Application of Sugar Beet Pulp Digestate as a Soil Amendment in the Production of Energy Maize
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Analyses of Digestate Obtained from Sugar Beet Pulp Anaerobic Digestion
3.2. Effects of Soil Application of Digestate on Maize Yield
3.3. Effect of Soil Amendment with Digestate on Chemical Properties of Maize Biomass Yield
3.4. Effects of Soil Application of Digestate from Anaerobic Digestion of Sugar Beet Pulp on Energy Value of Maize Biomass Yield
4. Conclusions
- The studied by-products of sugar beet pulp anaerobic digestion (raw digestate, liquid and solid digestate fractions) can be effectively applied to soil used for growing maize for energy purposes.
- The solid fraction of the studied digestate was a better option for application as far as yield-bearing effects are concerned. This was due to the physical nature of this fraction and pretreatment including flocculation.
- The yields of maize cobs and stover were affected by the studied season and soil treatment, and the yields of cobs and stover harvested from plots with digestate-amended soil were higher than the yields of these plant components obtained from control NPK plots.
- Energy values of maize biomass confirmed that the digestate application to soil is an option generating high amounts of heat energy with the utilization of waste by-product.
- Replacing mineral fertilizers with digestate can bring economic benefits since the cost of mineral fertilization in Poland is 1500 PLN per 1 ha (1 € ≈ 4.50 PLN).
Author Contributions
Funding
Conflicts of Interest
References
- Herrmann, C.; Prochnow, A.; Heiermann, M.; Idler, C. Biomass from landscape management of grassland used for biogas production: Effects of harvest date and silage additives on feedstock quality and methane yield. Grass Forage Sci. 2014, 69, 549–566. [Google Scholar] [CrossRef]
- Lalak, J.; Kasprzycka, A.; Murat, A.; Paprota, E.M.; Tys, J. Obróbka wstępna biomasy bogatej w lignocelulozę w celu zwiększenia wydajności fermentacji metanowej. Acta Agrophys. 2014, 21, 51–62. [Google Scholar]
- Polematidis, I.; Koppar, A.; Pullammanappallil, P.; Seaborn, S. Biogasification of sugarbeet processing by-products. Sugar Ind. Zuckerind. 2008, 133, 323–329. [Google Scholar]
- Połeć, B.; Baryga, A.; Szymański, T.; Wołyńska, W.; Toboła, A. Możliwość wytwarzania biogazu w procesie fermentacji metanowej wysłodków buraczanych. Gaz. Cukrow. 2011, 4, 107–112. [Google Scholar]
- Ziemiński, K.; Kowalska-Wentel, M. Effect of Different Sugar Beet Pulp Pretreatments on Biogas Production Efficiency. Appl. Biochem. Biotechnol. 2017, 181, 1211–1227. [Google Scholar] [CrossRef] [Green Version]
- Ziemiński, K.; Kowalska-Wentel, M. Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse. Bioresour. Technol. 2015, 180, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Frąc, M.; Ziemiński, K. Methane fermentation process for utilization of organic waste. Int. Agrophys. 2012, 26, 317–330. [Google Scholar] [CrossRef]
- Cirne, D.G.; Lehtomäki, A.; Björnsson, L.; Blackall, L.L. Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crop. J. Appl. Microbiol. 2007, 103, 516–527. [Google Scholar] [CrossRef]
- Chen, R.; Blagodatskaya, E.; Senbayram, M.; Blagodatsky, S.; Myachina, O.; Dittert, K.; Kuzyakov, Y. Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activitie. Biomass Bioenergy 2012, 45, 221–229. [Google Scholar] [CrossRef]
- Paprota, E. Proces fermentacji metanowej sposobem otrzymywania pełnowartościowego nawozu organicznego. In Materiały z Seminarium Naukowego Popularyzacja Prac Badawczo-Rozwojowych z Zakresu Odnawialnych źródeł Energii; SITR-Ekspert Koszalin: Lublin, Polska, 2012. [Google Scholar]
- Berruto, R.; Busato, P.; Bochtis, D.D.; Sørensen, C.G. Comparison of distribution systems for biogas plant residual. Biomass Bioenergy 2013, 52, 139–150. [Google Scholar] [CrossRef]
