Effect of Aminosilane Coupling Agent-Modified Nano-SiO2 Particles on Thermodynamic Properties of Epoxy Resin Composites
Abstract
:1. Introduction
2. Experimental and Simulation Methods
2.1. Materials Preparation
2.2. Experimental Preparation
2.2.1. Surface Grafting Treatment of Nano Silica Particles
2.2.2. Preparation of Epoxy Resin Composites
2.3. Simulation Methods
2.4. Tests
3. Results and Discussion
3.1. Experimental Results
3.1.1. Storage Modulus
3.1.2. Mechanical Loss Factor
3.2. Simulation Results
3.2.1. Calculation of Mechanical Properties
3.2.2. Calculation of Glass Transition Temperature
3.2.3. Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, L.; Wang, H.; Wei, J.; Chang, Y.; Wang, N. Research and Development of 1100 kV Basin Insulator. High Volt. Appar. 2016, 6, 29–33. [Google Scholar]
- Hao, L.; Yang, B.; Tian, H.; Li, J. Research on Process Technology of UHV Basin Insulator. Insulation 2014, 5, 45–49. [Google Scholar]
- Chruściel, J.J.; Leśniak, E. Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Prog. Polym. Sci. 2015, 41, 67–121. [Google Scholar] [CrossRef]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Wang, Q.; Xing, M. Enhancement of fracture properties of polymer composites reinforced by carbon nanotubes: A molecular dynamics study. Carbon 2018, 129, 504–509. [Google Scholar] [CrossRef]
- Xu, L.; Chen, Z.; Huang, F. Corrosion Resistance of Waterborne Epoxy Resin Coating Cross-Linked by Modified Tetrabutyl Titanate. Scanning 2020, 2020, 1392385. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.C.; Zhang, H.; Sprenger, S.; Ye, L.; Zhang, Z. Fracture mechanisms of epoxy-based ternary composites filled with rigid-soft particles. Compos. Sci. Technol. 2012, 72, 558–565. [Google Scholar] [CrossRef]
- Zhao, H.; Zha, J.; Zhou, T.; Fang, Y.; Bai, X.; Dang, Z. Effect of Silane Coupling Agent on the Electrical Mechanical Conversion Sensitivity of Dielectric Elastomer Composites. Insulation 2012, 5, 1–4. [Google Scholar]
- Xu, D.; Zhu, J.; Liu, Z.; Tang, R.; Liu, J. Study on Thermal Stability and Insulation Strength of Nano-Al2O3/Epoxy Resin Composites. Plast. Ind. 2015, 4, 87–91. [Google Scholar]
- Kamar, N.T.; Drzal, L.T. Micron and nanostructured rubber toughened epoxy: A direct comparison of mechanical, thermomechanical and fracture properties. Polymer 2016, 92, 114–124. [Google Scholar] [CrossRef]
- Yu, J.; Huang, X.; Wu, C.; Wu, X.; Wang, G.; Jiang, P. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 2012, 53, 471–480. [Google Scholar] [CrossRef]
- Calebrese, C.; Hui, L.; Schadler, L.S.; Nelson, J.K. A review on the importance of nanocomposite processing to enhance electrical insulation. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 938–945. [Google Scholar] [CrossRef]
- Ma, P.C.; Kim, J.K.; Tang, B.Z. Functionalization of carbon nanotubes using a silane coupling agent. Carbon 2006, 44, 3232–3238. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.W.; Ji, W.M.; Liew, K.M. Mechanical properties of diamond nanothread reinforced polymer composites. Carbon 2018, 132, 232–240. [Google Scholar] [CrossRef]
- Tam, L.H.; Wu, C. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites. Nanomaterials 2017, 7, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghadavoudi, F.; Golestanian, H.; Beni, Y.T. Investigating the effects of CNT aspect ratio and agglomeration on elastic constants of crosslinked polymer nanocomposite using multiscale modeling. Polym. Compos. 2017, 39, 4513–4523. [Google Scholar] [CrossRef]
