Multivariable Robust Regulation of Alkalinities in Continuous Anaerobic Digestion Processes: Experimental Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anaerobic Digestion Model
2.2. Control Objectives
2.3. Control Approach
2.4. Experimental Setup
3. Results and Discussion
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Metcalf, E.; Eddy, H.P. Wastewater Engineering: Treatment, Disposal, and Reuse, 4th ed.; McGraw-Hill: New York, NY, USA, 2004; 1819p. [Google Scholar]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Rehman, M.L.U.; Iqbal, A.; Chang, C.; Li, W.; Ju, M. Anaerobic digestion. Water Environ. Res. 2019, 91, 1253–1271. [Google Scholar] [CrossRef] [Green Version]
- Steyer, J.-P.; Bouvier, J.; Conte, T.; Gras, P.; Sousbie, P. Evaluation of a four year experience with a fully instrumented anaerobic digestion process. Water Sci. Technol. 2002, 45, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; El-Mashad, H.M.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 2007, 98, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Chan, Y.J.; Chong, M.F.; Law, C.L.; Hassell, D. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 2009, 155, 1–18. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ellegaard, L.; Ahring, B.K. Applications of the Anaerobic Digestion Process. Blue Biotechnol. 2003, 82, 1–33. [Google Scholar] [CrossRef]
- Mir, M.A.; Hussain, A.; Verma, C. Design considerations and operational performance of anaerobic digester: A review. Cogent Eng. 2016, 3. [Google Scholar] [CrossRef]
- Holm-Nielsen, J.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef]
- Donoso-Bravo, A.; Mailier, J.; Martin, C.; Rodríguez, J.; Aceves-Lara, C.A.; Wouwer, A.V. Model selection, identification and validation in anaerobic digestion: A review. Water Res. 2011, 45, 5347–5364. [Google Scholar] [CrossRef] [PubMed]
- Bernard, O.; Chachuat, B.; Hélias, A.; Rodriguez, J. Can we assess the model complexity for a bioprocess: Theory and example of the anaerobic digestion process. Water Sci. Technol. 2006, 53, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Godon, J.-J.; Zumstein, E.; Dabert, P.; Habouzit, F.; Moletta, R. Microbial 16S rDNA diversity in an anaerobic digester. Water Sci. Technol. 1997, 36, 49–55. [Google Scholar] [CrossRef]
- Delbã¨s, C.; Moletta, R.; Godon, J.-J.; Delbès, C.; Moletta, R. Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. FEMS Microbiol. Ecol. 2001, 35, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Husain, A. Mathematical models of the kinetics of anaerobic digestion—A selected review. Biomass Bioenergy 1998, 14, 561–571. [Google Scholar] [CrossRef]
- Gavala, H.N.; Angelidaki, I.; Ahring, B.K. Kinetics and Modeling of Anaerobic Digestion Process. Blue Biotechnol. 2003, 81, 57–93. [Google Scholar] [CrossRef]
- Angelidaki, I.; Boe, K.; Ellegaard, L. Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Water Sci. Technol. 2005, 52, 189–194. [Google Scholar] [CrossRef]
- Méndez-Acosta, H.; Palacios-Ruiz, B.; Alcaraz-González, V.; González-Álvarez, V.; Garcia-Sandoval, J.P. A robust control scheme to improve the stability of anaerobic digestion processes. J. Process. Control 2010, 20, 375–383. [Google Scholar] [CrossRef]
- Ripley, A.L.E.; Boyle, W.C.; Converse, J.C. Improved alkalimetric for anaerobic digestion wastes monitoring of municipal sludge. Water Pollut. Contron. Fed. 1986, 58, 406–411. [Google Scholar]