- Gunnarsson, A.; Lindén, B.; Gertsson, U. Biodigestion of plant material can improve nitrogen use efficiency in a red beet crop sequence. HortScience 2011, 46, 765–775. [Google Scholar] [CrossRef] [Green Version]
- Baryga, A.; Połeć, B.; Skibniewska, K.; Klasa, A. Możliwości Wykorzystania Pozostałości po Fermentacji Metanowej Odpadów Cukrowniczych w Rolnictwie (Poster na Konferencję Naukową „Burak Cukrowy, Cukier, Energia”); SGGW: Warszawa, Polska, 2014. [Google Scholar]
- Baryga, A.; Połeć, B.; Skibniewska, K.; Seciu, E.; Grabara, J. Utilisation of residual waste from sugar beet. J. Environ. Prot. Ecol. 2016, 17, 1048–1057. [Google Scholar]
- Baryga, A.; Połeć, B.; Szymański, T.; Słupecka, J. Wpływ nawożenia buraka cukrowego pozostałością po fermentacji wysłodków buraczanych na wzrost biomasy i zawartość cukru Post. Nauk. Technol. Przem. Rol. Spoż. 2016, 71, 20–34. [Google Scholar]
- Baryga, A.; Połeć, B. Studies on technological quality of sugar beets and soil param8ters in relation to method of soil fertilization. Int. J. Environ. Agric. Res. IJOEAR 2016, 2, 42–53. [Google Scholar]
- Baryga, A. Studia nad Wartością Technologiczną Buraka Cukrowego i Jakością Cukru w Aspekcie Wykorzystania w Uprawie Pofermentu z Biogazowni; Praca habilitacyjna; UWM: Olsztyn, Polska, 2019. [Google Scholar]
- Baryga, A.; Połeć, B.; Klasa, A. Quality of Sugar Beets under the Effects of Digestate Application to the Soil. Processes 2020, 8, 1402. [Google Scholar] [CrossRef]
- Tulsidas, H.; Gabriel, S.; Kiegiel, K.; Haneklaus, N. Uranium resources in EU phosphate rock imports. Resour. Policy 2019, 61, 151–156. [Google Scholar] [CrossRef]
- Michalski, T. Z Pola dla Przemysłu. Kukurydza Rośliną Przyszłości, Specjalny Dodatek do Dwutygodnika Wyd. III; Agro Serwis: Warszawa, Poland, 2005. [Google Scholar]
- Michalski, T. Kukurydza źródłem surowca dla różnych gałęzi przemysłu. Wieś Jutra 2002, 6, 13–15. [Google Scholar]
- Niedziółka, I.; Szymanek, M. Przemysłowe i energetyczne wykorzystanie ziarna kukurydzy. Motrol. Motoryz. i Energetyka Rol. 2003, 5, 115–121. [Google Scholar]
- Swenson, D. A review of the economic rewards and risks of ethanol production. In Biofuels, Solar and Wind as Renewable Energy Systems; Pimentel, D., Ed.; Springer Science & Business Media: New York, NY, USA, 2008; pp. 57–78. Available online: https://link.springer.com/chapter/10.1007%2F978-1-4020-8654-0_3 (accessed on 27 April 2021).
- Gąsiorowska, B.; Makarewicz, A.; Płaza, A.; Nowosielska, A. Plon ziarna i cechy kolb kukurydzy wysiewanej w różnych terminach. Fragm. Agron. 2009, 26, 55–63. [Google Scholar]
- Battaglia, M.; Thomason, W.; Fike, J.H.; Evanylo, G.K.; von Cossel, M.; Barbur, E.; Iqbal, Y.; Diatta, A.A. The broad impacts of corn stover and wheat straw removal for biofuel production on crop productivity, soil health and greenhouse gas emissions: A review. GCB Bioenergy 2021, 13, 45–57. [Google Scholar] [CrossRef]
- Lizotte, P.L.; Savoie, P.; De Champlain, A. Ash Content and Calorific Energy of Corn Stover Components in Eastern Canada. Energies 2015, 8, 4827–4838. [Google Scholar] [CrossRef] [Green Version]
- Golecha, R.; Gan, J. Effects of corn stover year-to-year supply variability and market structure on biomass utilization and cost. Renew. Sustain. Energy Rev. 2016, 57, 34–44. [Google Scholar] [CrossRef]
- Pordesimo, L.O.; Hames, B.R.; Sokhansanj, S.; Edens, W.C. Variation in corn stover composition and energy content with crop maturity. Biomass Bioenergy 2005, 28, 366–374. [Google Scholar] [CrossRef]
- Szempliński, W.; Dubis, B. Wstępne badania nad plonowaniem i wydajnością energetyczną wybranych roślin uprawianych na cele biogazowe. Fragm. Agron. 2011, 28, 77–86. [Google Scholar]
- Harasim, A. Gospodarka Słomą. Wyd. IUNG-PTB Puławy 2011. Available online: https://www.agroswiat.pl/gospodarowanie-sloma.html (accessed on 27 April 2021).
