Regulatory MicroRNAs in T2DM and Breast Cancer
Abstract
:1. Introduction
2. Article Selection for the Literature Review
3. The Role of miRNAs in T2DM
3.1. Beta-Cell Function
3.2. Insulin Resistance
3.3. Metabolism
3.4. Chronic Inflammation and Oxidative Stress
3.5. Clinicopathological Features of T2DM
3.6. Diabetic Complications
3.7. T2DM and Obesity
3.8. Diabetic Treatment
4. miRNAs in Breast Cancer
4.1. Tumor Suppressor MiRNA
4.2. Oncogenic miRNAs
4.3. Clinicopathology of Breast Cancer and Its Subtypes
4.4. Breast Cancer Treatments
5. miRNA’s Regulatory Reigns on the T2DM–Breast Cancer Association
6. Future of miRNAs in T2DM and Breast Cancer
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RNA | Ribonucleic acid |
DNA | Deoxyribonucleic acid |
DCGR8 | DiGeorge critical region |
ORP8 | Oxysterol binding related protein 8 |
IRS | Insulin receptor substrate |
RUNX2 | Runt-related transcription factor 2 |
ERK | Extracellular-signal-regulated kinase |
Mtpn | Myotrophin |
TGF-β1 | Transforming growth factor beta 1 |
VAMP2 | Vesicle associated membrane protein 2 |
JNK | c-Jun N-terminal kinase |
SYTL4 | Synaptotagmin-like 4 |
GLUT4 | Glucose transporter type 4 |
Wnt | Wingless-related integration site |
PDK4 | Pyruvate dehydrogenase kinase 4 |
CRAT | Carnitine O-acetyltransferase |
CPT1A | Carnitine palmitoyltransferase 1A |
HADH | Hydroxyacyl-coenzyme A dehydrogenase |
Pclo | Piccolo presynaptic cytomatrix protein |
VCAM-1 | Vascular cell adhesion molecule 1 |
mTOR | Mechanistic target of rapamycin |
MAP2K3 | Mitogen-activated protein kinase kinase 3 |
TRAF6 | Tumor necrosis factor (TNF) receptor associated factor 6 |
IRAK1 | Interleukin 1 receptor-associated kinase 1 |
KCNQ1 | Potassium voltage-gated channel subfamily Q member 1 |
SMAD1 | Human homologue of Mad and Sma |
Mt.Cytb | Mitochonfrial cytochrome B |
LRP1 | Low-density lipoprotein receptor-related protein 1 |
HINT1 | Histidine triad nucleotide-binding protein 1 |
NAA15 | N-alpha-acetyltransferase 15 |
MAP3K | Mitogen activated protein (MAP) kinase kinase kinase |
NDUFA4 | Nicotinamide adenine dinucleotide (NADH)-dehydrogenase (ubiquinone) subunit |
RT PCR | Real-time polymerase chain reaction |
RDX | Radixin |
RhoA | Ras homolog family member A |
ITGA5 | Integrin alpha-5 |
USP32 | Ubiquitin specific peptidase 32 |
E-CAD | E-cadherin |
STARD13 | Steroidogenic acute regulatory protein (StAR)-related lipid transfer domain protein 13 |
LIFR | Leukemia inhibitory factor (LIF)- receptor subunit alpha |
SP1 | Proximal specificity protein 1 |
MXD1 | MYC associated factor X (MAX) dimerization protein 1 |
NOTCH3 | Neurogenic locus notch homolog protein 3 |
SETDB1 | SET domain bifurcated histone lysine methyltransferase 1 |
References
- Crick, F. Central Dogma of Molecular Biology. Nature 1970, 227, 561–563. [Google Scholar] [CrossRef]
- Makarova, J.A.; Shkurnikov, M.U.; Wicklein, D.; Lange, T.; Samatov, T.R.; Turchinovich, A.A.; Tonevitsky, A.G. Intracellular and Extracellular MicroRNA: An Update on Localization and Biological Role. Prog. Histochem. Cytochem. 2016, 51, 33–49. [Google Scholar] [CrossRef]
- Naqvi, A.R.; Islam, M.N.; Choudhury, N.R.; Haq, Q.; Mohd, R. The Fascinating World of RNA Interference. Int. J. Biol. Sci. 2009, 97–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolle, K.; Piwecka, M.; Belter, A.; Wawrzyniak, D.; Jeleniewicz, J.; Barciszewska, M.Z.; Barciszewski, J. The Sequence and Structure Determine the Function of Mature Human MiRNAs. PLoS ONE 2016, 11, e0151246. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.-H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA Genes Are Transcribed by RNA Polymerase II. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef]
- Schanen, B.C.; Li, X. Transcriptional Regulation of Mammalian MiRNA Genes. Genomics 2011, 97, 1–6. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Yoda, M.; Kawamata, T.; Paroo, Z.; Ye, X.; Iwasaki, S.; Liu, Q.; Tomari, Y. ATP-Dependent Human RISC Assembly Pathways. Nat. Struct. Mol. Biol. 2010, 17, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, S.M. An Overview of MicroRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3. [Google Scholar] [CrossRef] [Green Version]
- Khvorova, A.; Reynolds, A.; Jayasena, S.D. Functional SiRNAs and MiRNAs Exhibit Strand Bias. Cell 2003, 115, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, D.S.; Hutvágner, G.; Du, T.; Xu, Z.; Aronin, N.; Zamore, P.D. Asymmetry in the Assembly of the RNAi Enzyme Complex. Cell 2003, 115, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Doench, J.G.; Sharp, P.A. Specificity of MicroRNA Target Selection in Translational Repression. Genes Dev. 2004, 18, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Vella, M.C.; Choi, E.-Y.; Lin, S.-Y.; Reinert, K.; Slack, F.J. The C. Elegans MicroRNA Let-7 Binds to Imperfect Let-7 Complementary Sites from the Lin-41 3′UTR. Genes Dev. 2004, 18, 132–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennecke, J.; Stark, A.; Russell, R.B.; Cohen, S.M. Principles of MicroRNA-Target Recognition. PLoS Biol. 2005, 3, e85. [Google Scholar] [CrossRef] [PubMed]
- Felekkis, K.; Touvana, E.; Stefanou, C.; Deltas, C. MicroRNAs: A Newly Described Class of Encoded Molecules That Play a Role in Health and Disease. Hippokratia 2010, 14, 236–240. [Google Scholar] [PubMed]
- Loh, H.-Y.; Norman, B.P.; Lai, K.-S.; Rahman, N.M.A.N.A.; Alitheen, N.B.M.; Osman, M.A. The Regulatory Role of MicroRNAs in Breast Cancer. Int. J. Mol. Sci. 2019, 20, 4940. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.-S.; Jin, J.-P.; Wang, J.-Q.; Zhang, Z.-G.; Freedman, J.H.; Zheng, Y.; Cai, L. MiRNAS in Cardiovascular Diseases: Potential Biomarkers, Therapeutic Targets and Challenges. Acta Pharm. Sin. 2018, 39, 1073–1084. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Wang, X.; Chen, Y.; Wang, L.; Zhao, M.; Lu, Q. Dysregulation of MicroRNAs in Autoimmune Diseases: Pathogenesis, Biomarkers and Potential Therapeutic Targets. Cancer Lett. 2018, 428, 90–103. [Google Scholar] [CrossRef]
- Tan, W.; Liu, B.; Qu, S.; Liang, G.; Luo, W.; Gong, C. MicroRNAs and Cancer: Key Paradigms in Molecular Therapy. Oncol. Lett. 2018, 15, 2735–2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandujano-Tinoco, E.A.; García-Venzor, A.; Melendez-Zajgla, J.; Maldonado, V. New Emerging Roles of MicroRNAs in Breast Cancer. Breast Cancer Res. Treat. 2018, 171, 247–259. [Google Scholar] [CrossRef]
- Vaishya, S.; Sarwade, R.D.; Seshadri, V. MicroRNA, Proteins, and Metabolites as Novel Biomarkers for Prediabetes, Diabetes, and Related Complications. Front. Endocrinol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; John, P.; Bhatti, A. MicroRNAs with a Role in Gene Regulation and in Human Diseases. Mol. Biol. Rep. 2014, 41, 225–232. [Google Scholar] [CrossRef]
- Kaur, P.; Kotru, S.; Singh, S.; Behera, B.S.; Munshi, A. Role of MiRNAs in the Pathogenesis of T2DM, Insulin Secretion, Insulin Resistance, and β Cell Dysfunction: The Story so Far. J. Physiol. Biochem. 2020, 76, 485–502. [Google Scholar] [CrossRef]
- Tudzarova, S.; Osman, M.A. The Double Trouble of Metabolic Diseases: The Diabetes–Cancer Link. Mol. Biol. Cell 2015, 26, 3129–3139. [Google Scholar] [CrossRef]
- Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabetes and Cancer: A Consensus Report. Diabetes Care 2010, 33, 1674–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.N.; Torres, M.A.; Troeschel, A.N.; He, J.; Gogineni, K.; McCullough, L.E. Type 2 Diabetes, Breast Cancer Specific and Overall Mortality: Associations by Metformin Use and Modification by Race, Body Mass, and Estrogen Receptor Status. PLoS ONE 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Targher, G. Type 2 Diabetes Mellitus and Risk of Hepatocellular Carcinoma: Spotlight on Nonalcoholic Fatty Liver Disease. Ann. Transl. Med. 2017, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D. Diabetes and Pancreatic Cancer. Mol. Carcinog. 2012, 51, 64–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saed, L.; Varse, F.; Baradaran, H.R.; Moradi, Y.; Khateri, S.; Friberg, E.; Khazaei, Z.; Gharahjeh, S.; Tehrani, S.; Sioofy-Khojine, A.-B.; et al. The Effect of Diabetes on the Risk of Endometrial Cancer: An Updated a Systematic Review and Meta-Analysis. BMC Cancer 2019, 19, 527. [Google Scholar] [CrossRef] [Green Version]
- Hardefeldt, P.J.; Edirimanne, S.; Eslick, G.D. Diabetes Increases the Risk of Breast Cancer: A Meta-Analysis. Endocr. Relat. Cancer 2012, 19, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Yang, W.; Song, M.; Smith-Warner, S.A.; Yang, J.; Li, Y.; Ma, W.; Hu, Y.; Ogino, S.; Hu, F.B.; et al. Type 2 Diabetes and Risk of Colorectal Cancer in Two Large U.S. Prospective Cohorts. Br. J. Cancer 2018, 119, 1436–1442. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Huo, R.; Chen, X.; Yu, X. Diabetes Mellitus and the Risk of Bladder Cancer. Medicine 2017, 96. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Song, M.; Preston, M.A.; Ma, W.; Hu, Y.; Pernar, C.H.; Stopsack, K.H.; Ebot, E.M.; Fu, B.C.; Zhang, Y.; et al. The Association of Diabetes with Risk of Prostate Cancer Defined by Clinical and Molecular Features. Br. J. Cancer 2020, 123, 657–665. [Google Scholar] [CrossRef]
- Hall, G.C.; Roberts, C.M.; Boulis, M.; Mo, J.; MacRae, K.D. Diabetes and the Risk of Lung Cancer. Diabetes Care 2005, 28, 590–594. [Google Scholar] [CrossRef] [Green Version]
- Abudawood, M. Diabetes and Cancer: A Comprehensive Review. J. Res. Med. Sci. 2019, 24. [Google Scholar] [CrossRef]
- Ferguson, R.D.; Gallagher, E.J.; Scheinman, E.J.; Damouni, R.; LeRoith, D. The Epidemiology and Molecular Mechanisms Linking Obesity, Diabetes, and Cancer. Vitam. Horm. 2013, 93, 51–98. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Salmerón, M.; Chocarro-Calvo, A.; García-Martínez, J.M.; de la Vieja, A.; García-Jiménez, C. Epidemiological Bases and Molecular Mechanisms Linking Obesity, Diabetes, and Cancer. Endocrinol. Diabetes Nutr. 2017, 64, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Available online: https://www.hindawi.com/journals/omcl/2020/8609213/ (accessed on 27 January 2021).