- Moosbrugger, R.E.; Wentzel, M.C.; Ekama, G.A.; Marais, G.v.R. Weak acid/bases and pH control in anaerobic systems―A review. Watar SA 1993, 19, 1–10. [Google Scholar]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, J.; Wang, X. Effects of alkalinity sources on the stability of anaerobic digestion from food waste. Waste Manag. Res. 2015, 33, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Jarrell, K.F.; Saulnier, M.; Ley, A. Inhibition of methanogenesis in pure cultures by ammonia, fatty acids, and heavy metals, and protection against heavy metal toxicity by sewage sludge. Can. J. Microbiol. 1987, 33, 551–554. [Google Scholar] [CrossRef]
- Fagbohungbe, M.; Herbert, B.M.; Hurst, L.; Ibeto, C.N.; Li, H.; Usmani, S.Q.; Semple, K. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manag. 2017, 61, 236–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buyukkamaci, N.; Filibeli, A. Volatile fatty acid formation in an anaerobic hybrid reactor. Process. Biochem. 2004, 39, 1491–1494. [Google Scholar] [CrossRef]
- Hess, J.; Bernard, O. Design and study of a risk management criterion for an unstable anaerobic wastewater treatment process. J. Process. Control 2008, 18, 71–79. [Google Scholar] [CrossRef]
- Liu, B.Y.; Pfeffer, J.T.; Suidan, M.T. Equilibrium Model of Anaerobic Reactors. J. Environ. Eng. 1995, 121, 58–65. [Google Scholar] [CrossRef]
- Florencio, L.; Field, J.A.; Van Langerak, A.; Lettinga, G. pH-Stability in anaerobic bioreactors treating methanolic wastewaters. Water Sci. Technol. 1966, 33, 177–184. [Google Scholar] [CrossRef]
- Lahav, O.; Morgan, B. Titration methodologies for monitoring of anaerobic digestion in developing countries?a review. J. Chem. Technol. Biotechnol. 2004, 79, 1331–1341. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Bai, X.; Li, Z.; Zhou, X.; Cheng, S.; Sun, J.; Liu, T. Evaluation of artificial neural network models for online monitoring of alkalinity in anaerobic co-digestion system. Biochem. Eng. J. 2018, 140, 85–92. [Google Scholar] [CrossRef]
- Barampouti, E.M.P.; Mai, S.T.; Vlyssides, A.G. Dynamic Modeling of the Ratio Volatile Fatty Acids/Bicarbonate Alkalinity in a UASB Reactor for Potato Processing Wastewater Treatment. Environ. Monit. Assess. 2005, 110, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Acosta, H.O.; Palacios-Ruiz, B.; Alcaraz-González, V.; Steyer, J.-P.; González-Álvarez, V.; Latrille, E. Robust Control of Volatile Fatty Acids in Anaerobic Digestion Processes. Ind. Eng. Chem. Res. 2008, 47, 7715–7720. [Google Scholar] [CrossRef]
- Garcia-Sandoval, J.P.; Méndez-Acosta, H.; González-Alvarez, V.; Schaum, A.; Alvarez, J. VFA robust control of an anaerobic digestion pilot plant: Experimental implementation. IFAC-PapersOnLine 2016, 49, 973–977. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Montiel-Escobar, J.L.; Alcaraz-González, V.; Méndez-Acosta, H.O.; González-Álvarez, V. ADM1-Based Robust Interval Observer for Anaerobic Digestion Processes. CLEAN Soil Air Water 2012, 40, 933–940. [Google Scholar] [CrossRef]
- Torres Zúñiga, I.; Villa-Leyva, A.; Vargas, A.; Buitrón, G. Experimental validation of online monitoring and optimization strategies applied to a biohydrogen production dark fermenter. Chem. Eng. Sci. 2018, 190, 48–59. [Google Scholar] [CrossRef]
- Giovannini, G.; Sbarciog, M.; Steyer, J.-P.; Chamy, R.; Wouwer, A.V. On the derivation of a simple dynamic model of anaerobic digestion including the evolution of hydrogen. Water Res. 2018, 134, 209–225. [Google Scholar] [CrossRef]
