October 2013; International Solid Waste Association: Vienna, Austria, 2013. [Google Scholar]
- CEN. CENprEN 15359:2010 Solid Recovered Fuels—Specifications and Classes; CEN: Brussels, Belgium, 2010. [Google Scholar]
- BMLFUW. Richtlinie für Ersatzbrennstoffe [Guideline for Waste Fuels]; BMLFUW: Vienna, Austria, 2008. [Google Scholar]
- Sarc, R. Herstellung, Qualität und Qualitätssicherung von Ersatzbrennstoffen zur Erreichung der 100%-Igen Thermischen Substitution in der Zementindustrie [Design, Quality and Quality Assurance of Solid Recovered Fuel (SRF) for Achieving 100% Thermal Substitution in Cement Industry]. Ph.D. Thesis, Montanuniversitaet Leoben, Leoben, Austria, 2015. [Google Scholar]
- GCCA (Global Cement and Concrete Association). Getting the Numbers Right. 2020. Available online: https://gccassociation.org/gnr/Excel/GNR%20-%20Totals_&_Averages%20-%20Light%20Report%202018.xls (accessed on 1 March 2021).
- Viczek, S.A.; Aldrian, A.; Pomberger, R.; Sarc, R. Determination of the material-recyclable share of SRF during co-processing in the cement industry. Resour. Conserv. Recycl. 2020, 156, 104696. [Google Scholar] [CrossRef]
- Hökfors, B.; Boström, D.; Viggh, E.; Backman, R. On the phase chemistry of Portland cement clinker. Adv. Cement Res. 2015, 27, 50–60. [Google Scholar] [CrossRef]
- Aldrian, A.; Viczek, S.A.; Pomberger, R.; Sarc, R. Methods for identifying the material-recyclable share of SRF during co-processing in the cement industry. Methods X 2020, 7, 100837. [Google Scholar] [CrossRef]
- Viczek, S.A.; Aldrian, A.; Pomberger, R.; Sarc, R. Origins of mineral constituents in SRF and implications for recycling during co-processing in the cement industry. Waste Manag. 2021, 126, 423–432. [Google Scholar] [CrossRef]
- Sarc, R.; Hermann, R. Unternehmensbefragung zum Thema Abfallwirtschaft 4.0 [Company Survey to the Topic Waste Management 4.0]; Pomberger, R., Adam, J., Aldrian, A., Curtis, A., Friedrich, K., Kranzinger, L., Küppers, B., Lorber, K.E., Möllnitz, S., Neuhold, S., et al., Eds.; Recy&DepoTech: Leoben, Austria, 2018. [Google Scholar]
- Khodier, K.; Sarc, R. Distribution-independent empirical modeling of particle size distributions—Coarse-shredding of mixed commercial waste. Processes 2021, 9, 414. [Google Scholar] [CrossRef]
- Kandlbauer, L.; Khodier, K.; Ninevski, D.; Sarc, R. Sensor-based Particle Size Determination of Shredded Mixed Commercial Waste based on two-dimensional Images. Waste Manag. 2021, 120, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Weißenbach, T.; Sarc, R. Investigation of particle-specific characteristics of non-hazardous, fine shredded mixed waste. Waste Manag. 2021, 119, 162–171. [Google Scholar] [CrossRef]
- Pomberger, R.; Küppers, B. Entwicklungen in der Sensorgestützten Sortiertechnik [Developments in Sensor-Based Sorting Technology]. In Proceedings of the Österreichische Abfallwirtschaftstagung 2017—Die Digitalisierung der Abfallwirtschaft, Graz, Austria, 10–11 May 2017. [Google Scholar]
- Flamme, S.; Hams, S.; Zorn, M. Sensortechnologien in der Kreislaufwirtschaft [Sensor Technologies in the Recycling Economy]; Pomberger, R., Adam, J., Aldrian, A., Curtis, A., Friedrich, K., Kranzinger, L., Küppers, B., Lorber, K.E., Möllnitz, S., Neuhold, S., et al., Eds.; Recy&DepoTech: Leoben, Austria, 2018. [Google Scholar]
- Weißenbach, T.; Sarc, R. Investigation of particle-specific characteristics of coarse-shredded waste. Waste Manag. 2021, 119, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.; Küppers, B.; Möllnitz, S.; Khodier, K.; Sarc, R. Real time material flow monitoring in mechanical waste processing and the relevance of fluctuations. Waste Manag. 2021, 120, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.; Sarc, R. Real-Time Monitoring of Volume Flow, Mass Flow and Shredder Power Consumption in Mixed Solid Waste Processing. Waste Manag. 2021. under review. [Google Scholar]
Material Fraction | Weight Percent (%) | |
