Improvement for Oxidative Stability and Sensory Properties of Sunflower Oil Flavored by Huai Chrysanthemum × morifolium Ramat. Essential Oil during Accelerated Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Chemicals
2.2. Extraction of HCEO
2.3. Chemical Analysis of HCEO
2.4. Antioxidant Activity of HCEO
2.5. Preparation of Sunflower Oil Flavored by HCEO
2.6. Determination of Acidity, Peroxide, ρ-Anisidine, and Total Oxidation Values
2.7. Determination of TBARS, K232 and K268 Values
2.8. Chemical Analysis of Fatty Acid Composition
2.9. Sensory Evaluation of Sunflower Oil Samples Treated with HCEO
2.10. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of HCEO
3.2. Antioxidant Activity of HCEO
3.3. Effects of HCEO on AV, PV, ρ-AnV and TOTOX
3.4. Effects of HCEO on TBARS, K232 and K268
3.5. Effects of HCEO on Fatty Acid Composition
3.6. Sensory Analysis of Sunflower Oil Flavored by HCEO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perestrelo, R.; Silva, C.; Silva, P.; Câmara, J.S. Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants. Food Chem. 2017, 227, 111–121. [Google Scholar] [CrossRef]
- Blasi, F.; Pollini, L.; Cossignani, L. Varietal authentication of extra virgin olive oils by triacylglycerols and volatiles analysis. Foods 2019, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Romaniello, R.; Baiano, A. Discrimination of flavoured olive oil based on hyperspectral imaging. J. Food Sci. Technol. 2018, 55, 2429–2435. [Google Scholar] [CrossRef]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 2008, 124, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Caponio, F.; Durante, V.; Varva, G.; Silletti, R.; Previtali, M.A.; Viggiani, I.; Squeo, G.; Summo, C.; Pasqualone, A.; Gomes, T.; et al. Effect of infusion of spices into the oil vs. combined malaxation of olive paste and spices on quality of naturally flavoured virgin olive oils. Food Chem. 2016, 202, 221–228. [Google Scholar] [CrossRef]
- Chandran, J.; Nayana, N.; Roshini, N.; Nisha, P. Oxidative stability, thermal stability and acceptability of coconut oil flavored with essential oils from black pepper and ginger. J. Food Sci. Technol. 2017, 54, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Dong, Y.; Wang, Q.; Wang, X.; Fan, W. Limonene, the compound in essential oil of nutmeg displayed antioxidant effect in sunflower oil during the deep-frying of Chinese Maye. Food Sci. Nutr. 2019, 8, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Maurelli, M.; Blasi, F.; Cossignani, L.; Bosi, A.; Simonetti, M.S.; Damiani, P. Enzymatic synthesis of structured triacylglycerols containing CLA isomers starting from sn-1,3-diacylglycerols. J. Am. Oil Chem. Soc. 2009, 86, 127–133. [Google Scholar] [CrossRef]