- Patón, M.; González-Cabaleiro, R.; Rodríguez, J. Activity corrections are required for accurate anaerobic digestion modelling. Water Sci. Technol. 2018, 77, 2057–2067. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Piccard, S.; Zhou, W. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions. Bioresour. Technol. 2015, 196, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Shi, E.; Li, J.; Leu, S.-Y.; Antwi, P. Modeling the dynamic volatile fatty acids profiles with pH and hydraulic retention time in an anaerobic baffled reactor during the startup period. Bioresour. Technol. 2016, 222, 49–58. [Google Scholar] [CrossRef]
- Xue, L.; Li, D.; Xi, Y. Nonlinear model predictive control of anaerobic digestion process based on reduced ADM1. In Proceedings of the 2015 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 31 May–3 June 2015; IEEE: New York, NY, USA, 2015; pp. 1–6. [Google Scholar]
- Hassam, S.; Ficara, E.; Leva, A.; Harmand, J. A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1). Biochem. Eng. J. 2015, 99, 193–203. [Google Scholar] [CrossRef]
- Kiely, G.; Tayfur, G.; Dolan, C.; Tanji, K. Physical and mathematical modelling of anaerobic digestion of organic wastes. Water Res. 1997, 31, 534–540. [Google Scholar] [CrossRef]
- Bernard, O.; Hadj-Sadok, Z.; Dochain, D.; Genovesi, A.; Steyer, J.-P. Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 2001, 75, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Theilliol, D.; Ponsart, J.-C.; Harmand, J.; Join, C.; Gras, P. On-line estimation of unmeasured inputs for anaerobic wastewater treatment processes. Control Eng. Pr. 2003, 11, 1007–1019. [Google Scholar] [CrossRef]
- Didi, I.; Dib, H.; Cherki, B. A Luenberger-type observer for the AM2 model. J. Process. Control 2015, 32, 117–126. [Google Scholar] [CrossRef]
- Rodriguez-Liñan, A.; Quiroz, G.; Femat, R.; Méndez-Acosta, H.; de León, J. An adaptive observer for operation monitoring of anaerobic digestion wastewater treatment. Chem. Eng. J. 2015, 269, 186–193. [Google Scholar] [CrossRef]
- Vargas, A.; Sepíuveda-Gálvez, A.; Barrios-Pérez, J.D. A fast extremum-seeking approach for the methanisation of organic waste in an anaerobic bioreactor. IFAC-PapersOnLine 2019, 52, 269–274. [Google Scholar] [CrossRef]
- Alcaraz-González, V.; Harmand, J.; Rapaport, A.; Steyer, J.-P.; González-Álvarez, V.; Pelayo-Ortiz, C. Robust interval-based regulation for anaerobic digestion processes. Water Sci. Technol. 2005, 52, 449–456. [Google Scholar] [CrossRef]
- Bernard, O.; Chachuat, B.; Hélias, A.; Le Dantec, B.; Sialve, B.; Steyer, J.-P.; Lardon, L.; Neveu, P.; Lambert, S.; Gallop, J.; et al. An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet. Water Sci. Technol. 2005, 52, 457–464. [Google Scholar] [CrossRef]
- Steyer, J.-P.; Bernard, O.; Batstone, D.; Angelidaki, I. Lessons learnt from 15 years of ICA in anaerobic digesters. Water Sci. Technol. 2006, 53, 25–33. [Google Scholar] [CrossRef]
- Jimenez, J.; Latrille, E.; Harmand, J.; Robles, Á.; Ferrer, J.; Gaida, D.; Wolf, C.; Mairet, F.; Bernard, O.; Alcaraz-Gonzalez, V.; et al. Instrumentation and control of anaerobic digestion processes: A review and some research challenges. Rev. Environ. Sci. Bio/Technol. 2015, 14, 615–648. [Google Scholar] [CrossRef]
- Attar, S.; Haugen, F. Model-based optimal recovery of methane production in an anaerobic digestion reactor. Model. Identif. Control A Nor. Res. Bull. 2020, 41, 121–128. [Google Scholar] [CrossRef]
- Hmissi, M.; Harmand, J.; Alcaraz-Gonzalez, V.; Shayeb, H. Evaluation of alkalinity spatial distribution in an up-flow fixed bed anaerobic digester. Water Sci. Technol. 2017, 77, 948–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kil, H.; Li, D.; Xi, Y.; Li, J. Model predictive control with on-line model identification for anaerobic digestion processes. Biochem. Eng. J. 2017, 128, 63–75. [Google Scholar] [CrossRef]