- LaPierre, M.P.; Stoffel, M. MicroRNAs as Stress Regulators in Pancreatic Beta Cells and Diabetes. Mol. Metab. 2017, 6, 1010–1023. [Google Scholar] [CrossRef]
- Calderari, S.; Diawara, M.R.; Garaud, A.; Gauguier, D. Biological Roles of MicroRNAs in the Control of Insulin Secretion and Action. Physiol. Genom. 2016, 49, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.-N.; Zhang, X.; Xu, F.; Fan, Y.-Y.; Ge, B.; Guo, H.; Li, Z.-L. Four-MicroRNA Signature for Detection of Type 2 Diabetes. World J. Clin. Cases 2020, 8, 1923–1931. [Google Scholar] [CrossRef]
- Rezk, N.A.; Sabbah, N.A.; Saad, M.S.S. Role of MicroRNA 126 in Screening, Diagnosis, and Prognosis of Diabetic Patients in Egypt. IUBMB Life 2016, 68, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Weale, C.J.; Matshazi, D.M.; Davids, S.F.G.; Raghubeer, S.; Erasmus, R.T.; Kengne, A.P.; Davison, G.M.; Matsha, T.E. Circulating MiR-30a-5p and MiR-182-5p in Prediabetes and Screen-Detected Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2020, 13, 5037–5047. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Chang, X.; Yin, L.; Li, J.; Zhou, T.; Zhang, C.; Chen, X. Expression and DNA Methylation Status of MicroRNA-375 in Patients with Type 2 Diabetes Mellitus. Mol. Med. Rep. 2014, 9, 967–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taheri, M.; Eghtedarian, R.; Ghafouri-Fard, S.; Omrani, M.D. Non-Coding RNAs and Type 2 Diabetes Mellitus. Arch. Physiol. Biochem. 2020, 1–10. [Google Scholar] [CrossRef]
- Kim, M.; Zhang, X. The Profiling and Role of MiRNAs in Diabetes Mellitus. J. Diabetes Clin. Res. 2019, 1, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Vasu, S.; Kumano, K.; Darden, C.M.; Rahman, I.; Lawrence, M.C.; Naziruddin, B. MicroRNA Signatures as Future Biomarkers for Diagnosis of Diabetes States. Cells 2019, 8, 1533. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Chen, H.; Si, H.; Li, X.; Ding, X.; Sheng, Q.; Chen, P.; Zhang, H. Serum MiR-23a, a Potential Biomarker for Diagnosis of Pre-Diabetes and Type 2 Diabetes. Acta Diabetol. 2014, 51, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Fan, J.; Chen, N. A Novel Regulator of Type II Diabetes: MicroRNA-143. Trends Endocrinol. Metab. 2018, 29, 380–388. [Google Scholar] [CrossRef]
- Karolina, D.S.; Armugam, A.; Tavintharan, S.; Wong, M.T.K.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. MicroRNA 144 Impairs Insulin Signaling by Inhibiting the Expression of Insulin Receptor Substrate 1 in Type 2 Diabetes Mellitus. PLoS ONE 2011, 6, e22839. [Google Scholar] [CrossRef]
- Tang, X.; Muniappan, L.; Tang, G.; Ozcan, S. Identification of Glucose-Regulated MiRNAs from Pancreatic {beta} Cells Reveals a Role for MiR-30d in Insulin Transcription. RNA 2009, 15, 287–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Ryan, S.L.; Elliott, D.J.; Bignell, G.R.; Futreal, P.A.; Ellison, D.W.; Bailey, S.; Clifford, S.C. Amplification and Overexpression of Hsa-MiR-30b, Hsa-MiR-30d and KHDRBS3 at 8q24.22-Q24.23 in Medulloblastoma. PLoS ONE 2009, 4, e6159. [Google Scholar] [CrossRef] [Green Version]
- Zaragosi, L.-E.; Wdziekonski, B.; Brigand, K.L.; Villageois, P.; Mari, B.; Waldmann, R.; Dani, C.; Barbry, P. Small RNA Sequencing Reveals MiR-642a-3p as a Novel Adipocyte-Specific MicroRNA and MiR-30 as a Key Regulator of Human Adipogenesis. Genome Biol. 2011, 12, R64. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Yan, Y.; Xv, W.; Qian, G.; Li, C.; Zou, H.; Li, Y. A New Insight into the Roles of MiRNAs in Metabolic Syndrome. Available online: https://www.hindawi.com/journals/bmri/2018/7372636/ (accessed on 28 January 2021).
- Ryu, H.S.; Park, S.-Y.; Ma, D.; Zhang, J.; Lee, W. The Induction of MicroRNA Targeting IRS-1 Is Involved in the Development of Insulin Resistance under Conditions of Mitochondrial Dysfunction in Hepatocytes. PLoS ONE 2011, 6, e17343. [Google Scholar] [CrossRef]
- Mann, M.; Mehta, A.; Zhao, J.L.; Lee, K.; Marinov, G.K.; Garcia-Flores, Y.; Lu, L.-F.; Rudensky, A.Y.; Baltimore, D. An NF-ΚB-MicroRNA Regulatory Network Tunes Macrophage Inflammatory Responses. Nat Commun. 2017, 8, 851. [Google Scholar] [CrossRef] [Green Version]
- Ling, H.-Y.; Wen, G.-B.; Feng, S.-D.; Tuo, Q.-H.; Ou, H.-S.; Yao, C.H.; Zhu, B.-Y.; Gao, Z.-P.; Zhang, L.; Liao, D.-F. MicroRNA-375 Promotes 3T3-L1 Adipocyte Differentiation through Modulation of Extracellular Signal-Regulated Kinase Signalling. Clin. Exp. Pharm. Physiol. 2011, 38, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.-Q.; Pan, Y.; Peng, J.; Lu, G.-X. Over-Expression of MiR375 Reduces Glucose-Induced Insulin Secretion in Nit-1 Cells. Mol. Biol. Rep. 2011, 38, 3061–3065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Peng, H.; Chen, J.; Chen, X.; Han, F.; Xu, X.; He, X.; Yan, N. MicroRNA-21 Protects from Mesangial Cell Proliferation Induced by Diabetic Nephropathy in Db/Db Mice. FEBS Lett. 2009, 583, 2009–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Qin, W.; Zhao, B.; Shi, Y.; Yao, C.; Li, J.; Xiao, H.; Jin, Y. MicroRNA Expression Profiling in Diabetic GK Rat Model. Acta Biochim. Biophys. Sin. 2009, 41, 472–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovis, P.; Roggli, E.; Laybutt, D.R.; Gattesco, S.; Yang, J.-Y.; Widmann, C.; Abderrahmani, A.; Regazzi, R. Alterations in MicroRNA Expression Contribute to Fatty Acid–Induced Pancreatic β-Cell Dysfunction. Diabetes 2008, 57, 2728–2736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, H.; Yao, L.; Liu, Q. MicroRNA-96 Regulates Pancreatic β Cell Function under the Pathological Condition of Diabetes Mellitus through Targeting Foxo1 and Sox6. Biochem. Biophys. Res. Commun. 2019, 519, 294–301. [Google Scholar] [CrossRef]
- Lin, N.; Li, X.-Y.; Zhang, H.-M.; Yang, Z.; Su, Q. MicroRNA-199a-5p Mediates High Glucose-Induced Reactive Oxygen Species Production and Apoptosis in INS-1 Pancreatic β-Cells by Targeting SIRT1. Eur. Rev. Med. Pharm. Sci. 2017, 21, 1091–1098. [Google Scholar]
- Yu, C.-Y.; Yang, C.-Y.; Rui, Z.-L. MicroRNA-125b-5p Improves Pancreatic β-Cell Function through Inhibiting JNK Signaling Pathway by Targeting DACT1 in Mice with Type 2 Diabetes Mellitus. Life Sci. 2019, 224, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Plaisance, V.; Abderrahmani, A.; Perret-Menoud, V.; Jacquemin, P.; Lemaigre, F.; Regazzi, R. MicroRNA-9 Controls the Expression of Granuphilin/Slp4 and the Secretory Response of Insulin-Producing Cells. J. Biol. Chem. 2006, 281, 26932–26942. [Google Scholar] [CrossRef] [Green Version]