- Upadhyay, R.; Mishra, H. Predictive modeling for shelf life estimation of sunflower oil blended with oleoresin rosemary (Rosmarinus officinalis L.) and ascorbyl palmitate at low and high temperatures. LWT Food Sci. Technol. 2015, 60, 42–49. [Google Scholar] [CrossRef]
- Huang, J.; Liao, N.; Li, H. Linoleic acid enhance the production of moncolin K and red pigments in Monascusruber by activating mokH and mokA, and by accelerating cAMP-PkA pathway. Int. J. Biol. Macromol. 2018, 109, 950–954. [Google Scholar] [CrossRef]
- Gallego, M.G.; Gordon, M.H.; Segovia, F.J.; Skowyra, M.; Almajano, M.P. Antioxidant properties of three aromatic herbs (rosemary, thyme and lavender) in oil-in-water emulsions. J. Am. Oil Chem. Soc. 2013, 90, 1559–1568. [Google Scholar] [CrossRef]
- Upadhyay, R.; Mishra, H.N. Classification of sunflower oil blends stabilized by oleoresin rosemary (Rosmarinus officinalis L.) using multivariate kinetic approach. J. Food Sci. 2015, 80, E1746–E1754. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Qin, G. Structure characterization and antioxidant activity of polysaccharides from Chinese quince seed meal. Food Chem. 2017, 234, 314–322. [Google Scholar] [CrossRef]
- Sayyad, R.; Farahmandfar, R. Influence of Teucrium polium L. essential oil on the oxidative stability of canola oil during storage. J. Food Sci. Technol. 2017, 54, 3073–3081. [Google Scholar] [CrossRef]
- Wang, D.; Meng, Y.; Wang, C.; Wang, X.; Blasi, F. Antioxidant activity and sensory improvement of Angelica Dahurica cv. Yubaizhi essential oil on sunflower oil during high-temperature storage. Processes 2020, 8, 403. [Google Scholar] [CrossRef] [Green Version]
- Sayyari, Z.; Farahmandfar, R. Stabilization of sunflower oil with pussy willow (Salix aegyptiaca) extract and essential oil. Food Sci. Nutr. 2016, 5, 266–272. [Google Scholar] [CrossRef]
- Embuscado, M.E. Spices and herbs: Natural sources of antioxidants—A mini review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Wu, L.; Gao, H.; Wang, X.; Ye, J.; Lu, J.; Liang, Y. Analysis of chemical composition of Chrysanthemum indicum flowers by GC/MS and HPLC. J. Med. Plants Res. 2010, 4, 421–426. [Google Scholar]
- Xue, H.; Jiang, Y.; Zhao, H.; Köllner, T.G.; Chen, S.; Chen, F.; Chen, F. Characterization of composition and antifungal properties of leaf secondary metabolites from thirteen cultivars of Chrysanthemum morifolium Ramat. Molecules 2019, 24, 4202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Jiang, Y.; Zhao, H.; Köllner, T.G.; Chen, S.; Chen, F. Diverse terpenoids and their associated antifungal properties from roots of different cultivars of Chrysanthemum morifolium Ramat. Molecules 2020, 25, 2083. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, X.; Shi, Y.; Zhao, X.; Xing, M.; Tian, C.; Guo, L.; Xia, D. Chrysanthemum morifolium cv. Hang-ju leaves: An abundant source of preservatives for food industry. Eur. Food Res. Technol. 2020, 246, 939–946. [Google Scholar] [CrossRef]