- Jansen, C.; Lübberstedt, T. Turning Maize Cobs into a Valuable Feedstock. Bioenergy Res. 2012, 5, 20–31. [Google Scholar] [CrossRef]
- Matyka, M.; Księżak, J. Plonowanie wybranych gatunków roślin, wykorzystywanych do produkcji biogazu. Probl. Inżynierii Rol. 2012, 20, 69–75. [Google Scholar]
- Sądej, W.; Mazur, Z. Ocena wpływu różnych systemów wieloletniego nawożenia na wysokość i jakość plonu kukurydzy. Zesz. Probl. Postępów Nauk Rol. 2003, 494, 391–398. [Google Scholar]
- Waligóra, H.; Szulc, P.; Skrzypczak, W. Plonowanie kukurydzy cukrowej w warunkach zróżnicowanego nawożenia azotem. J. Res. Appl. Agric. Eng. 2008, 53, 133–136. [Google Scholar]
- Gorzelany, J.; Puchalski, C.; Malach, M. Ocena kosztów i nakładów energetycznych w produkcji kukurydzy na ziarno i kiszonkę. Inżynieria Rol. 2011, 8, 135–141. [Google Scholar]
- Kaszkowiak, E.; Kaszkowiak, J. Wykorzystanie ziarna kukurydzy na cele energetyczne. Inż. Ap. Chem. 2011, 50, 35–36. [Google Scholar]
- Styszko, L.; Fijałkowska, D.; Majewski, A. Relation between Areas of Maize Tillage for Grain and Infection Presssure Zones of Potato Tillage with PVY and PLRV in Poland. Rocz. Ochr. Sr. 2008, 10, 135. [Google Scholar]
- Baran, S.; Łabętowicz, J.; Krzywy, E. Przyrodnicze Wykorzystanie Odpadów—Podstawy Teoretyczne i Praktyczne; PWRiL: Warszawa, Polska, 2011; Available online: https://vetbooks.pl/p/59/915/przyrodnicze-wykorzystanie-odpadow-podstawy-teoretyczne-i-praktyczne-ochrona-srodowiska-nauki-przyrodnicze.html (accessed on 27 April 2021).
- Kowalczyk-Juśko, A.; Szymańska, M. Poferment nawozem dla rolnictwa. In Fundacja na rzecz Rozwoju Polskiego Rolnictwa; Warszawa, Polska, 2015; Available online: http://ksow.pl/files/Bazy/Biblioteka/files/Poferment_nawozem_dla_rolnictwa_01.pdf (accessed on 27 April 2021).
- Akhiar, A.; Battimelli, A.; Torrijos, M.; Carrere, H. Comprehensive characterization of the liquid fraction of digestates from full-scale anaerobic co-digestion. Waste Manag. 2017, 59, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 18 czerwca 2008 r. w sprawie wykonania niektórych przepisów ustawy o nawozach i nawożeniu (Dz. U. 2008, nr 119, poz. 765). Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20081190765 (accessed on 26 April 2021).