- Al-Muhtaresh, H.A.; Al-Kafaji, G. Evaluation of Two-Diabetes Related MicroRNAs Suitability as Earlier Blood Biomarkers for Detecting Prediabetes and Type 2 Diabetes Mellitus. J. Clin. Med. 2018, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krek, A.; Grün, D.; Poy, M.N.; Wolf, R.; Rosenberg, L.; Epstein, E.J.; MacMenamin, P.; da Piedade, I.; Gunsalus, K.C.; Stoffel, M.; et al. Combinatorial MicroRNA Target Predictions. Nat. Genet. 2005, 37, 495–500. [Google Scholar] [CrossRef]
- Baroukh, N.; Ravier, M.A.; Loder, M.K.; Hill, E.V.; Bounacer, A.; Scharfmann, R.; Rutter, G.A.; Van Obberghen, E. MicroRNA-124a Regulates Foxa2 Expression and Intracellular Signaling in Pancreatic Beta-Cell Lines. J. Biol. Chem. 2007, 282, 19575–19588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovis, P.; Gattesco, S.; Regazzi, R. Regulation of the Expression of Components of the Exocytotic Machinery of Insulin-Secreting Cells by MicroRNAs. Biol. Chem. 2008, 389, 305–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-Z.; Li, L.; Lodish, H.F.; Bartel, D.P. MicroRNAs Modulate Hematopoietic Lineage Differentiation. Science 2004, 303, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Du, H.; Wei, S.; Feng, L.; Li, J.; Yao, F.; Zhang, M.; Hatch, G.M.; Chen, L. Adipocyte-Derived Exosomal MiR-27a Induces Insulin Resistance in Skeletal Muscle Through Repression of PPARγ. Theranostics 2018, 8, 2171–2188. [Google Scholar] [CrossRef]
- Huang, F.; Zhu, P.; Wang, J.; Chen, J.; Lin, W. Postnatal Overfeeding Induces Hepatic MicroRNA-221 Expression and Impairs the PI3K/AKT Pathway in Adult Male Rats. Pediatr. Res. 2020. [Google Scholar] [CrossRef]
- Liu, S.-X.; Zheng, F.; Xie, K.-L.; Xie, M.-R.; Jiang, L.-J.; Cai, Y. Exercise Reduces Insulin Resistance in Type 2 Diabetes Mellitus via Mediating the LncRNA MALAT1/MicroRNA-382-3p/Resistin Axis. Mol. Ther. Nucleic Acids 2019, 18, 34–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Buchan, R.J.; Cook, S.A. MicroRNA-223 Regulates Glut4 Expression and Cardiomyocyte Glucose Metabolism. Cardiovasc. Res. 2010, 86, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Y.; Zhang, X.-Z.; Li, F.; Ji, Q.-R. MiR-128-3p Accelerates Cardiovascular Calcification and Insulin Resistance through ISL1-Dependent Wnt Pathway in Type 2 Diabetes Mellitus Rats. J. Cell. Physiol. 2019, 234, 4997–5010. [Google Scholar] [CrossRef]
- Lin, X.; Qin, Y.; Jia, J.; Lin, T.; Lin, X.; Chen, L.; Zeng, H.; Han, Y.; Wu, L.; Huang, S.; et al. MiR-155 Enhances Insulin Sensitivity by Coordinated Regulation of Multiple Genes in Mice. PLoS Genet. 2016, 12, e1006308. [Google Scholar] [CrossRef] [Green Version]
- De Candia, P.; Spinetti, G.; Specchia, C.; Sangalli, E.; Sala, L.L.; Uccellatore, A.; Lupini, S.; Genovese, S.; Matarese, G.; Ceriello, A. A Unique Plasma MicroRNA Profile Defines Type 2 Diabetes Progression. PLoS ONE 2017, 12, e0188980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Wu, R.; Su, H.; Li, K.; Chen, C.; Xie, R. MiR-18a Increases Insulin Sensitivity by Inhibiting PTEN. Aging 2020, 13, 1357–1368. [Google Scholar] [CrossRef] [PubMed]
- Latouche, C.; Natoli, A.; Reddy-Luthmoodoo, M.; Heywood, S.E.; Armitage, J.A.; Kingwell, B.A. MicroRNA-194 Modulates Glucose Metabolism and Its Skeletal Muscle Expression Is Reduced in Diabetes. PLoS ONE 2016, 11, e0155108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.-L.; Chen, T.; Xiong, J.-L.; Wu, D.; Xi, Q.-Y.; Luo, J.-Y.; Sun, J.-J.; Zhang, Y.-L. MiR-146b Inhibits Glucose Consumption by Targeting IRS1 Gene in Porcine Primary Adipocytes. Int. J. Mol. Sci. 2018, 19, 783. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Y.; Yao, X.; Wang, H.; Zhao, L.; Jiang, H.; Yao, X.; Zhang, S.; Ye, C.; Liu, W.; et al. MiR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle. Cell Rep. 2016, 16, 757–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Z.; Zhao, C.; Guo, X.; Ding, H.; Cui, Y.; Shen, R.; Liu, J. Differential Expression of MicroRNAs in Omental Adipose Tissue from Gestational Diabetes Mellitus Subjects Reveals MiR-222 as a Regulator of ERα Expression in Estrogen-Induced Insulin Resistance. Endocrinology 2014, 155, 1982–1990. [Google Scholar] [CrossRef] [Green Version]
- Sadeghzadeh, S.; Dehghani Ashkezari, M.; Seifati, S.M.; Vahidi Mehrjardi, M.Y.; Dehghan Tezerjani, M.; Sadeghzadeh, S.; Ladan, S.A.B. Circulating MiR-15a and MiR-222 as Potential Biomarkers of Type 2 Diabetes. Diabetes Metab. Syndr. Obes. 2020, 13, 3461–3469. [Google Scholar] [CrossRef]
- Xu, L.-N.; Yin, L.-H.; Jin, Y.; Qi, Y.; Han, X.; Xu, Y.-W.; Liu, K.-X.; Zhao, Y.-Y.; Peng, J.-Y. Effect and Possible Mechanisms of Dioscin on Ameliorating Metabolic Glycolipid Metabolic Disorder in Type-2-Diabetes. Phytomedicine 2020, 67, 153139. [Google Scholar] [CrossRef] [PubMed]
- Dávalos, A.; Goedeke, L.; Smibert, P.; Ramírez, C.M.; Warrier, N.P.; Andreo, U.; Cirera-Salinas, D.; Rayner, K.; Suresh, U.; Pastor-Pareja, J.C.; et al. MiR-33a/b Contribute to the Regulation of Fatty Acid Metabolism and Insulin Signaling. Proc. Natl. Acad. Sci. USA 2011, 108, 9232–9237. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Li, X.; Li, G.; Dai, B.; Tan, W. Actinidia Chinensis Planch. Improves the Indices of Antioxidant and Anti-Inflammation Status of Type 2 Diabetes Mellitus by Activating Keap1 and Nrf2 via the Upregulation of MicroRNA-424. Oxid. Med. Cell. Longev. 2017, 2017, 7038789. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, M.; Aghaei Zarch, S.M.; Vahidi Mehrjardi, M.Y.; Nazari, M.; Babakhanzadeh, E.; Ghadimi, H.; Zeinali, F.; Talebi, M. Evaluation of MiR-181b and MiR-126-5p Expression Levels in T2DM Patients Compared to Healthy Individuals: Relationship with NF-ΚB Gene Expression. Endocrinol. Diabetes Nutr. 2020, 67, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Egana, V.; Rosero, S.; Klein, D.; Jiang, Z.; Vargas, N.; Tsinoremas, N.; Doni, M.; Podetta, M.; Ricordi, C.; Molano, R.D.; et al. Inflammation-Mediated Regulation of MicroRNA Expression in Transplanted Pancreatic Islets. Available online: https://www.hindawi.com/journals/jtrans/2012/723614/ (accessed on 28 January 2021).