- Liu, D.; Liu, W.; Zhu, D.; Geng, M.; Zhou, W.; Yang, T. Nitrogen effects on total flavonoids, chlorogenic acid, and antioxidant activity of the medicinal plant Chrysanthemum morifolium. J. Plant Nutr. Soil Sci. 2010, 173, 268–274. [Google Scholar] [CrossRef]
- Wang, T.; Wang, S.; Huang, G.; Yin, H.; Song, Z.; Yang, L.; Sun, G. Bioactive component content and antioxidant activity of chrysanthemum flower (Chrysanthemum morifolium Ramat.) extract. Food Sci. 2013, 34, 95–99. [Google Scholar]
- Wang, D.; Fan, W.; Guan, Y.; Huang, H.; Yi, T.; Ji, J. Oxidative stability of sunflower oil flavored by essential oil from Coriandrum sativum L. during accelerated storage. LWT Food Sci. Technol. 2018, 98, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Meng, Y.; Zhao, X.; Fan, W.; Yi, T.; Wang, X. Sunflower oil flavored by essential oil from Punicagranatum cv. Heyinshiliu peels improved its oxidative stability and sensory properties. LWT Food Sci. Technol. 2019, 111, 55–61. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2007, 72, S159–S166. [Google Scholar] [CrossRef]
- Keramat, M.; Golmakani, M.T.; Aminlari, M.; Shekarforoush, S. Oxidative stability of virgin olive oil supplemented with Zataria multiflora Boiss. and Rosmarinus officinalis L. essential oils during accelerated storage. J. Food Process. Preserv. 2016, 41, e12951. [Google Scholar] [CrossRef]
- Sadeghi, E.; Mahtabani, A.; Etminan, A.; Karami, F. Stabilization of soybean oil during accelerated storage by essential oil of ferulago angulata boiss. J. Food Sci. Technol. 2015, 53, 1199–1204. [Google Scholar] [CrossRef] [Green Version]
- Takeungwongtrakul, S.; Benjakul, S. Oxidative stability of lipids from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei) as affected by essential oils incorporation. Eur. J. Lipid Sci. Technol. 2014, 116, 987–995. [Google Scholar] [CrossRef]
- Yao, X.; Chu, J.; He, X.; Si, C. The effects of UV-B radiation intensity on biochemical parameters and active ingredients in flowers of Qi Chrysanthemum and Huai Chrysanthemum. Photochem. Photobiol. 2014, 90, 1308–1313. [Google Scholar] [CrossRef] [PubMed]
- Kuang, C.; Lv, D.; Shen, G.; Li, S.; Luo, Q.; Zhang, Z. Chemical composition and antimicrobial activities of volatile oil extracted from Chrysanthemum morifolium Ramat. J. Food Sci. Technol. 2018, 55, 2786–2794. [Google Scholar] [CrossRef]
