Effect of Flow Rate on Turbulence Dissipation Rate Distribution in a Multiphase Pump
Abstract
:1. Introduction
2. Research Object
3. Numerical Methods and Setting
3.1. Governing Equations, Numerical Methods, and Boundary Conditions
3.2. Numerical Method Verification
3.3. Mesh Generation and Mesh Independence Validation
4. Analysis
4.1. Effects of the Flow Rate on Turbulence Dissipation Rate Distribution at Different Heights of Blade
4.1.1. Effect of the Flow Rate on the Turbulence Dissipation Distribution Rate at the Hub of First-Stage Rotating Impeller
4.1.2. Effect of the Flow Rate on the Turbulence Dissipation Rate Distribution at 0.5 Times of the Blade Height on the First-Stage Rotating Impeller
4.1.3. Effect of the Flow Rate on the Turbulence Dissipation Rate Distribution Law at the Rim of Blade on the First-Stage Rotating Impeller
4.2. Effect of the Flow Rate on the Turbulence Dissipation Rate on Different Radial Sections of the First-Stage Rotating Impeller
4.2.1. Effect of the Flow Rate on the Turbulence Dissipation Rate from the Hub to the Rim on the Inlet Section of the First-Stage Rotating Impeller
4.2.2. Effect of the Flow Rate on the Turbulence Dissipation Rate from the Hub to the Rim on the Middle Section of the First-Stage Rotating Impeller
4.2.3. Effect of the Flow Rate on the Turbulence Dissipation Rate from Hub to Rim on the Outlet Section of the First-Stage Rotating Impeller
4.3. Effects of the Flow Rate on the Circumferential Turbulence Dissipation Rate at Different Blade Heights on the Outlet Section of the First-Stage Rotating Impeller
4.3.1. Effect of the Flow Rate on the Circumferential Turbulence Dissipation Rate at the Hub on the Outlet Section of the First-Stage Impeller
4.3.2. Effect of the Flow Rate on the Circumferential Turbulence Dissipation Rate at 0.5 Times of the Blade Height on the Outlet Section of the First-Stage Rotating Impeller
4.3.3. Effect of the Flow Rate on the Circumferential Turbulence Dissipation Rate at the Rim on the Outlet Section of the First-Stage Rotating Impeller
4.4. Effect of the Flow Rate on the Turbulence Dissipation Rate on the Axial Section of the Booster Unit
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Lee, H.; Yoon, J.; Lee, K.; Lee, Y.; Choi, Y. Multi Objective Optimization of a Multiphase Pump for Offshore Plants. In Proceedings of the ASME 2014 4th Joint Us-European Fluids Engineering Division Summer Meeting, Chicago, IL, USA, 3–7 August 2014. [Google Scholar]
- Shi, G.; Liu, Z.; Xiao, Y.; Yang, H.; Li, H.; Liu, X. Effect of the inlet gas void fraction on the tip leakage vortex in a multiphase pump. Renew. Energy 2020, 150, 46–57. [Google Scholar] [CrossRef]
- Etchepare, R.; Oliveira, H.; Nicknig, M.; Azevedo, A.; Rubio, J. Nanobubbles: Generation using a multiphase pump, properties and features in flotation. Miner. Eng. 2017, 112, 19–26. [Google Scholar] [CrossRef]
- Azevedo, A.; Rubio, J.; Oliveira, H. Nanobubbles generation in a high-rate hydrodynamic cavitation tube. Miner. Eng. 2018, 116, 32–34. [Google Scholar]
- Lim, A.E.; Lim, C.Y.; Lam, Y.C.; Lim, Y.H. Effect of microchannel junction angle on two-phase liquid-gas Taylor flow. Chem. Eng. Sci. 2019, 202, 417–428. [Google Scholar] [CrossRef]
- Wu, L.Y.; Liu, L.B.; Han, X.T.; Li, Q.-W.; Yang, W.-B. Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device. Chin. Phys. B 2019, 28, 421–431. [Google Scholar] [CrossRef]