- Alburquerque, J.A.; De La Fuente, C.; Campoy, M.; Carrasco, L.; Nájera, I.; Baixauli, C.; Caravaca, F.; Roldán, A.; Cegarra, J.; Bernal, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 43, 119–128. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Ghekiere, G.; Accoe, F.; Tack, F.M.G. Closing the nutrient cycle by using bio-digestion waste derivatives as synthetic fertilizer substitutes: A field experiment. Biomass Bioenergy 2013, 55, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Gissén, C.; Prade, T.; Kreuger, E.; Nges, I.A.; Rosenqvist, H.; Svensson, S.-E.; Lantz, M.; Mattsson, J.E.; Börjesson, P.; Björnsson, L. Comparing energy crops for biogas production—Yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy 2014, 64, 199–210. [Google Scholar] [CrossRef]
- Bueno Piaz Barbosa, D.; Nabel, M.; Jablonowski, N.D. Biogas-digestate as nutrient source for biomass production of Sida hermaphrodita, Zea mays L. and Medicago sativa L. Energy Procedia 2014, 59, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Hupfauf, S.; Bachmann, S.; Fernández-Delgado Juárez, M.; Insam, H.; Eichler-Löbermann, B. Biogas digestates affect crop P uptake and soil microbial community composition. Sci. Total Environ. 2016, 542, 1144–1154. [Google Scholar] [CrossRef]
- Kalkulacja Uprawy 1 ha Kukurydzy na Ziarno. 2020. Available online: http://archiwum.wir.org.pl/kalkulacje/ziarno/ (accessed on 26 April 2021).
Type of Fertilizer | Rate in kg Plot−1 | Rate in Mg Ha−1 |
---|---|---|
NPK* (complex fertilizer “Lubofos CORN”®) | 7.5 | 4.0 |
Liquid fraction | 35.4 | 18.9 |
Raw digestate | 16.3 | 8.0 |
Solid fraction | 21.6 | 11.5 |
Parameter | Parameters of Used By-Products from Anaerobic Digestion: | Permitted Level Mg kg DM−1 or Number, Respectively | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | ||||||||
Digestate | Liquid Fraction | Solid Fraction | Digestate | Liquid Fraction | Solid Fraction | Digestate | Liquid Fraction | Solid Fraction | ||
Acidity [pH-H2O] | 7.5 | 7.4 | 9.0 | 7.6 | 7.5 | 9.2 | 7.7 | 7.5 | 9.8 | – |
Dry matter (DM) [% FW] | 2.5 | 0.3 | 92.0 | 2.3 | 0.5 | 93.6 | 4.0 | 0.5 | 91.1 | – |
Organic substances [% DM] | 51.6 | 56.2 | 89.0 | 50.9 | 62.0 | 93.4 | 56.8 | 61.6 | 88.5 | – |
Cadmium (Cd) | 2.20 | 2.05 | 2.20 | 5.20 | 3.14 | 2.78 | 1.23 | 2.19 | 2.76 | ≤20 |
Lead (Pb) [mg kg DM−1] | 42.4 | 29.8 | 36.7 | 22.1 | 32.7 | 20.1 | ˂25 | 42.4 | 15.4 | ≤750 |
Nickel (Ni) [mg kg DM−1] | 8.8 | 7.6 | 6.80 | 5.5 | 5.4 | 5.13 | 3.81 | 12.8 | 5.03 | ≤300 |
Chromium (Cr) [mg kg DM−1] | 25.0 | 25.0 | 25.0 | 26.3 | 25.0 | 25.0 | 28.4 | 25.0 | 29.9 | ≤500 |