- Coskun, B.K.; Calikoglu, E.; Emiroglu, Z.K.; Candogan, K. Antioxidant active packaging with soy edible films and oregano or thyme essential oils for oxidative stability of ground beef patties. J. Food Qual. 2014, 37, 1–10. [Google Scholar]
- Olmedo, R.; Ribotta, P.; Grosso, N.R. Antioxidant activity of essential oils extracted from Aloysia triphylla and Minthostachys mollis that improve the oxidative stability of sunflower oil under accelerated storage conditions. Eur. J. Lipid Sci. Technol. 2018, 120, 1700347. [Google Scholar] [CrossRef] [Green Version]
- Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant potential of corncob extracts for stabilization of corn oil subjected to microwave heating. Food Chem. 2007, 104, 997–1005. [Google Scholar] [CrossRef]
Groups | Addition for Sunflower Oil Sample |
---|---|
Control | Nothing (TBHQ-0 + HCEO-0) |
TBHQ | TBHQ at 200 mg/kg |
200 mg/kg | HCEO at 200 mg/kg |
400 mg/kg | HCEO at 400 mg/kg |
800 mg/kg | HCEO at 800 mg/kg |
1600 mg/kg | HCEO at 1600 mg/kg |
No. | RT a | Compound Name | Molecular Formula | RA b |
---|---|---|---|---|
1 | 51.63 | Methyl linoleate | C19H34O2 | 13.16% |
2 | 51.80 | Methyl oleate | C19H36O2 | 12.96% |
3 | 14.38 | (±)-Camphor | C10H16O | 11.81% |
4 | 9.07 | Cineole | C10H18O | 10.40% |
5 | 48.15 | Methyl palmitate | C17H34O2 | 5.68% |
6 | 2.12 | Cyclohexane | C6H12 | 4.38% |
7 | 36.50 | β-Sesquiphellandrene | C15H24 | 3.41% |
8 | 52.27 | Methyl stearate | C19H38O2 | 3.09% |
9 | 32.78 | trans-β-Farnesene | C15H24 | 3.07% |
10 | 43.46 | Chamazulene | C14H16 | 2.89% |
11 | 26.24 | α-Terpinyl acetate | C12H20O2 | 2.44% |
12 | 16.15 | Terpinen-4-ol | C10H18O | 2.34% |
13 | 34.00 | cis-β-Copaene | C15H24 | 2.15% |
14 | 16.90 | (+)-α-Terpineol | C10H18O | 1.93% |
15 | 41.33 | (−)-α-Cadinol | C15H26O | 1.53% |
16 | 22.40 | (+)-Bornyl acetate | C12H20O2 | 1.45% |
17 | 15.47 | Borneol | C10H18O | 1.23% |
18 | 6.94 | Sabinene | C10H16 | 1.20% |
19 | 56.26 | Pentacosane | C25H52 | 1.15% |
20 | 10.20 | γ-Terpinene | C10H16 | 1.04% |
21 | 30.18 | β-Caryophyllene | C15H24 | 1.03% |
22 | 7.05 | β-pinene | C10H16 | 0.93% |
23 | 42.25 | α-Bisabolol | C15H26O | 0.85% |
24 | 5.76 | α-Pinene | C10H16 | 0.80% |
25 | 6.19 | (+)-Camphene | C10H16 | 0.78% |
26 | 8.77 | p-Cymene | C10H14 | 0.53% |
27 | 35.05 | Zingiberene | C15H24 | 0.52% |
28 | 32.16 | α-Caryophyllene | C15H24 | 0.48% |
29 | 12.75 | 1-Octen-3-yl-acetate | C10H18O2 | 0.43% |
30 | 8.45 | Terpinolene | C10H16 | 0.52% |
31 | 38.79 | Caryophyllene Oxide | C15H24O | 0.38% |
32 | 24.29 | (4S)-(−)-α-terpinyl acetate | C12H20O2 | 0.33% |