- Alcaraz-González, V.; Fregoso-Sanchez, F.A.; Mendez-Acosta, H.O.; Gonzalez-Alvarez, V. Robust Regulation of Alkalinity in Highly Uncertain Continuous Anaerobic Digestion Processes. CLEAN Soil Air Water 2013, 41, 1157–1164. [Google Scholar] [CrossRef]
- Alcaraz-Gonzalez, V.; Harmand, J.; Alain, R.; Steyer, J.P.; Gonzalez-Alvarez, V.; Pelayo-Ortiz, C. Software sensors for uncertain wastewater treatment processes: A new approach based on interval observers. Water Res. 2002, 36, 2515–2524. [Google Scholar] [CrossRef]
- Bastin, G.; Dochain, D. On-Line Estimation and Adaptive Control of Bioreactors; Elsevier: Amsterdam, The Netherlands, 1990; 379p. [Google Scholar]
- Alcaraz-Gonzalez, V. Estimation et Commande Robustes non Linéaires des Procédés Biologiques de Dépollution des Eaux usées: Application a la Digestion Anaérobie. Ph.D. Thesis, Université de Perpignan, Perpignan, France, 2001. [Google Scholar]
- Drosg, B. Process Monitoring in Biogas Plants; IEA Bioenergy: Paris, France, 2013. [Google Scholar]
- Palacios-Ruiz, B.; Méndez-Acosta, H.; Alcaraz-González, V.; González-Álvarez, V.; Pelayo-Ortiz, C. Regulation of Volatile Fatty Acids and Total Alkalinity in Anaerobic Digesters. IFAC Proc. Vol. 2008, 41, 13611–13616. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, J.C.; Steyer, J.P.; Conte, T.; Gras, P.; Delgenes, J.P. On-line titrimetric sensor for the control of anaerobic digestión processes. In Proceedings of the VII Latin American Workshop and Symposium on Anaerobic Digestion, Merida, Mexico, 22–25 October 2002; IWA: London, UK; pp. 65–68. [Google Scholar]
- Steyer, J.-P.; Bouvier, J.; Conte, T.; Gras, P.; Harmand, J.; Delgenes, J. On-line measurements of COD, TOC, VFA, total and partial alkalinity in anaerobic digestion processes using infra-red spectrometry. Water Sci. Technol. 2002, 45, 133–138. [Google Scholar] [CrossRef]
Interval Time (d) | 0.5 < t < 3.8 | 3.8 < t < 6 | 6 < t < 8.7 | 8.7 < t < 12 |
---|---|---|---|---|
Period T (d) | 3.3 | 2.2 | 2.7 | 3.3 |
(mEq L−1) | 90 | 90 | 85 | 75 |
0.30 | 0.28 | 0.27 | 0.30 |
0.7 | 2 | 1 |
Interval Time (d) | 0.5 < t < 6 | 6 < t < 8.7 | 8.7 < t < 12 |
---|---|---|---|
(mmol L−1) | 84.17 | 84.17 | 84.17 |
(mEq L−1) | 90 | 80 | 75 |
(mEq L−1) | 18,870 | 18,870 | 18,870 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcaraz-González, V.; Fregoso-Sánchez, F.A.; González-Alvarez, V.; Steyer, J.-P. Multivariable Robust Regulation of Alkalinities in Continuous Anaerobic Digestion Processes: Experimental Validation. Processes 2021, 9, 1153. https://doi.org/10.3390/pr9071153
Alcaraz-González V, Fregoso-Sánchez FA, González-Alvarez V, Steyer J-P. Multivariable Robust Regulation of Alkalinities in Continuous Anaerobic Digestion Processes: Experimental Validation. Processes. 2021; 9(7):1153. https://doi.org/10.3390/pr9071153
Chicago/Turabian StyleAlcaraz-González, Víctor, Fabián Azael Fregoso-Sánchez, Víctor González-Alvarez, and Jean-Philippe Steyer. 2021. "Multivariable Robust Regulation of Alkalinities in Continuous Anaerobic Digestion Processes: Experimental Validation" Processes 9, no. 7: 1153. https://doi.org/10.3390/pr9071153
APA StyleAlcaraz-González, V., Fregoso-Sánchez, F. A., González-Alvarez, V., & Steyer, J. -P. (2021). Multivariable Robust Regulation of Alkalinities in Continuous Anaerobic Digestion Processes: Experimental Validation. Processes, 9(7), 1153. https://doi.org/10.3390/pr9071153