- Ammann, M.; Rossler, E.; Strekowski, R.; George, C. Nitrogen dioxide multiphase chemistry: Uptake kinetics on aqueous solutions containing phenolic compounds. Phys. Chem. Chem. Phys. 2005, 7, 2513–2518. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Lim, A.E.; Lim, Y.; Duan, H. Dynamic Magnetic Nanomixers for Improved Microarray Assays by Eliminating Diffusion Limitation. Adv. Healthc. Mater. 2019, 8, 1801022. [Google Scholar] [CrossRef] [PubMed]
- Abolhasani, M.; Jensen, K.F. Oscillatory multiphase flow strategy for chemistry and biology. Lab Chip 2016, 16, 2775–2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z. Characteristic Analysis of Unsteady Gas-liquid Two-phase Flow in a Multiphase Rotodynamic Pump. Trans. Chin. Soc. Agric. Mach. 2013, 44, 66–69. [Google Scholar]
- Suh, J.; Kim, J.; Choi, Y.; Kim, J.; Joo, W.; Lee, K. Multi-Objective Optimization of the Hydrodynamic Performance of the Second Stage of a Multi-Phase Pump. Energies 2017, 10, 1334. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, Y.; Vafai, K.; Zhang, Y. An investigation of the flow characteristics of multistage multiphase pumps. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 763–784. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Q.; Wang, H.; Jiang, Q.; Shi, G. Characteristics of unsteady excitation induced by cavitation in axial-flow oil-gas multiphase pumps. Adv. Mech Eng. 2018, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Liu, Z.; Liu, X.; Xiao, Y.; Tang, X. Phase Distribution in the Tip Clearance of a Multiphase Pump at Multiple Operating Points and Its Effect on the Pressure Fluctuation Intensity. Processes 2021, 9, 556. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, X.; Zhu, B.; Ma, Z. Analysis of phase interaction and gas holdup in a multistage multiphase rotodynamic pump based on a modified Euler two-fluid model. Renew. Energy 2021, 164, 1496–1507. [Google Scholar] [CrossRef]
- Liu, M.; Tan, L.; Cao, S. Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump. Renew. Energy 2019, 139, 1159–1175. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Z.; Zhang, W.; Yang, J.; Ye, Q. Analysis of bubble distribution in a multiphase rotodynamic pump. Eng. Appl. Comput. Fluid Mech. 2019, 13, 551–559. [Google Scholar]
- Zhang, J.; Cai, S.; Li, Y.; Zhu, H.; Zhang, Y. Visualization study of gas–liquid two-phase flow patterns inside a three-stage rotodynamic multiphase pump. Exp. Therm. Fluid Sci. 2016, 70, 125–138. [Google Scholar] [CrossRef]
- Parikh, T.; Mansour, M.; Thévenin, D. Investigations on the effect of tip clearance gap and inducer on the transport of air-water two-phase flow by centrifugal pumps. Chem. Eng. Sci. 2020, 218, 1–21. [Google Scholar] [CrossRef]
- Yan, D.; Kovacevic, A.; Tang, Q.; Rane, S.; Zhang, W. Numerical modeling of twin-screw pumps based on computational fluid dynamics. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 4617–4634. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tan, L. Energy performance and pressure fluctuation of a multiphase pump with different gas volume fractions. Energies 2018, 11, 1216. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Zuo, Z.; Chang, H.; Li, D.; Wang, H.; Wei, X. Mechanism of low frequency high amplitude pressure fluctuation in a pump-turbine during the load rejection process. J. Hydraul. Res. 2021, 59, 280–297. [Google Scholar]