33 | 42.37 | Shyobunol | C15H26O | 0.28% |
34 | 7.49 | β-myrcene | C10H16 | 0.27% |
35 | 40.46 | 4a(2H)-Naphthalenol, 1,3,4,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S,4S,4aS,8aR)- | C15H26O | 0.25% |
36 | 34.59 | cis-Muurola-4(15),5-diene | C15H24 | 0.24% |
37 | 57.66 | Heptacosane | C27H56 | 0.23% |
38 | 34.59 | Bicyclosesquiphellandrene | C15H24 | 0.22% |
39 | 44.63 | 11-Isopropylidene-cis-tricyclo[6,2,1,02,7]undeca-2,4,6,9-tetraene | C14H14 | 0.20% |
40 | 35.75 | (S)-β-Bisabolene | C15H24 | 0.19% |
41 | 46.36 | Perhydrofarnesyl acetone | C18H36O | 0.19% |
42 | 41.07 | (1R,4S,4aR,8aS)-1,6-Dimethyl-4-propan-2-yl-3,4,4a,7,8,8a-hexahydro-2H-naphthalen-1-ol | C15H26O | 0.14% |
43 | 2.28 | Heptane | C7H16 | 0.14% |
44 | 13.34 | 4,6,6-Trimethylbicyclo[3.1.1]hept-3-en-7-one | C10H14O | 0.13% |
45 | 12.12 | Linalool | C10H18O | 0.13% |
46 | 55.02 | Methyl icosanoate | C21H42O2 | 0.12% |
47 | 55.78 | 2,2′-Methylenebis(6-tert-butyl-4-methylphenol) | C23H32O2 | 0.11% |
48 | 27.66 | (−)-α-Cubebene | C15H24 | 0.11% |
49 | 27.66 | α-Copaene | C15H24 | 0.11% |
50 | 9.53 | Phenylacetaldehyde | C8H8O | 0.10% |
51 | 36.78 | Cubenene | C15H24 | 0.10% |
52 | 41.15 | Ylangenol | C15H24O | 0.10% |
53 | 31.28 | cis-α-Bergamotene | C15H24 | 0.10% |
54 | 31.28 | trans-α-Bergamotene | C15H24 | 0.10% |
55 | 7.33 | 6-Methylhept-5-en-2-one | C8H14O | 0.09% |
56 | 40.70 | 1R,5R,9S-11,11-Dimethyl-4,8-bismethylenebicyclo<7.2.0>undecan-5-ol | C15H24O | 0.09% |
57 | 18.49 | cis-Carveol | C10H16O | 0.08% |
58 | 39.13 | 1R,5R,9S-11,11-Dimethyl-4,8-bismethylenebicyclo<7.2.0>undecan-5-ol | C15H26O | 0.08% |
59 | 5.56 | α-Phellandrene | C10H16 | 0.07% |
60 | 5.57 | (−)-α-Thujene | C10H16 | 0.07% |
61 | 27.07 | (+/−)-cis-Carveol acetate | C12H18O2 | 0.07% |
62 | 25.59 | (2-methyl-5-prop-1-en-2-ylcyclohex-2-en-1-yl) Acetate | C12H18O2 | 0.06% |
Total | 99.00% |
Days | C14:0 b | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C20:0 | C18:3 | C22:0 | |
---|---|---|---|---|---|---|---|---|---|---|
Control | 0 | 0.07 ± 0.01 | 6.42 ± 0.02 | 0.10 ± 0.02 | 3.74 ± 0.01 | 25.73 ± 0.01 | 62.61 ± 0.12 | 0.25 ± 0.01 | 0.30 ± 0.02 | 0.78 ± 0.02 |
6 | 0.07 ± 0.01 | 6.45 ± 0.04 | 0.08 ± 0.01 | 3.76 ± 0.01 | 25.99 ± 0.11 | 62.32 ± 0.16 | 0.26 ± 0.01 | 0.29 ± 0.01 | 0.79 ± 0.01 | |
12 | 0.08 ± 0.01 | 6.75 ± 0.04 | 0.08 ± 0.01 | 3.98 ± 0.01 | 26.49 ± 0.14 | 61.32 ± 0.16 c | 0.26 ± 0.01 | 0.29 ± 0.01 | 0.79 ± 0.01 | |
18 | 0.08 ± 0.01 | 7.09 ± 0.27 c | 0.09 ± 0.01 | 4.01 ± 0.05 c | 26.90 ± 0.06 c | 60.55 ± 0.03 c | 0.24 ± 0.03 | 0.28 ± 0.01 | 0.83 ± 0.01 | |
24 | 0.08 ± 0.01 | 7.26 ± 0.01 d | 0.08 ± 0.01 | 4.28 ± 0.02 d | 28.72 ± 0.02 d | 58.09 ± 0.01 d | 0.28 ± 0.01 | 0.29 ± 0.01 | 0.91 ± 0.01 | |