---|---|---|
Site 1 (2 Experiments) | Site 2 (2 Experiments) | |
Plastics | 19.1 | 16.2 |
Paper/cardboard | 16.8 | 12.0 |
Metals | 4.3 | 4.0 |
Wood | 7.1 | 9.8 |
Inert | 4.3 | 58.0 |
Textiles | 3.6 | |
Others | 44.7 | |
Total | 99.9 | 100.0 |
Material Fraction | Share (in %) | Sub-Total (in %) | Recyclable Quantity (in t) |
---|---|---|---|
Plastic—packaging | 7.10 | 17.58 | 256,455 |
Other light packaging | 1.10 | ||
Plastic—no packaging | 9.38 | ||
Biowaste (incl. not avoidable food waste) | 1.31 | 17.81 | |
Avoidable or partly avoidable food waste | 16.50 | ||
Paper and cardboard—packaging | 2.20 | 13.96 | 203,647 |
Paper and cardboard—no packaging | 11.76 | ||
Sanitary products | 9.64 | 9.64 | |
Textiles | 7.79 | 9.79 | |
Shoes | 2.00 | ||
Inert | 5.86 | 5.86 | |
Glass—packaging | 3.80 | 4.86 | 70,897 |
Glass—no packaging | 1.06 | ||
Metal—packaging | 2.50 | 4.70 | 59,373 |
Metal—no packaging | 2.20 | ||
Other waste | 4.01 | 5.71 | |
Wood—no packaging | 1.70 | ||
WEEE | 0.77 | 1.54 | |
Batteries, incl. accumulators | n.d. | ||
Hazardous household waste | 0.77 | ||
Others (not identifiable) | 8.55 | 8.55 | |
Total | 100.00 | 100.00 | 590,372 |
Parameter | ReOil-Process [48] | LF II MCW | LF II MMW | Comments |
---|---|---|---|---|
Particle size (mm) | <30–40 | <20 | <20 | required particle size for CFS processing. |
Bulk density (kg m−3DM) | 50–100 (mainly 2D-objects) | approx. 80 | approx. 60 | was determined in [46]. |
Moisture content (%) | <20 | 49.5 | 67.1 | additional dewatering equipment is required. |
Calorific value (MJ kg−1)DM | >30 | 38.3 | 35.1 | |
Chlorine content (%)DM | <2 | 0.2 | 0.47 | |
PP, PE, and PS content (%) | >90 | 95.8 | 94.9 | assumption that the LFII consists only of PE, PP and PS. |
Polymer impurities (%)DM | PET: ≤3; PVC: ≤2 | 4.2 | 5.1 | total contamination content. |
Inorganic contaminants (%)DM | ≤3 | |||
Organic contaminants (%)DM | ≤5 |
Particle Class (mm) | ME (%) | WO (%) | PA (%) | CB (%) | 2D (%) | 3D (%) | IN (%) | TX (%) | RE (%) | Sum (%) |
---|---|---|---|---|---|---|---|---|---|---|
0–5 | - | - | - | - | - | - | - | - | 12.3 | 12.3 |
5–10 | - | - | - | - | - | - | - | - | 12.3 | 12.3 |
10–20 | - | - | - | - | - | - | - | - | 10.4 | 10.4 |
20–40 | 41.4 | 17.7 | 24.3 | 39.3 | 18.4 | 17.1 | 19.7 | 29.3 | 22.7 | 11.6 |
40–60 | 47.3 | 21.5 | 16.8 | 25.6 | 14.2 | 8.7 | 37.2 | 43.4 | 16.4 | 8.8 |
60–80 | 39.4 | 23.3 | 22.9 | 18.1 | 17.7 | 10.0 | 49.9 | 30.4 | 8.9 | 8.1 |
80–100 | 62.0 | 34.7 | 38.0 | 14.2 | 19.3 | 17.5 | 210.7 | 43.4 | 17.2 | 7.7 |
100–200 | 74.0 | 47.7 | 69.0 | 21.6 | 28.9 | 35.2 | 131.8 | 40.9 | 40.0 | 10.9 |
200–400 | 153.0 | 230.9 | 203.9 | 126.2 | 38.3 | 39.8 | - | 42.9 | 52.2 | 28.8 |
Sum | 16.4 | 18.3 | 10.5 | 15.0 | 16.6 | 12.1 | 31.2 | 26.6 | 3.6 | 0.0 |
RSV < 20% | 20% ≤ RSV < 50% | RSV ≥ 50% |
Material Fraction | SRF Primary | SRF Secondary | Pre-Treated MCW | |||
---|---|---|---|---|---|---|
Proj. Area (in cm2) | Mass (in g) | Proj. Area (in cm2) | Mass (in g) | Proj. Area (in cm2) | Mass (in g) | |
Paper | 4.1 | 0.14 | 13.8 | 1.17 | 168.9 | 15.4 |
Wood | 1.4 | 0.14 | 6.4 | 1.62 | 72.9 | 57.7 |
LPB | 3.8 | 0.17 | 19.5 | 2.66 | 131.4 | 24.0 |
PE | 5.4 | 0.15 | 15.8 | 0.64 | 198.9 | 5.3 |
PP | 4.2 | 0.23 | 11.8 | 1.37 | 124.6 | 9.3 |
PS | 3.2 | 0.19 | 12.6 | 1.04 | 68.1 | 8.9 |
PET | 4.4 | 0.30 | 9.0 | 1.46 | 135.4 | 21.1 |
PVC | 3.4 | 0.23 | 11.0 | 2.17 | 64.4 | 24.9 |
Total median | 3.6 | 0.19 | 11.5 | 1.21 | 114.2 | 16.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarc, R. The “ReWaste4.0” Project—A Review. Processes 2021, 9, 764. https://doi.org/10.3390/pr9050764
Sarc R. The “ReWaste4.0” Project—A Review. Processes. 2021; 9(5):764. https://doi.org/10.3390/pr9050764
Chicago/Turabian StyleSarc, Renato. 2021. "The “ReWaste4.0” Project—A Review" Processes 9, no. 5: 764. https://doi.org/10.3390/pr9050764
APA StyleSarc, R. (2021). The “ReWaste4.0” Project—A Review. Processes, 9(5), 764. https://doi.org/10.3390/pr9050764