- Ding, X.; Jian, T.; Wu, Y.; Zuo, Y.; Li, J.; Lv, H.; Ma, L.; Ren, B.; Zhao, L.; Li, W.; et al. Ellagic Acid Ameliorates Oxidative Stress and Insulin Resistance in High Glucose-Treated HepG2 Cells via MiR-223/Keap1-Nrf2 Pathway. Biomed. Pharm. 2019, 110, 85–94. [Google Scholar] [CrossRef]
- Giannella, A.; Radu, C.M.; Franco, L.; Campello, E.; Simioni, P.; Avogaro, A.; de Kreutzenberg, S.V.; Ceolotto, G. Circulating Levels and Characterization of Microparticles in Patients with Different Degrees of Glucose Tolerance. Cardiovasc. Diabetol 2017, 16, 118. [Google Scholar] [CrossRef] [PubMed]
- Rubie, C.; Zimmer, J.; Lammert, F.; Gross, J.C.; Weber, S.N.; Kruse, B.; Halajda, B.; Wagner, M.; Wagenpfeil, S.; Glanemann, M. MicroRNA-496 and Mechanistic Target of Rapamycin Expression Are Associated with Type 2 Diabetes Mellitus and Obesity in Elderly People. Ann. Nutr. Metab. 2019, 74, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Meerson, A.; Najjar, A.; Saad, E.; Sbeit, W.; Barhoum, M.; Assy, N. Sex Differences in Plasma MicroRNA Biomarkers of Early and Complicated Diabetes Mellitus in Israeli Arab and Jewish Patients. Noncoding RNA 2019, 5, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, H.; Zhang, K.; Xu, J.; Liao, K.; Zhou, W.; Fu, Z. Combining Bioinformatics Techniques to Study Diabetes Biomarkers and Related Molecular Mechanisms. Front. Genet. 2020, 11. [Google Scholar] [CrossRef]
- Feng, Y.; Ge, Y.; Wu, M.; Xie, Y.; Wang, M.; Chen, Y.; Shi, X. Long Non-Coding RNAs Regulate Inflammation in Diabetic Peripheral Neuropathy by Acting as CeRNAs Targeting MiR-146a-5p. Diabetes Metab. Syndr. Obes. 2020, 13, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Kokkinopoulou, I.; Maratou, E.; Mitrou, P.; Boutati, E.; Sideris, D.C.; Fragoulis, E.G.; Christodoulou, M.-I. Decreased Expression of MicroRNAs Targeting Type-2 Diabetes Susceptibility Genes in Peripheral Blood of Patients and Predisposed Individuals. Endocrine 2019, 66, 226–239. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Du, C.; Zou, Y.; Long, Y.; Huang, C.; Chen, F.; He, Y.; Zhou, X. Downregulation of MicroRNA-4463 Attenuates High-Glucose- and Hypoxia-Induced Endothelial Cell Injury by Targeting PNUTS. Cell. Physiol. Biochem. 2018, 49, 2073–2087. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, İ.; Korkmaz, H.; Ozturk, K.H.; Sirin, F.B.; Sevik, S.; Afsar, B. New Risk Factors in Diabetic Nephropathy: MicroRNA-196-3p and MicroRNA-203. Minerva Endocrinol. 2020. [Google Scholar] [CrossRef]
- Tang, Y.; Zheng, L.; Zhou, J.; Chen, Y.; Yang, L.; Deng, F.; Hu, Y. MiR-203-3p Participates in the Suppression of Diabetes-Associated Osteogenesis in the Jaw Bone through Targeting Smad1. Int. J. Mol. Med. 2018, 41, 1595–1607. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Chen, L.; Yan, C.; Zhou, W.; Endo, Y.; Liu, J.; Hu, L.; Hu, Y.; Mi, B.; Liu, G. Circulating Exosomal MiR-20b-5p Inhibition Restores Wnt9b Signaling and Reverses Diabetes-Associated Impaired Wound Healing. Small 2020, 16, e1904044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, A.; Meerson, A.; Rohana, H.; Jabaly, H.; Nahul, N.; Celesh, D.; Romanenko, O.; Tamir, S. MicroRNA-423 May Regulate Diabetic Vasculopathy. Clin. Exp. Med. 2019, 19, 469–477. [Google Scholar] [CrossRef]
- Jiang, Q.; Lyu, X.-M.; Yuan, Y.; Wang, L. Plasma MiR-21 Expression: An Indicator for the Severity of Type 2 Diabetes with Diabetic Retinopathy. Biosci. Rep. 2017, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Qiu, F.; Zhou, K.; Matlock, H.G.; Takahashi, Y.; Rajala, R.V.S.; Yang, Y.; Moran, E.; Ma, J.-X. Pathogenic Role of MicroRNA-21 in Diabetic Retinopathy Through Downregulation of PPARα. Diabetes 2017, 66, 1671–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Dai, B.; Fan, J.; Chen, C.; Nie, X.; Yin, Z.; Zhao, Y.; Zhang, X.; Wang, D.W. The Different Roles of MiRNA-92a-2-5p and Let-7b-5p in Mitochondrial Translation in Db/Db Mice. Mol. Ther. Nucleic Acids 2019, 17, 424–435. [Google Scholar] [CrossRef]
- Greco, M.; Chiefari, E.; Accattato, F.; Corigliano, D.M.; Arcidiacono, B.; Mirabelli, M.; Liguori, R.; Brunetti, F.S.; Pullano, S.A.; Scorcia, V.; et al. MicroRNA-1281 as a Novel Circulating Biomarker in Patients With Diabetic Retinopathy. Front. Endocrinol. 2020, 11. [Google Scholar] [CrossRef]
- Polina, E.R.; Oliveira, F.M.; Sbruzzi, R.C.; Crispim, D.; Canani, L.H.; Santos, K.G. Gene Polymorphism and Plasma Levels of MiR-155 in Diabetic Retinopathy. Endocr. Connect. 2019, 8, 1591–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willeit, P.; Skroblin, P.; Moschen, A.R.; Yin, X.; Kaudewitz, D.; Zampetaki, A.; Barwari, T.; Whitehead, M.; Ramírez, C.M.; Goedeke, L.; et al. Circulating MicroRNA-122 Is Associated With the Risk of New-Onset Metabolic Syndrome and Type 2 Diabetes. Diabetes 2017, 66, 347–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giglio, R.V.; Nikolic, D.; Volti, G.L.; Stoian, A.P.; Banerjee, Y.; Magan-Fernandez, A.; Castellino, G.; Patti, A.M.; Chianetta, R.; Castracani, C.C.; et al. Liraglutide Increases Serum Levels of MicroRNA-27b, -130a and -210 in Patients with Type 2 Diabetes Mellitus: A Novel Epigenetic Effect. Metabolites 2020, 10, 391. [Google Scholar] [CrossRef] [PubMed]
- Qun, L.; Wenda, X.; Weihong, S.; Jianyang, M.; Wei, C.; Fangzhou, L.; Zhenyao, X.; Pingjin, G. MiRNA-27b Modulates Endothelial Cell Angiogenesis by Directly Targeting Naa15 in Atherogenesis. Atherosclerosis 2016, 254, 184–192. [Google Scholar] [CrossRef]
- Soares, R.J.; Cagnin, S.; Chemello, F.; Silvestrin, M.; Musaro, A.; De Pitta, C.; Lanfranchi, G.; Sandri, M. Involvement of MicroRNAs in the Regulation of Muscle Wasting during Catabolic Conditions. J. Biol. Chem. 2014, 289, 21909–21925. [Google Scholar] [CrossRef] [Green Version]
- Moeez, S.; Riaz, S.; Masood, N.; Kanwal, N.; Arif, M.A.; Niazi, R.; Khalid, S. Evaluation of the Rs3088442 G>A SLC22A3 Gene Polymorphism and the Role of MicroRNA 147 in Groups of Adult Pakistani Populations with Type 2 Diabetes in Response to Metformin. Can. J. Diabetes 2019, 43, 128–135. [Google Scholar] [CrossRef]
- Ye, M.; Li, D.; Yang, J.; Xie, J.; Yu, F.; Ma, Y.; Zhu, X.; Zhao, J.; Lv, Z. MicroRNA-130a Targets MAP3K12 to Modulate Diabetic Endothelial Progenitor Cell Function. Cell. Physiol. Biochem. 2015, 36, 712–726. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Tang, P.; Sun, Z.; Zhang, R.; Zhu, D.; He, J.; Liao, J.; Wan, Q.; Shen, J. MiR-210 in Exosomes Derived from Macrophages under High Glucose Promotes Mouse Diabetic Obesity Pathogenesis by Suppressing NDUFA4 Expression. J. Diabetes Res. 2020, 2020, 6894684. [Google Scholar] [CrossRef] [Green Version]
- DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; et al. Type 2 Diabetes Mellitus. Nat. Rev. Dis. Primers 2015, 1, 1–22. [Google Scholar] [CrossRef]
- Seyhan, A.A.; Nunez Lopez, Y.O.; Xie, H.; Yi, F.; Mathews, C.; Pasarica, M.; Pratley, R.E. Pancreas-Enriched MiRNAs Are Altered in the Circulation of Subjects with Diabetes: A Pilot Cross-Sectional Study. Sci. Rep. 2016, 6, 31479. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Chu, A.; Feng, Y.; Chen, L.; Shao, Y.; Luo, Q.; Deng, X.; Wu, M.; Shi, X.; Chen, Y. MicroRNA-146a: A Comprehensive Indicator of Inflammation and Oxidative Stress Status Induced in the Brain of Chronic T2DM Rats. Front. Pharm. 2018, 9, 478. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, T.; Wei, Y.; Cai, W.-J.; Feng, G.; Chang, X.-Y.; Sun, K. Epigenetic Regulation of MicroRNA-375 and Its Role as DNA Epigenetic Marker of Type 2 Diabetes Mellitus in Chinese Han Population. Int. J. Clin. Exp. Pathol. 2017, 10, 11986–11994. [Google Scholar] [PubMed]