30 | 0.09 ± 0.01 | 8.47 ± 0.01 d | 0.08 ± 0.01 | 4.89 ± 0.01 d | 31.21 ± 0.01 d | 53.58 ± 0.01 d | 0.32 ± 0.01 | 0.31 ± 0.01 | 1.03 ± 0.01 c | |
TBHQ | 0 | 0.07 ± 0.01 | 6.43 ± 0.03 | 0.08 ± 0.01 | 3.72 ± 0.01 | 25.65 ± 0.11 | 62.65 ± 0.63 | 0.25 ± 0.01 | 0.31 ± 0.01 | 0.78 ± 0.01 |
6 | 0.07 ± 0.01 | 6.41 ± 0.01 | 0.07 ± 0.01 | 3.74 ± 0.01 | 25.70 ± 0.03 | 62.65 ± 0.01 | 0.26 ± 0.01 | 0.30 ± 0.01 | 0.79 ± 0.01 | |
12 | 0.08 ± 0.01 | 6.39 ± 0.01 | 0.08 ± 0.01 | 3.73 ± 0.01 | 25.74 ± 0.01 | 62.63 ± 0.01 e | 0.26 ± 0.01 | 0.31 ± 0.01 | 0.79 ± 0.01 | |
18 | 0.08 ± 0.01 | 6.42 ± 0.12 e | 0.08 ± 0.01 | 3.70 ± 0.02 e | 25.74 ± 0.15 e | 62.68 ± 0.16 e | 0.25 ± 0.01 | 0.29 ± 0.01 | 0.78 ± 0.01 | |
24 | 0.07 ± 0.01 | 6.43 ± 0.01 f | 0.08 ± 0.01 | 3.69 ± 0.01 f | 25.75 ± 0.01 f | 62.64 ± 0.03 f | 0.25 ± 0.01 | 0.30 ± 0.01 | 0.79 ± 0.01 | |
30 | 0.07 ± 0.01 | 6.43 ± 0.04 f | 0.08 ± 0.01 | 3.71 ± 0.04 f | 25.76 ± 0.11 f | 62.69 ± 0.19 f | 0.26 ± 0.01 | 0.31 ± 0.01 | 0.78 ± 0.01 e | |
200 mg/kg | 0 | 0.07 ± 0.01 | 6.37 ± 0.02 | 0.08 ± 0.01 | 3.73 ± 0.01 | 25.80 ± 0.11 | 62.61 ± 0.17 | 0.25 ± 0.02 | 0.30 ± 0.01 | 0.79 ± 0.01 |
6 | 0.08 ± 0.01 | 6.47 ± 0.17 | 0.08 ± 0.01 | 3.74 ± 0.01 | 25.88 ± 0.04 | 62.24 ± 0.11 | 0.26 ± 0.01 | 0.29 ± 0.01 | 0.78 ± 0.01 | |
12 | 0.07 ± 0.01 | 6.64 ± 0.05 | 0.08 ± 0.01 | 3.77 ± 0.02 | 26.05 ± 0.21 | 62.17 ± 0.45 | 0.26 ± 0.01 | 0.28 ± 0.02 | 0.75 ± 0.01 | |
18 | 0.08 ± 0.01 | 6.72 ± 0.14 c | 0.08 ± 0.01 | 3.70 ± 0.03 e | 26.19 ± 0.07 e | 62.03 ± 0.01 e | 0.26 ± 0.01 | 0.29 ± 0.01 | 0.72 ± 0.01 | |
24 | 0.07 ± 0.01 | 6.53 ± 0.01 d | 0.08 ± 0.01 | 3.82 ± 0.01 c,f | 26.39 ± 0.01 e | 61.78 ± 0.01 e | 0.25 ± 0.01 | 0.29 ± 0.01 | 0.80 ± 0.01 | |
30 | 0.08 ± 0.01 | 6.59 ± 0.05 d | 0.08 ± 0.01 | 3.87 ± 0.01 c,f | 26.71 ± 0.01 c,f | 61.30 ± 0.03 c,e | 0.25 ± 0.01 | 0.28 ± 0.01 | 0.84 ± 0.01 e | |
400 mg/kg | 0 | 0.07 ± 0.01 | 6.36 ± 0.01 | 0.07 ± 0.01 | 3.72 ± 0.01 | 25.73 ± 0.01 | 62.63 ± 0.12 | 0.23 ± 0.01 | 0.30 ± 0.01 | 0.78 ± 0.01 |
6 | 0.07 ± 0.01 | 6.46 ± 0.07 | 0.08 ± 0.01 | 3.75 ± 0.01 | 25.94 ± 0.01 | 62.42 ± 0.05 | 0.24 ± 0.01 | 0.27 ± 0.01 | 0.78 ± 0.01 | |
12 | 0.08 ± 0.01 | 6.56 ± 0.01 | 0.07 ± 0.01 | 3.72 ± 0.01 | 26.07 ± 0.11 | 62.20 ± 0.12 | 0.23 ± 0.01 | 0.30 ± 0.01 | 0.78 ± 0.01 | |
18 | 0.07 ± 0.01 | 6.56 ± 0.07 | 0.08 ± 0.01 | 3.75 ± 0.01 e | 26.19 ± 0.04 e | 62.12 ± 0.05 e | 0.24 ± 0.01 | 0.27 ± 0.01 | 0.78 ± 0.01 | |
24 | 0.08 ± 0.01 | 6.53 ± 0.01 | 0.08 ± 0.01 | 3.79 ± 0.01 f | 26.25 ± 0.10 e | 61.95 ± 0.12 e | 0.24 ± 0.01 | 0.29 ± 0.01 | 0.80 ± 0.01 | |
30 | 0.08 ± 0.01 | 6.60 ± 0.01 | 0.08 ± 0.01 | 3.84 ± 0.01 c,f | 26.58 ± 0.01 c,f | 61.48 ± 0.01 c,f | 0.24 ± 0.01 | 0.29 ± 0.01 | 0.81 ± 0.01 e | |