Mercury (Hg) [mg kg DM−1] | 0.357 | 0.240 | 0.350 | 0.426 | 0.325 | 0.432 | 0.50 | 0.357 | 0.555 | ≤16 |
Copper (Cu) [mg kg DM−1] | 88 | 76 | 98 | 115 | 78 | 112 | 150 | 88 | 110 | ≤1000 |
Zinc (Zn) [mg kg DM−1] | 295 | 310 | 325 | 470 | 380 | 498 | 366 | 295 | 882 | ≤2500 |
Calcium (Ca) [g kg DM−1] | 112 | 84 | 112 | 134 | 96 | 148 | 77 | 82 | 132 | – |
Magnesium (Mg) [g kg DM−1] | 8.4 | 6.92 | 2.89 | 11.4 | 7.48 | 4.12 | 13.5 | 8.35 | 3.74 | – |
Total nitrogen (N) [g kg DM−1] | 23.0 | 10.6 | 17.4 | 20.7 | 10.8 | 27.6 | 24.6 | 11.4 | 29.4 | – |
Total phosphorus (P2O5) [g kg DM−1] | 1.59 | 1.00 | 2.20 | 1.26 | 1.68 | 3.60 | 1.46 | 1.85 | 3.00 | – |
Potassium (K2O) [g kg DM−1] | 11.9 | 11.8 | 12.8 | 12.3 | 11.9 | 13.6 | 16.7 | 11.9 | 11.6 | – |
Boron (B) [g kg DM−1] | 0.13 | 0.12 | 0.13 | 0.16 | 0.15 | 0.15 | 0.36 | 0.29 | 0.32 | – |
Salmonella cfu [100 g−1] | not found | 0 | ||||||||
Number of living eggs of gut parasites [number kg DM−1] | not found | 0 |
Treatment (A) | Season (B) | Mean (A) | Season (B) | Mean (A) | ||||
---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2014 | 2015 | 2016 | |||
Maize Cob | Maize Stover | |||||||
Total moisture, % | ||||||||
Mineral nitrogen | 43.6 b | 39.3 b | 31.5 a | 38.6 | 27.5 a | 38.6 b | 39.1 b | 35.0 A |
Liquid fraction | 40.8 b | 39.4 b | 29.8 a | 37.7 | 51.0 d | 47.9 c,d | 51.7 d | 50.2 C |
Unseparated digestate | 42.9 b | 39.0 b | 31.2 a | 36.7 | 39.6 b,c | 42.0 b,c | 51.4 d | 44.3 B |
Solid fraction | 43.7 b | 40.3 b | 31.9 a | 38.1 | 39.6 b,c | 48.2 c,d | 52.1 d | 46.6 B,C |
Mean value (B) | 42.8 b | 39.5 b | 31.1 a | 39.4 a | 44.2 b | 48.6 c | ||
Ash, % | ||||||||
Mineral nitrogen | 1.8 d | 1.0 a | 1.4 c | 1.4 B | 6.6 c,d | 4.7 b | 5.6 c | 5.6 B |
Liquid fraction | 1.3 b,c | 1.1 b | 1.2 b | 1.2 A | 13.9 f | 8.2 d | 9.9 e | 10.6 D |
Unseparated digestate | 1.3 b,c | 1.2 b | 1.3 b,c | 1.3 A | 5.0 b | 3.9 a | 4.5 b | 4.5 A |
Solid fraction | 1.2 b | 1.1 b | 1.3 b,c | 1.2 A | 9.1 e | 4.6 b | 6.8 b,c | 6.8 C |
Mean value (B) | 1.4 b | 1.1 a | 1.3 b | 8.7 c | 5.3 a | 6.7 b | ||
Volatile parts, % | ||||||||
Mineral nitrogen | 55.9 c | 44.5 a | 50.5 b | 50.3 A | 51.5 d | 40.9 c | 46.4 c,d | 46.3 D |
Liquid fraction | 57.1 c | 45.4 a | 51.4 b | 51.3 A,B | 27.9 a | 32.7 b | 30.5 b | 30.4 A |
Unseparated digestate | 57.8 c | 45.8 a | 51.8 b | 51.8 B | 43.4 c | 35.9 b,c | 39.8 c | 39.7 B |
Solid fraction | 56.9 c | 45.0 a | 51.2 b | 51.0 A,B | 32.7 b | 35.2 b,c | 33.9 b,c | 33.9 C |
Mean value (B) | 56.9 c | 45.2 a | 51.0 b | 38.9 b | 36.2 a | 37.7 a | ||
Carbon, % | ||||||||
Mineral nitrogen | 31.7 d | 25.7 a | 28.8 c | 28.7 A | 32.7 d | 26.3 b,c | 29.6 b,c | 29.5 C |