- Chang, X.; Li, S.; Li, J.; Yin, L.; Zhou, T.; Zhang, C.; Chen, X.; Sun, K. Ethnic Differences in MicroRNA-375 Expression Level and DNA Methylation Status in Type 2 Diabetes of Han and Kazak Populations. J. Diabetes Res. 2014, 2014, 761938. [Google Scholar] [CrossRef]
- Kulkarni, M.; Leszczynska, A.; Wei, G.; Winkler, M.A.; Tang, J.; Funari, V.A.; Deng, N.; Liu, Z.; Punj, V.; Deng, S.X.; et al. Genome-Wide Analysis Suggests a Differential MicroRNA Signature Associated with Normal and Diabetic Human Corneal Limbus. Sci. Rep. 2017, 7, 3448. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chen, L.; Luo, Q.; Wu, M.; Chen, Y.; Shi, X. Involvement of MicroRNA-146a in Diabetic Peripheral Neuropathy through the Regulation of Inflammation. Drug Des. Dev. Ther. 2018, 12, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Sangalli, E.; Tagliabue, E.; Sala, L.L.; Prattichizzo, F.; Uccellatore, A.; Spada, D.; Lorino, F.; de Candia, P.; Lupini, S.; Cantone, L.; et al. Circulating MicroRNA-15a Associates With Retinal Damage in Patients with Early Stage Type 2 Diabetes. Front. Endocrinol. 2020, 11, 254. [Google Scholar] [CrossRef]
- Kaidonis, G.; Gillies, M.C.; Abhary, S.; Liu, E.; Essex, R.W.; Chang, J.H.; Pal, B.; Sivaprasad, S.; Pefkianaki, M.; Daniell, M.; et al. A Single-Nucleotide Polymorphism in the MicroRNA-146a Gene Is Associated with Diabetic Nephropathy and Sight-Threatening Diabetic Retinopathy in Caucasian Patients. Acta Diabetol. 2016, 53, 643–650. [Google Scholar] [CrossRef]
- Kajimoto, K.; Naraba, H.; Iwai, N. MicroRNA and 3T3-L1 Pre-Adipocyte Differentiation. RNA 2006, 12, 1626–1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, D.-S.; Cheng, Y.-S.; Jia, B.-L.; Yu, G.; Yin, X.-Q.; Wang, Y. Expression of MicroRNA-448 and SIRT1 and Prognosis of Obese Type 2 Diabetic Mellitus Patients After Laparoscopic Bariatric Surgery. Cell. Physiol. Biochem. 2018, 45, 935–950. [Google Scholar] [CrossRef] [PubMed]
- Coskun, Z.M.; Beydogan, A.B.; Bolkent, S. Changes in the Expression Levels of CB1 and GLP-1R MRNAs and MicroRNAs 33a and 122 in the Liver of Type 2 Diabetic Rats Treated with Ghrelin. J. Biochem. Mol. Toxicol. 2019, 33, e22388. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Croce, C.M. The Role of MicroRNAs in Human Cancer. Signal. Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, S.-Y.; Chang, C.P.; Lin, S.-L. Intron-Mediated RNA Interference, Intronic MicroRNAs, and Applications. Methods Mol. Biol. 2010, 629, 205–237. [Google Scholar] [CrossRef]
- Shimomura, A.; Shiino, S.; Kawauchi, J.; Takizawa, S.; Sakamoto, H.; Matsuzaki, J.; Ono, M.; Takeshita, F.; Niida, S.; Shimizu, C.; et al. Novel Combination of Serum MicroRNA for Detecting Breast Cancer in the Early Stage. Cancer Sci. 2016, 107, 326–334. [Google Scholar] [CrossRef]
- Amini, S.; Abak, A.; Estiar, M.A.; Montazeri, V.; Abhari, A.; Sakhinia, E. Expression Analysis of MicroRNA-222 in Breast Cancer. Clin. Lab. 2018, 64, 491–496. [Google Scholar] [CrossRef]
- Assiri, A.A.; Mourad, N.; Shao, M.; Kiel, P.; Liu, W.; Skaar, T.C.; Overholser, B.R. MicroRNA 362-3p Reduces HERG-Related Current and Inhibits Breast Cancer Cells Proliferation. Cancer Genom. Proteom. 2019, 16, 433–442. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, X.; Shi, Q.; Zhao, B. MicroRNA-383-5p Acts as a Potential Prognostic Biomarker and an Inhibitor of Tumor Cell Proliferation, Migration, and Invasion in Breast Cancer. Cancer Biomark. 2020, 27, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, H.; Wang, J.; Wang, D.; Yao, A.; Li, Q. Prognostic and Biological Significance of MicroRNA-127 Expression in Human Breast Cancer. Dis. Markers 2014, 2014, 401986. [Google Scholar] [CrossRef]
- Sun, W.-J.; Zhang, Y.-N.; Xue, P. MiR-186 Inhibits Proliferation, Migration, and Epithelial-Mesenchymal Transition in Breast Cancer Cells by Targeting Twist1. J. Cell. Biochem. 2019, 120, 10001–10009. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Tian, Q.; Guan, L.; Niu, S. The Dual Role of MiR-186 in Cancers: Oncomir Battling with Tumor Suppressor MiRNA. Front. Oncol. 2020, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Peng, F.; Chen, J. The Role of Exosomal MicroRNAs in the Tumor Microenvironment of Breast Cancer. Int. J. Mol. Sci. 2019, 20, 3884. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.-Y.; Shi, K.-Y.; Xu, D.; Ren, L.-P.; Yang, P.; Zhang, L.; Wang, F.; Shao, G.-L. LncRNA GIHCG Regulates MicroRNA-1281 and Promotes Malignant Progression of Breast Cancer. Eur. Rev. Med. Pharm. Sci. 2019, 23, 10842–10850. [Google Scholar] [CrossRef]
- Khalighfard, S.; Alizadeh, A.M.; Irani, S.; Omranipour, R. Plasma MiR-21, MiR-155, MiR-10b, and Let-7a as the Potential Biomarkers for the Monitoring of Breast Cancer Patients. Sci. Rep. 2018, 8, 17981. [Google Scholar] [CrossRef]
- Stahlhut Espinosa, C.E.; Slack, F.J. The Role of MicroRNAs in Cancer. Yale J. Biol. Med. 2006, 79, 131–140. [Google Scholar]
- Jiang, J.; Yang, X.; He, X.; Ma, W.; Wang, J.; Zhou, Q.; Li, M.; Yu, S. MicroRNA-449b-5p Suppresses the Growth and Invasion of Breast Cancer Cells via Inhibiting CREPT-Mediated Wnt/β-Catenin Signaling. Chem. Biol. Interact. 2019, 302, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Wang, S.; Zhao, Y.; Zhang, Z.; Qin, C.; Yang, X. MicroRNA-216a Suppresses the Proliferation and Migration of Human Breast Cancer Cells via the Wnt/β-Catenin Signaling Pathway. Oncol. Rep. 2019, 41, 2647–2656. [Google Scholar] [CrossRef]
- Gao, J.; Yu, S.-R.; Yuan, Y.; Zhang, L.-L.; Lu, J.-W.; Feng, J.-F.; Hu, S.-N. MicroRNA-590-5p Functions as a Tumor Suppressor in Breast Cancer Conferring Inhibitory Effects on Cell Migration, Invasion, and Epithelial-Mesenchymal Transition by Downregulating the Wnt-β-Catenin Signaling Pathway. J. Cell. Physiol. 2019, 234, 1827–1841. [Google Scholar] [CrossRef]
- Zhao, W.; Geng, D.; Li, S.; Chen, Z.; Sun, M. LncRNA HOTAIR Influences Cell Growth, Migration, Invasion, and Apoptosis via the MiR-20a-5p/HMGA2 Axis in Breast Cancer. Cancer Med. 2018, 7, 842–855. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.; Yuan, Y.; Song, T.; Wang, H.; Huang, L.; Luo, X.; He, H.; Huo, L.; Zhou, H.; Wang, N.; et al. MiR-219a-5p Inhibits Breast Cancer Cell Migration and Epithelial-Mesenchymal Transition by Targeting Myocardin-Related Transcription Factor A. Acta Biochim. Biophys. Sin. 2017, 49, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Qin, T.; Li, J.; Wang, L.; Zhang, Q.; Jiang, Z.; Mao, J. MicroRNA-140-5p Inhibits Invasion and Angiogenesis through Targeting VEGF-A in Breast Cancer. Cancer Gene Ther. 2017, 24, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Guo, P.; Zhang, Y.; Huang, Z.; Chen, B. MicroRNA-322 Regulates the Growth, Chemosensitivity, Migration and Invasion of Breast Cancer Cells by Targeting NF-KB1. J. BU ON 2020, 25, 152–158. [Google Scholar]
- Fan, X.; Fang, X.; Liu, G.; Xiong, Q.; Li, Z.; Zhou, W. MicroRNA-204 Inhibits the Proliferation and Metastasis of Breast Cancer Cells by Targeting PI3K/AKT Pathway. J. BU ON 2019, 24, 1054–1059. [Google Scholar]
- Yang, Y.; Jiang, Z.; Ma, N.; Wang, B.; Liu, J.; Zhang, L.; Gu, L. MicroRNA-223 Targeting STIM1 Inhibits the Biological Behavior of Breast Cancer. Cell. Physiol. Biochem. 2018, 45, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Liu, A.Y.; Fan, C.; Zheng, H.; Li, Y.; Zhang, C.; Wu, S.; Yu, D.; Huang, Z.; Liu, F.; et al. MicroRNA-33b Inhibits Breast Cancer Metastasis by Targeting HMGA2, SALL4 and Twist1. Sci. Rep. 2015, 5, 9995. [Google Scholar] [CrossRef] [PubMed]