800 mg/kg | 0 | 0.08 ± 0.01 | 6.39 ± 0.03 | 0.08 ± 0.01 | 3.74 ± 0.02 | 25.79 ± 0.01 | 62.61 ± 0.16 | 0.27 ± 0.01 | 0.28 ± 0.01 | 0.78 ± 0.01 |
6 | 0.07 ± 0.01 | 6.35 ± 0.04 | 0.08 ± 0.01 | 3.75 ± 0.01 | 25.95 ± 0.01 | 62.41 ± 0.08 | 0.26 ± 0.01 | 0.29 ± 0.01 | 0.79 ± 0.01 | |
12 | 0.07 ± 0.01 | 6.38 ± 0.04 | 0.08 ± 0.01 | 3.78 ± 0.01 | 26.02 ± 0.11 | 62.35 ± 0.01 | 0.27 ± 0.02 | 0.30 ± 0.01 | 0.79 ± 0.01 | |
18 | 0.07 ± 0.02 | 6.46 ± 0.01 | 0.08 ± 0.01 | 3.79 ± 0.01 e | 26.21 ± 0.04 e | 62.04 ± 0.01 e | 0.25 ± 0.01 | 0.29 ± 0.01 | 0.81 ± 0.01 | |
24 | 0.08 ± 0.01 | 6.53 ± 0.01 | 0.08 ± 0.01 | 3.80 ± 0.01 f | 26.34 ± 0.10 f | 61.85 ± 0.01 f | 0.26 ± 0.01 | 0.28 ± 0.01 | 0.79 ± 0.01 | |
30 | 0.08 ± 0.01 | 6.81 ± 0.23 | 0.08 ± 0.01 | 3.85 ± 0.01 c,f | 26.63 ± 0.01 c,f | 61.63 ± 0.15 c,f | 0.24 ± 0.01 | 0.28 ± 0.01 | 0.81 ± 0.01 e | |
1600 mg/kg | 0 | 0.08 ± 0.01 | 6.36 ± 0.01 | 0.08 ± 0.01 | 3.72 ± 0.01 | 25.73 ± 0.01 | 62.70 ± 0.02 | 0.25 ± 0.03 | 0.29 ± 0.01 | 0.78 ± 0.01 |
6 | 0.08 ± 0.01 | 6.42 ± 0.01 | 0.07 ± 0.01 | 3.75 ± 0.01 | 25.96 ± 0.01 | 62.39 ± 0.01 | 0.25 ± 0.02 | 0.29 ± 0.01 | 0.78 ± 0.01 | |
12 | 0.07 ± 0.01 | 6.42 ± 0.01 | 0.07 ± 0.01 | 3.75 ± 0.01 | 25.91 ± 0.02 | 62.40 ± 0.02 | 0.26 ± 0.01 | 0.29 ± 0.01 | 0.80 ± 0.01 | |
18 | 0.08 ± 0.01 | 6.47 ± 0.01 | 0.08 ± 0.01 | 3.77 ± 0.01 e | 26.15 ± 0.08 e | 62.13 ± 0.17 e | 0.25 ± 0.01 | 0.30 ± 0.01 | 0.78 ± 0.01 | |
24 | 0.07 ± 0.01 | 6.60 ± 0.13 | 0.08 ± 0.01 | 3.78 ± 0.01 f | 26.20 ± 0.07 f | 61.88 ± 0.34 f | 0.25 ± 0.03 | 0.28 ± 0.02 | 0.79 ± 0.01 | |
30 | 0.07 ± 0.01 | 6.75 ± 0.06 | 0.09 ± 0.01 | 3.79 ± 0.01 c,f | 26.22 ± 0.07 f | 61.79 ± 0.20 f | 0.25 ± 0.01 | 0.30 ± 0.02 | 0.78 ± 0.01 e |
Items | Days | Control | TBHQ | 200 mg/kg | 400 mg/kg | 800 mg/kg | 1600 mg/kg |
---|---|---|---|---|---|---|---|
Flavor | 0 | 8.44 ± 0.76 | 8.44 ± 0.76 | 8.44 ± 0.76 | 8.44 ± 0.76 | 8.44 ± 0.76 | 8.44 ± 0.76 |
6 | 7.65 ± 0.83 | 7.69 ± 0.59 | 7.52 ± 0.62 | 7.58 ± 0.62 | 7.49 ± 0.71 | 8.12 ± 0.62 b | |
12 | 6.56 ± 0.71 | 6.61 ± 0.58 | 6.65 ± 0.60 | 6.52 ± 0.58 | 6.56 ± 0.72 | 7.94 ± 0.66 b | |
18 | 6.09 ± 0.77 | 6.12 ± 0.61 | 6.18 ± 0.58 | 6.10 ± 0.57 | 6.02 ± 0.65 | 7.70 ± 0.71 b | |
24 | 5.61 ± 0.64 | 5.66 ± 0.64 | 5.72 ± 0.48 | 5.56 ± 0.68 | 5.68 ± 0.60 | 7.49 ± 0.66 c | |
30 | 5.02 ± 0.56 | 5.09 ± 0.51 | 5.11 ± 0.52 | 4.99 ± 0.51 | 5.05 ± 0.55 | 7.33 ± 0.59 c | |
Taste | 0 | 8.26 ± 0.69 | 8.26 ± 0.69 | 8.26 ± 0.69 | 8.26 ± 0.69 | 8.26 ± 0.69 | 8.26 ± 0.69 |
6 | 7.55 ± 0.66 | 7.41 ± 0.61 | 7.62 ± 0.69 | 7.59 ± 0.51 | 7.46 ± 0.59 | 7.98 ± 0.95 b | |
12 | 6.61 ± 0.54 | 6.66 ± 0.52 | 6.69 ± 0.47 | 6.74 ± 0.56 | 6.60 ± 0.62 | 7.71 ± 0.82 c | |