Liquid fraction | 32.4 d,e | 26.3 a,b | 29.5 b,c | 29.4 A,B | 18.0 a | 22.4 a,b | 20.3 a | 20.2 A |
Unseparated digestate | 33.1 e | 26.9 b | 30.1 b,c | 30.0 B | 27.4 b | 23.7 b | 25.7 b | 25.6 B |
Solid fraction | 32.4 d,e | 26.4 a,b | 29.5 b,c | 29.4 A,B | 20.0 a | 23.2 a,b | 21.7 a,b | 21.6 A |
Mean value (B) | 32.4 c | 26.3 a | 29.5 b | 24.5 | 23.9 | 24.3 | ||
Hydrogen, % | ||||||||
Mineral nitrogen | 4.3 b | 3.5 a | 3.9 a,b | 3.9 | 4.2 d | 3.2 b,c | 3.7 c | 3.7 C |
Liquid fraction | 4.4 c | 3.6 a | 4.1 b | 4.1 | 2.2 a | 2.7 a,b | 2.5 a | 2.5 A |
Unseparated digestate | 4.5 c | 3.7 a | 4.2 b | 4.1 | 3.4 b,c | 2.9 b,c | 3.1 b,c | 3.1 B |
Solid fraction | 4.4 c | 3.6 a | 4.2 b | 4.1 | 2.4 a,b | 2.8 b,c | 2.6 a | 2.6 A |
Mean value (B) | 4.4 c | 3.6 a | 4.1 b | 3.0 | 2.9 | 3.0 | ||
Nitrogen, % | ||||||||
Mineral nitrogen | 0.68 a | 0.82 b | 0.76 a,b | 0.75 A | 0.43 d | 0.30 b | 0.38 c | 0.37 C |
Liquid fraction | 0.72 a | 0.89 c | 0.82 c | 0.81 B | 0.23 a | 0.29 a,b | 0.27 a,b | 0.26 A |
Unseparated digestate | 0.78 a,b | 1.05 e | 0.88 c,d | 0.91 B | 0.35 b,c | 0.29 a,b | 0.32 b | 0.32 B |
Solid fraction | 0.74 a | 0.95 d | 0.85 c | 0.85 B | 0.28 a,b | 0.31 b | 0.31 b | 0.30 A,B |
Mean value (B) | 0.73 a | 0.93 c | 0.83 b | 0.30 | 0.32 | 0.32 | ||
Sulphur, % | ||||||||
Mineral nitrogen | 0.06 a | 0.07 a,b | 0.08 a,b | 0.07 A | 0.06 b | 0.04 a,b | 0.06 b | 0.05 |
Liquid fraction | 0.07 a,b | 0.07 a,b | 0.08 a,b | 0.07 A | 0.04 a,b | 0.04 a,b | 0.05 a,b | 0.04 |
Unseparated digestate | 0.07 a,b | 0.08 a,b | 0.09 b | 0.08 B | 0.05 a,b | 0.03 a | 0.05 a,b | 0.04 |
Solid fraction | 0.07 a,b | 0.07 a,b | 0.08 a,b | 0.07 A | 0.04 a,b | 0.03 a | 0.05 a,b | 0.04 |
Mean value (B) | 0.07 a | 0.07 a | 0.08 b | 0.05 b | 0.04 a | 0.05 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baryga, A.; Połeć, B.; Klasa, A.; Olejnik, T.P. Application of Sugar Beet Pulp Digestate as a Soil Amendment in the Production of Energy Maize. Processes 2021, 9, 765. https://doi.org/10.3390/pr9050765
Baryga A, Połeć B, Klasa A, Olejnik TP. Application of Sugar Beet Pulp Digestate as a Soil Amendment in the Production of Energy Maize. Processes. 2021; 9(5):765. https://doi.org/10.3390/pr9050765
Chicago/Turabian StyleBaryga, Andrzej, Bożenna Połeć, Andrzej Klasa, and Tomasz Piotr Olejnik. 2021. "Application of Sugar Beet Pulp Digestate as a Soil Amendment in the Production of Energy Maize" Processes 9, no. 5: 765. https://doi.org/10.3390/pr9050765
APA StyleBaryga, A., Połeć, B., Klasa, A., & Olejnik, T. P. (2021). Application of Sugar Beet Pulp Digestate as a Soil Amendment in the Production of Energy Maize. Processes, 9(5), 765. https://doi.org/10.3390/pr9050765