- Bouyssou, J.M.C.; Manier, S.; Huynh, D.; Issa, S.; Roccaro, A.M.; Ghobrial, I.M. Regulation of MicroRNAs in Cancer Metastasis. Biochim. Biophys. Acta 2014, 1845, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Chen, X.; Liang, H.; Deng, T.; Chen, W.; Zhang, S.; Liu, M.; Gao, X.; Liu, Y.; Zhao, C.; et al. MiR-143 and MiR-145 Synergistically Regulate ERBB3 to Suppress Cell Proliferation and Invasion in Breast Cancer. Mol. Cancer 2014, 13, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-W.; Guan, W.; Han, S.; Hong, D.-K.; Kim, L.-S.; Kim, H. MicroRNA-708-3p Mediates Metastasis and Chemoresistance through Inhibition of Epithelial-to-Mesenchymal Transition in Breast Cancer. Cancer Sci. 2018, 109, 1404–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Xu, Y.; Wang, H.; Du, T.; Chen, H. MicroRNA-503 Inhibits the Proliferation and Invasion of Breast Cancer Cells via Targeting Insulin-like Growth Factor 1 Receptor. Mol. Med. Rep. 2017, 16, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ren, P.; Shi, P.; Chen, Y.; Xiang, F.; Zhang, L.; Wang, J.; Lv, Q.; Xie, M. MicroRNA-148a Promotes Apoptosis and Suppresses Growth of Breast Cancer Cells by Targeting B-Cell Lymphoma 2. Anticancer Drugs 2017, 28, 588–595. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Ge, H.-F.; Yang, C.-C.; Cai, Y.; Chen, Z.; Tian, W.-Z.; Tao, J.-L. MicroRNA-26a-5p Inhibits Breast Cancer Cell Growth by Suppressing RNF6 Expression. Kaohsiung J. Med. Sci. 2019, 35, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Shen, L.; Zhang, W.; Ding, R.; Li, Q.; Li, S.; Zhang, H. Functional Analyses of MicroRNA-326 in Breast Cancer Development. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, W.; Gong, D.; Qin, X.; Cai, Z. MicroRNA-671-3p suppresses proliferation and invasion of breast cancer cells by targeting DEPTOR. Nan Fang Yi Ke Da Xue Xue Bao 2020, 40, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-Y.; Tian, J.-R.; Yang, D.; Tan, H.-R. TATDN1 Promotes the Development and Progression of Breast Cancer by Targeting MicroRNA-140-3p. Eur. Rev. Med. Pharm. Sci. 2019, 23, 5293–5300. [Google Scholar] [CrossRef]
- Chen, C.; Liu, X.; Chen, C.; Chen, Q.; Dong, Y.; Hou, B. Clinical Significance of Let-7a-5p and MiR-21-5p in Patients with Breast Cancer. Ann. Clin. Lab. Sci. 2019, 49, 302–308. [Google Scholar]
- Liu, C.; Chen, Z.; Fang, M.; Qiao, Y. MicroRNA Let-7a Inhibits Proliferation of Breast Cancer Cell by Downregulating USP32 Expression. Transl. Cancer Res. 2019, 8. [Google Scholar] [CrossRef]
- Wang, B.; Wang, H.; Yang, Z. MiR-122 Inhibits Cell Proliferation and Tumorigenesis of Breast Cancer by Targeting IGF1R. PLoS ONE 2012, 7, e47053. [Google Scholar] [CrossRef] [Green Version]
- ZHANG, Y.; ZHANG, H.; LIU, Z. MicroRNA-147 Suppresses Proliferation, Invasion and Migration through the AKT/MTOR Signaling Pathway in Breast Cancer. Oncol. Lett. 2016, 11, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Sachdeva, M.; Mo, Y.-Y. MicroRNA-145 Suppresses Cell Invasion and Metastasis by Directly Targeting Mucin 1. Cancer Res. 2010, 70, 378–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, X.; Li, T.; Wang, L.; Wu, X.; Liu, J.; Xu, Y.; Wei, W. Multiple Roles of MicroRNA-146a in Immune Responses and Hepatocellular Carcinoma. Oncol. Lett. 2019, 18, 5033–5042. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Tan, Z.; Hu, H.; Liu, H.; Wu, T.; Zheng, C.; Wang, X.; Luo, Z.; Wang, J.; Liu, S.; et al. MicroRNA-21 Promotes Breast Cancer Proliferation and Metastasis by Targeting LZTFL1. BMC Cancer 2019, 19, 738. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Liu, X. MicroRNA-370 Promotes Cell Growth by Targeting WNK2 in Breast Cancer. DNA Cell Biol. 2019, 38, 501–509. [Google Scholar] [CrossRef]
- Li, X.; Zeng, Z.; Wang, J.; Wu, Y.; Chen, W.; Zheng, L.; Xi, T.; Wang, A.; Lu, Y. MicroRNA-9 and Breast Cancer. Biomed. Pharm. 2020, 122, 109687. [Google Scholar] [CrossRef]
- Eissa, S.; Matboli, M.; Sharawy, A.; El-Sharkawi, F. Prognostic and Biological Significance of MicroRNA-221 in Breast Cancer. Gene 2015, 574, 163–167. [Google Scholar] [CrossRef]
- Li, B.; Lu, Y.; Yu, L.; Han, X.; Wang, H.; Mao, J.; Shen, J.; Wang, B.; Tang, J.; Li, C.; et al. MiR-221/222 Promote Cancer Stem-like Cell Properties and Tumor Growth of Breast Cancer via Targeting PTEN and Sustained Akt/NF-ΚB/COX-2 Activation. Chem. Biol. Interact. 2017, 277, 33–42. [Google Scholar] [CrossRef]
- Li, B.; Lu, Y.; Wang, H.; Han, X.; Mao, J.; Li, J.; Yu, L.; Wang, B.; Fan, S.; Yu, X.; et al. MiR-221/222 Enhance the Tumorigenicity of Human Breast Cancer Stem Cells via Modulation of PTEN/Akt Pathway. Biomed. Pharm. 2016, 79, 93–101. [Google Scholar] [CrossRef]
- Pan, Y.; Li, J.; Zhang, Y.; Wang, N.; Liang, H.; Liu, Y.; Zhang, C.-Y.; Zen, K.; Gu, H. Slug-Upregulated MiR-221 Promotes Breast Cancer Progression through Suppressing E-Cadherin Expression. Sci. Rep. 2016, 6, 25798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.-H.; Yang, Y.; Song, Q.; Li, J.B. MicroRNA-155regulates the Proliferation and Metastasis of Human Breast Cancers by Targeting MAPK7. J. BU ON 2019, 24, 1075–1080. [Google Scholar]
- Wang, Y.; Liu, Z.; Shen, J. MicroRNA-421-Targeted PDCD4 Regulates Breast Cancer Cell Proliferation. Int. J. Mol. Med. 2019, 43, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Song, Y.-H.; Mao, Y.; Wang, H.-B.; Nie, G. MiRNA-106a Promotes Breast Cancer Progression by Regulating DAX-1. Eur. Rev. Med. Pharm. Sci. 2019, 23, 1574–1583. [Google Scholar] [CrossRef]
- Petrovic, N.; Davidovic, R.; Bajic, V.; Obradovic, M.; Isenovic, R.E. MicroRNA in Breast Cancer: The Association with BRCA1/2. Cancer Biomark. 2017, 19, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.; Feser, R.; Nault, B.; Hunter, S.; Maiti, S.; Ugwuagbo, K.C.; Majumder, M. MiR526b and MiR655 Induce Oxidative Stress in Breast Cancer. Int. J. Mol. Sci. 2019, 20, 4039. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Xing, H.; Han, W.; Wang, Y.; Qi, T.; Song, C.; Xu, Z.; Li, H.; Huang, Y. MicroRNA-409-5p Is Upregulated in Breast Cancer and Its Downregulation Inhibits Cancer Development through Downstream Target of RSU1. Tumour Biol. 2017, 39, 1010428317701647. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Wang, Y.; Guo, G.; Li, L.; Dou, D.; Ge, X.; Lv, P.; Wang, F.; Gu, Y. MicroRNA-30d Mediated Breast Cancer Invasion, Migration, and EMT by Targeting KLF11 and Activating STAT3 Pathway. J. Cell. Biochem. 2018, 119, 8138–8145. [Google Scholar] [CrossRef]
- Setijono, S.R.; Park, M.; Kim, G.; Kim, Y.; Cho, K.W.; Song, S.J. MiR-218 and MiR-129 Regulate Breast Cancer Progression by Targeting Lamins. Biochem. Biophys. Res. Commun. 2018, 496, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Niedźwiecki, S.; Piekarski, J.; Szymańska, B.; Pawłowska, Z.; Jeziorski, A. Serum Levels of Circulating MiRNA-21, MiRNA-10b and MiRNA-200c in Triple-Negative Breast Cancer Patients. Ginekol. Pol. 2018, 89, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Yu, H.; Yuan, J.; Guo, C.; Cao, H.; Li, W.; Xiao, C. MicroRNA-200b Impacts Breast Cancer Cell Migration and Invasion by Regulating Ezrin-Radixin-Moesin. Med. Sci. Monit. 2016, 22, 1946–1952. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Hu, J.; Shen, Z.; Yao, R.; Liu, S.; Li, Y.; Cong, H.; Wang, X.; Qiu, W.; Yue, L. MiR-200b Expression in Breast Cancer: A Prognostic Marker and Act on Cell Proliferation and Apoptosis by Targeting Sp1. J. Cell. Mol. Med. 2015, 19, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Huang, P.; Shi, L.; Lei, L.; Cao, W.; Chen, Z.; Wang, X.; Zheng, Y. MicroRNA and LncRNA Expression Profiles in Human Estrogen Receptor Positive Breast Cancer. Clin. Lab. 2019, 65. [Google Scholar] [CrossRef]