18 | 5.90 ± 0.56 | 5.82 ± 0.58 | 5.85 ± 0.50 | 5.95 ± 0.62 | 5.84 ± 0.67 | 7.44 ± 0.74 c | |
24 | 5.22 ± 0.48 | 5.31 ± 0.48 | 5.35 ± 0.50 | 5.39 ± 0.59 | 5.14 ± 0.49 | 7.26 ± 0.71 c | |
30 | 4.81 ± 0.52 | 4.72 ± 0.52 | 4.85 ± 0.58 | 4.75 ± 0.47 | 4.90 ± 0.49 | 7.03 ± 0.66 c | |
Appearance | 0 | 8.08 ± 0.72 | 8.08 ± 0.72 | 8.08 ± 0.72 | 8.08 ± 0.72 | 8.08 ± 0.72 | 8.08 ± 0.72 |
6 | 7.56 ± 0.77 | 7.62 ± 0.65 | 7.55 ± 0.68 | 7.48 ± 0.74 | 7.59 ± 0.70 | 7.88 ± 0.59 | |
12 | 7.18 ± 0.81 | 7.15 ± 0.68 | 7.25 ± 0.60 | 7.04 ± 0.74 | 7.19 ± 0.72 | 7.75 ± 0.75 b | |
18 | 6.71 ± 0.62 | 6.61 ± 0.66 | 6.52 ± 0.52 | 6.57 ± 0.71 | 6.78 ± 0.59 | 7.49 ± 0.62 b | |
24 | 6.20 ± 0.65 | 6.31 ± 0.49 | 6.18 ± 0.54 | 6.14 ± 0.48 | 6.25 ± 0.58 | 7.27 ± 0.59 c | |
30 | 5.81 ± 0.52 | 5.77 ± 0.51 | 5.70 ± 0.62 | 5.82 ± 0.59 | 5.89 ± 0.47 | 7.09 ± 0.69 c | |
Overall acceptability | 0 | 8.65 ± 0.82 | 8.65 ± 0.82 | 8.65 ± 0.82 | 8.65 ± 0.82 | 8.65 ± 0.82 | 8.65 ± 0.82 |
6 | 7.85 ± 0.71 | 7.77 ± 0.61 | 7.95 ± 0.55 | 7.69 ± 0.41 | 7.58 ± 0.55 | 8.36 ± 0.59 b | |
12 | 7.16 ± 0.74 | 7.01 ± 0.77 | 7.25 ± 0.47 | 7.18 ± 0.55 | 7.29 ± 0.62 | 8.08 ± 0.87 c | |
18 | 6.52 ± 0.66 | 6.44 ± 0.52 | 6.65 ± 0.61 | 6.59 ± 0.49 | 6.41 ± 0.77 | 7.78 ± 0.78 c | |
24 | 6.00 ± 0.54 | 6.11 ± 0.49 | 6.05 ± 0.52 | 5.89 ± 0.74 | 5.78 ± 0.58 | 7.52 ± 0.65 c | |
30 | 5.44 ± 0.52 | 5.61 ± 0.55 | 5.58 ± 0.57 | 5.31 ± 0.62 | 5.26 ± 0.49 | 7.39 ± 0.77 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Yang, H.; Wang, D.; Ma, Y.; Wang, X.; Blasi, F. Improvement for Oxidative Stability and Sensory Properties of Sunflower Oil Flavored by Huai Chrysanthemum × morifolium Ramat. Essential Oil during Accelerated Storage. Processes 2021, 9, 1199. https://doi.org/10.3390/pr9071199
Meng Y, Yang H, Wang D, Ma Y, Wang X, Blasi F. Improvement for Oxidative Stability and Sensory Properties of Sunflower Oil Flavored by Huai Chrysanthemum × morifolium Ramat. Essential Oil during Accelerated Storage. Processes. 2021; 9(7):1199. https://doi.org/10.3390/pr9071199
Chicago/Turabian StyleMeng, Yudong, Haoduo Yang, Dongying Wang, Yuxiang Ma, Xuede Wang, and Francesca Blasi. 2021. "Improvement for Oxidative Stability and Sensory Properties of Sunflower Oil Flavored by Huai Chrysanthemum × morifolium Ramat. Essential Oil during Accelerated Storage" Processes 9, no. 7: 1199. https://doi.org/10.3390/pr9071199
APA StyleMeng, Y., Yang, H., Wang, D., Ma, Y., Wang, X., & Blasi, F. (2021). Improvement for Oxidative Stability and Sensory Properties of Sunflower Oil Flavored by Huai Chrysanthemum × morifolium Ramat. Essential Oil during Accelerated Storage. Processes, 9(7), 1199. https://doi.org/10.3390/pr9071199