- Fan, H.B.; Yuen, M.M.F. Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer 2007, 48, 2174–2178. [Google Scholar] [CrossRef]
- Ge, J.; Fu, K.; Xie, J. Molecular simulation and experimental study of thermomechanical properties of DGEBA/OSC blended modified epoxy resin. Insul. Mater. 2021, 54, 42–48. [Google Scholar]
- Ni, Y.; Chen, L.; Teng, K. Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl. Mater. Interfaces 2015, 7, 11583–11591. [Google Scholar] [CrossRef]
- Iqrar, A.; Harsha, J.; Yashodeep, S. Optimizing Bedaquiline for cardiotoxicity by structure based virtual screening, DFT analysis and molecular dynamic simulation studies to identify selective MDR-TB inhibitors. Silico Pharmacol. 2021, 9, 23. [Google Scholar]
- Anas, S.; Moyad, S.; Shahnawaz, K.M. Elucidating the interaction of human ferritin with quercetin and naringenin: Implication of natural products in neurodegenerative diseases: Molecular docking and dynamics simulation insight. ACS Omega 2021, 6, 7922–7930. [Google Scholar]
- Hao, L.J.; Li, T.J.; Wang, L. Mechanistic insights into the adsorption and bioactivity of fibronectin on surfaces with varying chemistries by a combination of experimental strategies and molecular simulations. Bioact. Mater. 2021, 6, 3125–3135. [Google Scholar] [CrossRef]
- Wani, T.A.; Bakheit, A.H.; Al-Majed, A.A. Binding and drug displacement study of colchicine and bovine serum albumin in presence of azithromycin using multispectroscopic techniques and molecular dynamic simulation. J. Mol. Liq. 2021, 333, 115934. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.C.; Prosser, R.; Sirk, T.W. Glass fiber-epoxy interactions in the presence of silane: A molecular dynamics study. Appl. Surf. Sci. 2021, 542, 148738. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Wang, Z.H.; Lv, S.D. Molecular simulation of different structure dopamine-modified graphene oxide and its effects on thermal and mechanical properties of the epoxy resin system. Polymer 2021, 212, 123120. [Google Scholar] [CrossRef]
- Wang, X.H.; Chen, Y.; Wang, T.T. Preparation and characterization of TiO₂ nanowires modified organically with coupling agents. J. Nanosci. Nanotechnol. 2021, 21, 4870–4876. [Google Scholar] [CrossRef] [PubMed]
- Tsukagoshi, K.; Hirota, M.; Nomoto, R. Bond strength and computational analysis for silane coupling treatments on the adhesion of resin block for CAD/CAM crowns. Dent. Mater. J. 2020, 39, 844–854. [Google Scholar] [CrossRef]
- Zheng, W.; Tang, C.; Xie, J.F. Micro-scale effects of nano-SiO2 modification with silane coupling agents on the cellulose/nano-SiO2 interface. Nanotechnology 2019, 30, 445701. [Google Scholar] [CrossRef]
- Abhishek, K.P.; Kumar, V.; Sushant, S. Improved thermomechanical and electrical properties of reduced graphene oxide reinforced polyaniline–dodecylbenzenesulfonic acid/divinylbenzene nanocomposites. J. Colloid Interface Sci. 2019, 533, 548–560. [Google Scholar]
- Kumar, V.; Muhammad, A.M.; Tomohiro, Y. Improved environmental stability, electrical and EMI shielding properties of vapor-grown carbon fiber-filled polyaniline-based nanocomposite. Polym. Eng. Sci. 2019, 59, 956–963. [Google Scholar] [CrossRef]