- Kang, P.-C.; Leng, K.-M.; Liu, Y.-P.; Liu, Y.; Xu, Y.; Qin, W.; Gao, J.-J.; Wang, Z.-D.; Tai, S.; Zhong, X.-Y.; et al. MiR-191 Inhibition Induces Apoptosis Through Reactivating Secreted Frizzled-Related Protein-1 in Cholangiocarcinoma. CPB 2018, 49, 1933–1942. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, H.; Zhang, Y.; Yang, X.; Zhang, J.; Yi, M.; Zhang, C. The MicroRNA-382-5p/MXD1 Axis Relates to Breast Cancer Progression and Promotes Cell Malignant Phenotypes. J. Surg. Res. 2020, 246, 442–449. [Google Scholar] [CrossRef]
- Liang, Y.-K.; Lin, H.-Y.; Dou, X.-W.; Chen, M.; Wei, X.-L.; Zhang, Y.-Q.; Wu, Y.; Chen, C.-F.; Bai, J.-W.; Xiao, Y.-S.; et al. MiR-221/222 Promote Epithelial-Mesenchymal Transition by Targeting Notch3 in Breast Cancer Cell Lines. NPJ Breast Cancer 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Zhao, J.-J.; Lin, J.; Yang, H.; Kong, W.; He, L.; Ma, X.; Coppola, D.; Cheng, J.Q. MicroRNA-221/222 Negatively Regulates Estrogen Receptor Alpha and Is Associated with Tamoxifen Resistance in Breast Cancer. J. Biol. Chem. 2008, 283, 31079–31086. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhou, Y.; Shi, Z.; Hu, Y.; Meng, T.; Zhang, X.; Zhang, S.; Zhang, J. MicroRNA-497 Modulates Breast Cancer Cell Proliferation, Invasion, and Survival by Targeting SMAD7. DNA Cell Biol. 2016, 35, 521–529. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Ran, F.; Liu, J.; Lin, J.; Hao, X.; Ding, L.; Ye, Q. Let-7a-5p Inhibits Triple-Negative Breast Tumor Growth and Metastasis through GLUT12-Mediated Warburg Effect. Cancer Lett. 2020, 495, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Krutilina, R.; Sun, W.; Sethuraman, A.; Brown, M.; Seagroves, T.N.; Pfeffer, L.M.; Ignatova, T.; Fan, M. MicroRNA-18a Inhibits Hypoxia-Inducible Factor 1α Activity and Lung Metastasis in Basal Breast Cancers. Breast Cancer Res. 2014, 16, R78. [Google Scholar] [CrossRef] [Green Version]
- Luengo-Gil, G.; García-Martínez, E.; Chaves-Benito, A.; Conesa-Zamora, P.; Navarro-Manzano, E.; González-Billalabeitia, E.; García-Garre, E.; Martínez-Carrasco, A.; Vicente, V.; Ayala de la Peña, F. Clinical and Biological Impact of MiR-18a Expression in Breast Cancer after Neoadjuvant Chemotherapy. Cell. Oncol. 2019, 42, 627–644. [Google Scholar] [CrossRef] [PubMed]
- Sha, L.-Y.; Zhang, Y.; Wang, W.; Sui, X.; Liu, S.-K.; Wang, T.; Zhang, H. MiR-18a Upregulation Decreases Dicer Expression and Confers Paclitaxel Resistance in Triple Negative Breast Cancer. Eur. Rev. Med. Pharm. Sci. 2016, 20, 2201–2208. [Google Scholar]
- Hong, Z.; Hong, C.; Ma, B.; Wang, Q.; Zhang, X.; Li, L.; Wang, C.; Chen, D. MicroRNA-126-3p Inhibits the Proliferation, Migration, Invasion, and Angiogenesis of Triple-negative Breast Cancer Cells by Targeting RGS3. Oncol. Rep. 2019, 42, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Ben Gacem, R.; Ben Abdelkrim, O.; Ziadi, S.; Ben Dhiab, M.; Trimeche, M. Methylation of MiR-124a-1, MiR-124a-2, and MiR-124a-3 Genes Correlates with Aggressive and Advanced Breast Cancer Disease. Tumour Biol. 2014, 35, 4047–4056. [Google Scholar] [CrossRef]
- Ren, G.-B.; Wang, L.; Zhang, F.-H.; Meng, X.-R.; Mao, Z.-P. Study on the Relationship between MiR-520g and the Development of Breast Cancer. Eur. Rev. Med. Pharm. Sci. 2016, 20, 657–663. [Google Scholar]
- Wang, Y.-W.; Zhao, S.; Yuan, X.-Y.; Liu, Y.; Zhang, K.; Wang, J.; Zhu, J.; Ma, R. MiR-4732-5p Promotes Breast Cancer Progression by Targeting TSPAN13. J. Cell. Mol. Med. 2019, 23, 2549–2557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Cheng, L.; Hu, P.; Liu, R. MicroRNA-663b Mediates TAM Resistance in Breast Cancer by Modulating TP73 Expression. Mol. Med. Rep. 2018, 18, 1120–1126. [Google Scholar] [CrossRef] [Green Version]
- Uhr, K.; Sieuwerts, A.M.; de Weerd, V.; Smid, M.; Hammerl, D.; Foekens, J.A.; Martens, J.W.M. Association of MicroRNA-7 and Its Binding Partner CDR1-AS with the Prognosis and Prediction of 1st-Line Tamoxifen Therapy in Breast Cancer. Sci. Rep. 2018, 8, 9657. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Pan, M.; Wang, J.; You, C.; Zhao, F.; Zheng, D.; Guo, M.; Xu, H.; Wu, D.; Wang, L.; et al. MiR-7 Reduces Breast Cancer Stem Cell Metastasis via Inhibiting RELA to Decrease ESAM Expression. Mol. Ther. Oncolytics 2020, 18, 70–82. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, K.; Wang, J.; Wang, X.; Cheng, K.; Shi, F.; Jiang, L.; Zhang, Y.; Dou, J. MiR-7, Inhibited Indirectly by LincRNA HOTAIR, Directly Inhibits SETDB1 and Reverses the EMT of Breast Cancer Stem Cells by Downregulating the STAT3 Pathway. Stem Cells 2014, 32, 2858–2868. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, X.; Zhou, Z.; Sun, B.; Gu, W.; Liu, J.; Zhang, H. Liraglutide Inhibits the Proliferation and Promotes the Apoptosis of MCF-7 Human Breast Cancer Cells through Downregulation of MicroRNA-27a Expression. Mol. Med. Rep. 2018, 17, 5202–5212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Zhao, L.-C.; Jiang, N.; Wang, X.-L.; Zhou, X.-N.; Luo, X.-L.; Ren, J. MicroRNA MiR-590-5p Inhibits Breast Cancer Cell Stemness and Metastasis by Targeting SOX2. Eur. Rev. Med. Pharm. Sci. 2017, 21, 87–94. [Google Scholar]
- Wei, Y.-T.; Guo, D.-W.; Hou, X.-Z.; Jiang, D.-Q. MiRNA-223 Suppresses FOXO1 and Functions as a Potential Tumor Marker in Breast Cancer. Cell. Mol. Biol. 2017, 63, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Soheilyfar, S.; Velashjerdi, Z.; Sayed Hajizadeh, Y.; Fathi Maroufi, N.; Amini, Z.; Khorrami, A.; Haj Azimian, S.; Isazadeh, A.; Taefehshokr, S.; Taefehshokr, N. In Vivo and in Vitro Impact of MiR-31 and MiR-143 on the Suppression of Metastasis and Invasion in Breast Cancer. J. BU ON 2018, 23, 1290–1296. [Google Scholar]
- Ye, D.; Shen, Z.; Zhou, S. Function of MicroRNA-145 and Mechanisms Underlying Its Role in Malignant Tumor Diagnosis and Treatment. Cancer Manag. Res. 2019, 11, 969–979. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-Y.; Zhang, F.-X.; He, J.-N.; Wang, S.-Q. CircRNA_100876 Promote Proliferation and Metastasis of Breast Cancer Cells through Adsorbing MicroRNA-361-3p in a Sponge Form. Eur. Rev. Med. Pharm. Sci. 2019, 23, 6962–6970. [Google Scholar] [CrossRef]
- Cheng, C.-W.; Yu, J.-C.; Hsieh, Y.-H.; Liao, W.-L.; Shieh, J.-C.; Yao, C.-C.; Lee, H.-J.; Chen, P.-M.; Wu, P.-E.; Shen, C.-Y. Increased Cellular Levels of MicroRNA-9 and MicroRNA-221 Correlate with Cancer Stemness and Predict Poor Outcome in Human Breast Cancer. Cell. Physiol. Biochem. 2018, 48, 2205–2218. [Google Scholar] [CrossRef]
- Dvinge, H.; Git, A.; Gräf, S.; Salmon-Divon, M.; Curtis, C.; Sottoriva, A.; Zhao, Y.; Hirst, M.; Armisen, J.; Miska, E.A.; et al. The Shaping and Functional Consequences of the MicroRNA Landscape in Breast Cancer. Nature 2013, 497, 378–382. [Google Scholar] [CrossRef]
- Nassirpour, R.; Mehta, P.P.; Yin, M.-J. MiR-122 Regulates Tumorigenesis in Hepatocellular Carcinoma by Targeting AKT3. PLoS ONE 2013, 8, e79655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.-T.; Xu, Y.-T.; Li, H.-Y.; Zhao, J.; Zhai, H.-Y.; Chen, Y. Loss of MicroRNA-145 Expression Is Involved in the Development and Prognosis of Breast Cancer Complicated by Type 2 Diabetes Mellitus. Int. J. Biol. Markers 2016, 31, e368–e374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FunRich: Functional Enrichment Analysis Tool: Home. Available online: http://www.funrich.org/ (accessed on 27 December 2020).