- Zhang, J.; Li, Y.; Cai, S.; Zhu, H.; Zhang, Y. Investigation of gas-liquid two-phase flow in a three-stage rotodynamic multiphase pump via numerical simulation and visualization experiment. Adv. Mech. Eng. 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Verde, W.M.; Biazussi, J.L.; Sassim, N.A.; Bannwart, A.C. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers. Exp. Therm. Fluid Sci. 2017, 85, 37–51. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, S.; Zhu, H.; Zhang, Y. Experimental investigation of the flow at the entrance of a rotodynamic multiphase pump by visualization. J. Pet. Sci. Eng. 2015, 126, 254–261. [Google Scholar] [CrossRef]
- Yang, X.; Hu, C.; Hu, Y.; Qu, Z. Theoretical and experimental study of a synchronal rotary multiphase pump at very high inlet gas volume fractions. Appl. Therm. Eng. 2017, 110, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Cao, S.; Sano, T.; Wakai, T.; Reclari, M. Experimental Investigation on Transient Pressure Characteristics in a Helico-Axial Multiphase Pump. Energies 2019, 12, 461. [Google Scholar] [CrossRef] [Green Version]
- Ertürk, N.; Vernet, A.; Pallares, J.; Castilla, R.; Raush, G. Small-scale characteristics and turbulent statistics of the flow in an external gear pump by time-resolved PIV. Flow Meas. Instrum. 2013, 29, 52–60. [Google Scholar] [CrossRef]
- Sharp, K.V.; Adrian, R.J. PIV study of small-scale flow structure around a Rushton turbine. Fluid Mech. Transp. Phenom. 2001, 47, 766–778. [Google Scholar] [CrossRef]
- Delafosse, A.; Collignon, M.L.; Crine, M.; Toye, D. Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller. Chem. Eng. Sci. 2011, 66, 1728–1737. [Google Scholar] [CrossRef]
- Erturk, N.; Vernet, A.; Castilla, R.; Gamez-Montero, P.J.; Ferre, J.A. Experimental analysis of the flow dynamics in the suction chamber of an external gear pump. Int. J. Mech. Sci. 2011, 53, 135–144. [Google Scholar] [CrossRef]
- Castilla, R.; Wojciechowski, J.; Gamez-Montero, P.J.; Vernet, A.; Codina, E. Analysis of the turbulence in the suction chamber of an external gear pump using time resolved particle image velocimetry. Flow Meas. Instrum. 2008, 19, 377–384. [Google Scholar] [CrossRef]
- Shi, G.; Liu, Z.; Xiao, Y.; Wang, Z.; Luo, Y.; Luo, K. Energy conversion characteristics of multiphase pump impeller analyzed based on blade load spectra. Renew. Energy 2020, 157, 9–23. [Google Scholar] [CrossRef]
- Li, D.; Song, Y.; Lin, S.; Wang, H.; Qin, Y.; Wei, X. Effect mechanism of cavitation on the hump characteristic of a pump-turbine. Renew. Energy 2020, 167, 369–383. [Google Scholar] [CrossRef]
- Ghorani, M.M.; Haghighi, M.H.S.; Maleki, A.; Riasi, A. A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory. Renew. Energy 2020, 162, 1036–1053. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: La Canada, CA, USA, 1998. [Google Scholar]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
Variables | Value |
---|---|
density ρ/(kg/m3) | 1000.0 |
kinematic viscosity ν/(m2/s) | 1.01 × 10−6 |
compressibility | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Shi, G.; Liu, X.; Wen, H. Effect of Flow Rate on Turbulence Dissipation Rate Distribution in a Multiphase Pump. Processes 2021, 9, 886. https://doi.org/10.3390/pr9050886
Huang Z, Shi G, Liu X, Wen H. Effect of Flow Rate on Turbulence Dissipation Rate Distribution in a Multiphase Pump. Processes. 2021; 9(5):886. https://doi.org/10.3390/pr9050886
Chicago/Turabian StyleHuang, Zongliu, Guangtai Shi, Xiaobing Liu, and Haigang Wen. 2021. "Effect of Flow Rate on Turbulence Dissipation Rate Distribution in a Multiphase Pump" Processes 9, no. 5: 886. https://doi.org/10.3390/pr9050886
APA StyleHuang, Z., Shi, G., Liu, X., & Wen, H. (2021). Effect of Flow Rate on Turbulence Dissipation Rate Distribution in a Multiphase Pump. Processes, 9(5), 886. https://doi.org/10.3390/pr9050886