- Zhang, H.; Ge, Y.; Wan, Z. Simulation and experimental study on the stress field and product microstructure of carbon fiber/epoxy resin prepreg tape lay-up. J. Compos. Mater. 2020, 28, 701–712. [Google Scholar]
- Wang, X.; Tang, C.; Wang, Q.; Li, X.; Hao, J. Selection of Optimal Polymerization Degree and Force Field in the Molecular Dynamics Simulation of Insulating Paper Cellulose. Energies 2017, 10, 1377. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.J.; Tang, C.; Hu, D. Effect of aminosilane coupling agents with different chain lengths on thermo-mechanical properties of cross-linked epoxy resin. Nanomaterials 2018, 8, 951. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Xu, W. Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin. Polymer 2007, 48, 5802–5812. [Google Scholar] [CrossRef]
- Soldera, A. Energetic analysis of the two PMMA chain tacticities and PMA through molecular dynamics simulations. Polymer 2002, 43, 4269–4275. [Google Scholar] [CrossRef]
- Yang, S.; Qu, J. Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations. Polymer 2012, 53, 4806–4817. [Google Scholar] [CrossRef]
- Jeyranpour, F.; Alahyarizadeh, G.; Minuchehr, H. The Thermo-Mechanical Properties estimation of Fullerene-Reinforced Resin Epoxy Composites by Molecular Dynamics Simulation-A Comparative Study. Polymer 2016, 88, 9–18. [Google Scholar] [CrossRef]
- Peng, X.; Yong, H.; Zhang, X.; Zhou, Y. Analysis of delamination and heat conductivity of epoxy impregnated pancake coils using a cohesive zone model. Eng. Fract. Mech. 2021, 245, 107555. [Google Scholar] [CrossRef]
- Cao, B. A Method of Nonequilibrium Molecular Dynamics of Simulated Thermal Conductivity. Comput. Phys. 2007, 24, 463–466. [Google Scholar]
Number | Samples |
---|---|
a | DGEBA |
b | DGEBA + SiO2 |
c | DGEBA + SiO2 + KH550 |
d | DGEBA + SiO2 + KH792 |
e | DGEBA + SiO2 + TAPS |
a | b | c | d | e | |
---|---|---|---|---|---|
E | 4.92 | 5.53 | 6.21 | 7.28 | 6.53 |
K | 4.66 | 4.72 | 5.69 | 6.86 | 6.11 |
G | 1.82 | 2.17 | 2.46 | 2.85 | 2.54 |
a | b | c | d | e | |
---|---|---|---|---|---|
Experimental Values | 375 | 388 | 405 | 436 | 428 |
Simulation Values | 410.5 | 415 | 425 | 447 | 432 |
a | b | c | d | e | |
---|---|---|---|---|---|
Thermal Conductivity | 0.212 | 0.214 | 0.223 | 0.264 | 0.219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, G.; Li, K.; Shi, Y.; Zhang, R.; Tang, H.; Tang, C. Effect of Aminosilane Coupling Agent-Modified Nano-SiO2 Particles on Thermodynamic Properties of Epoxy Resin Composites. Processes 2021, 9, 771. https://doi.org/10.3390/pr9050771
Lv G, Li K, Shi Y, Zhang R, Tang H, Tang C. Effect of Aminosilane Coupling Agent-Modified Nano-SiO2 Particles on Thermodynamic Properties of Epoxy Resin Composites. Processes. 2021; 9(5):771. https://doi.org/10.3390/pr9050771
Chicago/Turabian StyleLv, Gang, Ke Li, Yubing Shi, Ruiliang Zhang, Huadong Tang, and Chao Tang. 2021. "Effect of Aminosilane Coupling Agent-Modified Nano-SiO2 Particles on Thermodynamic Properties of Epoxy Resin Composites" Processes 9, no. 5: 771. https://doi.org/10.3390/pr9050771
APA StyleLv, G., Li, K., Shi, Y., Zhang, R., Tang, H., & Tang, C. (2021). Effect of Aminosilane Coupling Agent-Modified Nano-SiO2 Particles on Thermodynamic Properties of Epoxy Resin Composites. Processes, 9(5), 771. https://doi.org/10.3390/pr9050771