- Zhang, S.; Guo, L.-J.; Zhang, G.; Wang, L.-L.; Hao, S.; Gao, B.; Jiang, Y.; Tian, W.-G.; Cao, X.-E.; Luo, D.-L. Roles of MicroRNA-124a and MicroRNA-30d in Breast Cancer Patients with Type 2 Diabetes Mellitus. Tumour Biol. 2016, 37, 11057–11063. [Google Scholar] [CrossRef]
- Dehwah, M.A.S.; Xu, A.; Huang, Q. MicroRNAs and Type 2 Diabetes/Obesity. J. Genet. Genom. 2012, 39, 11–18. [Google Scholar] [CrossRef]
- Han, Y.-L.; Cao, X.-E.; Wang, J.-X.; Dong, C.-L.; Chen, H.-T. Correlations of MicroRNA-124a and MicroRNA-30d with Clinicopathological Features of Breast Cancer Patients with Type 2 Diabetes Mellitus. Springerplus 2016, 5, 2107. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Unadkat, J.D. Role of the Breast Cancer Resistance Protein (BCRP/ABCG2) in Drug Transport—An Update. AAPS J. 2015, 17, 65–82. [Google Scholar] [CrossRef] [Green Version]
- Dentelli, P.; Traversa, M.; Rosso, A.; Togliatto, G.; Olgasi, C.; Marchiò, C.; Provero, P.; Lembo, A.; Bon, G.; Annaratone, L.; et al. MiR-221/222 Control Luminal Breast Cancer Tumor Progression by Regulating Different Targets. Cell Cycle 2014, 13, 1811–1826. [Google Scholar] [CrossRef] [Green Version]
- Li, M.Y.; Pan, S.R.; Qiu, A.Y. Roles of MicroRNA-221/222 in Type 2 Diabetic Patients with Post-Menopausal Breast Cancer. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Ali Beg, M.M.; Verma, A.K.; Saleem, M.; Saud Alreshidi, F.; Alenazi, F.; Ahmad, H.; Joshi, P.C. Role and Significance of Circulating Biomarkers: MiRNA and E2F1 MRNA Expression and Their Association with Type-2 Diabetic Complications. Int. J. Endocrinol. 2020, 2020, 6279168. [Google Scholar] [CrossRef]
- Rajkumar, K.V.; Lakshmanan, G.; Sekar, D. Identification of MiR-802-5p and Its Involvement in Type 2 Diabetes Mellitus. World J. Diabetes 2020, 11, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Zeinali, F.; Aghaei Zarch, S.M.; Vahidi Mehrjardi, M.Y.; Kalantar, S.M.; Jahan-Mihan, A.; Karimi-Nazari, E.; Fallahzadeh, H.; Hosseinzadeh-Shamsi-Anar, M.; Rahmanian, M.; Fazeli, M.R.; et al. Effects of Synbiotic Supplementation on Gut Microbiome, Serum Level of TNF-α, and Expression of MicroRNA-126 and MicroRNA-146a in Patients with Type 2 Diabetes Mellitus: Study Protocol for a Double-Blind Controlled Randomized Clinical Trial. Trials 2020, 21, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
T2DM Characteristic | miRNA | Expression | Target mRNA/Implicated Pathway | Reference |
---|---|---|---|---|
Beta-cell function | miR-143 | ↑ | ORP8/insulin–AKT pathway | [49] |
miR-144 | ↑ | IRS1 | [50] | |
miR-30d | ↑ | Cyclin E2, RUNX2, PI3K/insulin pathway | [51,52,53,54] | |
miR-126 | ↑ | IRS1 | [55] | |
miR-146a | ↑ | NF-κB | [56] | |
miR-375 | ↑ | ERK1/2, Mtpn | [57,58] | |
miR-21 | ↓ | PTEN/PI3K–AKT pathway, TGF-β1/SMAD3 pathway | [54,59] | |
miR-24 | ↑ | MAPK, P38 | [60] | |
miR-34a | ↑ | VAMP2 | [61] | |
miR-96 | ↑ | FoxO1, SOX6 | [62] | |
miR-199a-5p | ↑ | SIRT1 | [63] | |
miR-125b-5p | ↑ | Inhibits JNK pathway | [64] | |
miR-9 | ↑ | SYTL4 | [65,66] | |
miR-124a | ↑ | Mtpn, FoxA2, Rab27A | [67,68,69] | |
miR-15 | ↑ | - | [70] | |
Insulin resistance | miR-27a | ↑ | PPARγ | [71] |
miR-221 | ↑ | Impairs the PI3K/AKT pathway | [72] | |
miR-382-3p | ↑ | Resistin | [73] | |
miR-223 | ↑ | GLUT4 | [74] | |
miR-128-3p | ↑ | ISL1-dependent Wnt pathway | [75] | |
miR-145 | ↑ | Insulin–AKT pathway | [54] | |
miR-155 | ↓ | HDAC4 | [76] | |
miR-18a | ↓ | PTEN | [77,78] | |
Metabolism | miR-194 | ↓ | PI3K/AKT pathway | [79] |
miR-146b | ↑ | IRS1, GLUT4 | [80] | |
miR-182 | ↓ | FoxO1, PDK4 | [81] | |
miR-222 | ↑ | GLUT4 | [54,82,83] | |
miR-125a-5p | ↑ | STAT3 | [84] | |
miR-33a/b | ↑ | IRS2, SIRT6, AMKPKα, CRAT, CPT1A, HADH | [85] | |
Oxidative stress/ inflammation | miR-146a | ↑ | NF-κB | [56] |
miR-424 | ↑ | Activates KEAP1 and NRF2 | [86] | |
miR-181b/miR-126-5p | ↓ | NF-κB | [87] | |
miR-21 | ↓ | PDCD4, Pclo | [88] | |
miR-223 | ↓ | KEAP1 | [89] | |
miR-199a-5p | ↑ | SIRT1 | [63] | |
miR-126-3p | ↓ | VCAM-1 | [90] | |
Clinicopathological features | miR-496 | ↓ | mTOR upregulation | [91] |
miR-486-3p | ↑ | - | [92] | |
miR-423 | ↓ | - | [92] | |
miR-28-3p | ↑ | IGF1, IGF2R, MAPK1, MAP2K3, RAF1 | [93] | |
miR-146a-5p | ↓ | SMAD4, TRAF6, IRAK1 | [94] | |
miR-16-2-3p | ↑ | - | [92] | |
miR-1-3p | ↓ | KCNQ1 tv1 | [95] | |
miR-23a/ miR-186 | ↓ | - | [48] | |
Diabetic complications | miR-4463 | ↑ | Activates PI3K/AKT pathway | [96] |
miR-196-3p | ↑ | - | [97] | |
miR-203-3p | ↑ | SMAD1 | [98] | |
miR-20b-5p | ↑ | Regulates Wnt9b/β-cell signaling | [99] | |
miR-423 | ↓ | VEGF signaling | [100] | |
miR-21 | ↑ | PPARα | [101,102] | |
let-7b-5p | ↓ | IRS1/Mt.Cytb up-regulation | [103] | |
miR-1281 | ↑ | HDAC4 | [104] | |
miR-155 | ↓ | - | [105] | |
Treatment | miR-122 | ↑ | CPT1A, LRP1, HINT1 | [106] |
miR-27b | ↓ (human T2DM skeletal muscle) ↑ (diabetic mice) | NAA15 | [107,108,109] | |
miR-147 | ↑ | SLC22A3 | [110] | |
miR-130a | ↓ | MAP3K12 | [107,111] | |
miR-210 | ↑ | NDUFA4 | [107,112] |
Breast Cancer (BC) Characteristic | miRNA | Expression | Target mRNA/Implicated Pathway | Reference |
---|---|---|---|---|
Tumor suppressor | miR-362-3p | ↓ | HERG potassium channels | [129] |
miR-383-5p | ↓ | LDHA | [130] | |
miR-449b-5p | ↓ | CREPT | [138] | |
miR-216 | ↓ | Wnt/β-catenin signaling | [139] | |
miR-590-5p | ↓ | SOX2 | [140] | |
miR-20a-5p | ↓ | HMGA2 | [141] | |
miR-219-5p | ↓ | MRTFA | [142] | |
miR-140-5p | ↓ | VEGFA | [143] | |
miR-322 | ↓ | BCL2, NFkB1 | [144] | |
miR-204 | ↓ | p-AKT and p-PI3K | [145] | |
miR-223 | ↓ | STIM1 | [146] | |
miR-33b | ↓ | Twist1, SALL4, HMGA2 | [147] | |
miR-31 | ↓ | RDX, RhoA, ITGA5 | [148] | |
miR-143 | ↓ | HER3 | [149] | |
miR-708-3p | ↓ | ZEB1, CDH2, Vimentin | [150] | |
miR-503 | ↓ | IGF-1R | [151] | |
miR-148a | ↓ | BCL2 | [152] | |
miR-26a-5p | ↓ | RNF6, CDK4, CDK6, Cyclin D1 | [153] | |
miR-326 | ↓ | SOX12 | [154] | |
miR-671-3p | ↓ | DEPTOR | [155] | |
miR-140-3p | ↓ | RSU1 | [156] | |
let-7a(-5p) | ↓ | USP32 | [157,158] | |
miR-122 | ↓ | IGF1R | [159] | |
miR-147 | ↓ | AKT/mTOR pathway | [160] | |
miR-186 | ↓ | TWIST1 | [132,133] | |
miR-362-3p | ↓ | HERG potassium channels | [129] | |
miR-145 | ↓ | MUC1 | [161] | |
miR-146a | ↓ | EGFR | [162] | |
Oncogenic | miR-21 | ↑ | LZTFL1 | [163] |
miR-370 | ↑ | WNK2 | [164] | |
miR-9 | ↑ | E-CAD, FoxO1 STARD13, LIFR | [165] | |
miR-221 | ↑ | PTEN, E-CAD | [166,167,168,169] | |
miR-155 | ↑ | MAPK7 | [136,170] | |
miR-421 | ↑ | PDCD4 | [171] | |
miR-106a | ↑ | DAX1 | [172] | |
miR-15/miR-107/miR-182 | ↑ | BRCA1 downregulation | [173] | |
miR-526b/miR-655 | ↑ | TCF21, PBRM1 | [174] | |
miR-409-5p | ↑ | RSU1 | [175] | |
miR-30d | ↑ | KLF-11/STAT3 pathway | [176] | |
Subtype-specific | miR-129 | ↓ (TNBC) | Lamin A | [177] |
miR-218 | ↑ (TNBC) | Lamin B1 | [177] | |
miR-200c | ↓ (TNBC) | - | [178] | |
miR-200b | ↓ | Ezrin-Radixin-Moesin; SP1 | [179,180] | |
miR-191 | ↑ (ER+) | sFRP1 | [181,182] | |
miR-122a | ↑ (ER+) | - | [181] | |
miR-213 | ↑ (ER+) | - | [181] | |
miR-382-5p | ↑ (ER+) | MXD1 | [181,183] | |
miR-222 | ↓ (ER+) | ERα, NOTCH3 | [181,184,185] | |
miR-497 | ↑ (TNBC, HER2+) | SMAD7 | [186] | |
let-7a-5p | ↓ (TNBC) | GLUT12 | [187] | |
miR-18a | ↑ | HIF1α | [188,189,190] | |
miR-126-3p | ↓ (TNBC) | RGS3 | [191] | |
miR-124a | ↓ (IDC) | - | [192] | |
Clinicopathology | miR-520g | ↑ | p53 | [193] |
miR-4732-5p | ↓ | TSPAN13 | [194] | |
Treatment | miR-663b | ↑ | TP73 | [195] |
miR-7 | ↑ | SETDB1, RELA/STAT3 pathway | [196,197,198] | |
miR-1282 | ↓ | - | [135] | |
miR-27a | ↑ | AMPK2α | [199] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durrani, I.A.; Bhatti, A.; John, P. Regulatory MicroRNAs in T2DM and Breast Cancer. Processes 2021, 9, 819. https://doi.org/10.3390/pr9050819
Durrani IA, Bhatti A, John P. Regulatory MicroRNAs in T2DM and Breast Cancer. Processes. 2021; 9(5):819. https://doi.org/10.3390/pr9050819
Chicago/Turabian StyleDurrani, Ilhaam Ayaz, Attya Bhatti, and Peter John. 2021. "Regulatory MicroRNAs in T2DM and Breast Cancer" Processes 9, no. 5: 819. https://doi.org/10.3390/pr9050819
APA StyleDurrani, I. A., Bhatti, A., & John, P. (2021). Regulatory MicroRNAs in T2DM and Breast Cancer. Processes, 9(5), 819. https://doi.org/10.3390/pr9050819