Application of Deep, Vacuum, and Air Frying Methods to Fry Chub Mackerel (Scomber japonicus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Samples
2.2. Drip Loss Analysis
2.3. Frying Treatment
2.4. Volatile Basic Nitrogen (VBN) Analysis
2.5. Thiobarbituric Acid-Reactive Substances (TBARS) Analysis
2.6. pH Analysis
2.7. Overall Acceptance
2.8. Proximate Analysis
2.9. Fatty Acid Composition Analysis
2.10. Amino Acid Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Drip Loss
3.2. Optimum Frying Conditions
3.3. Physiochemical Properties
3.4. Nutritional Quality
3.5. Fatty Acid Composition
3.6. Amino Acid Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pal, J.; Shukla, B.N.; Maurya, A.K.; Verma, H.O.; Pandey, G.; Amitha, A. A review on role of fish in human nutrition with special emphasis to essential fatty acid. Int. J. Fish. Aquat. Stud. 2018, 6, 427–430. [Google Scholar]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef] [PubMed]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Lange, K.W. Omega-3 fatty acids and mental health. Glob. Health J. 2020, 4, 18–30. [Google Scholar] [CrossRef]
- Tedeschi, S.K.; Bathon, J.M.; Giles, J.T.; Lin, T.C.; Yoshida, K.; Solomon, D.H. The relationship between fish consumption and disease activity in rheumatoid arthritis. Arthritis Care Res. 2018, 70, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO–UN). Food and Agriculture Organization of the United Nations (FAO–UN) 2010–2018, Fisheries Global Information System (FAO–FIGIS). 2018. Available online: http://www.fao.org/fishery/ (accessed on 30 April 2021).
- Brugiapaglia, A.; Destefanis, G. Influence of the housing system on meat quality of double muscled Piemontese young bulls. Livest. Sci. 2012, 145, 73–78. [Google Scholar] [CrossRef]
- Arab-Tehrany, E.; Jacquot, M.; Gaiani, C.; Imran, M.; Desobry, S.; Linder, M. Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci. Technol. 2012, 25, 24–33. [Google Scholar] [CrossRef]
- Moreira, R.G. Vacuum frying versus conventional frying—An overview. Eur. J. Lipid Sci. Tech. 2014, 116, 723–734. [Google Scholar] [CrossRef]
- Shyu, S.L.; Hwang, L.S. Effects of processing conditions on the quality of vacuum fried apple chips. Food Res. Int. 2001, 34, 133–142. [Google Scholar] [CrossRef]
- Dueik, V.; Moreno, M.C.; Bouchon, P. Microstructural approach to understand oil absorption during vacuum and atmospheric frying. J. Food Eng. 2012, 111, 528–536. [Google Scholar] [CrossRef]
- Ferreira, F.S.; Sampaio, G.R.; Keller, L.M.; Sawaya, A.C.H.F.; Chavez, D.W.H.; Torres, E.A.F.S.; Saldanha, T. Impact of air frying on cholesterol and fatty acids oxidation in Sardines: Protective effects of aromatic herbs. J. Food Sci. 2017, 82, 2823–2831. [Google Scholar] [CrossRef] [PubMed]
- Teruel, M.R.; Gordon, M.; Linares, M.B.; Garrido, M.D.; Ahromrit, A.; Niranjan, K. A Comparative study of the characteristics of french fries produced by deep fat frying and air frying. J. Food Sci. 2015, 80, 349–358. [Google Scholar] [CrossRef]
- Oduro, F.A.; Choi, N.D.; Ryu, H.S. Effects of cooking conditions on the protein quality of Chub Mackerel Scomber japonicus. Fish. Aquat. Sci. 2011, 14, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Sébédio, J.L.; Ratnayake, W.M.N.; Ackman, R.G.; Prevost, J. Stability of polyunsaturated omega-3 fatty acids during deep fat frying of Atlantic mackerel (Scomber scombrus L.). Food Res. Int. 1993, 26, 163–172. [Google Scholar] [CrossRef]
- Kauffman, R.G.; Eikelenboom, G.; van der Wal, P.G.; Merkus, G.; Zaar, M. The use of filter paper to estimate drip loss of porcine musculature. Meat Sci. 1986, 18, 191–200. [Google Scholar] [CrossRef]
- Li, M.; Wang, W.; Fang, W.; Li, Y. Inhibitory effects of chitosan coating combined with organic acids on Listeria monocytogenes in refrigerated ready-to-eat shrimps. J. Food Prot. 2013, 76, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Negara, B.; Kim, S.; Sohn, J.; Kim, J.-S.; Choi, J.-S. Application of high-frequency defrosting, superheated steam, and quick-freezing treatments to improve the quality of seafood home meal replacement products consisting of the Adductor Muscle of Pen Shells and Common Squid Meat. Appl. Sci. 2021, 11, 2926. [Google Scholar] [CrossRef]
- Tirtawijaya, G.; Kim, S.R.; Cho, W.H.; Sohn, J.H.; Kim, J.-S.; Choi, J.-S. Development of a Home Meal Replacement Product Containing Braised Mackerel (Scomber japonicus) with Radish (Raphanus sativus). Foods 2021, 10, 1135. [Google Scholar] [CrossRef]
- Venugopal, V. Seafood Processing Adding Value through Quick Freezing, Retortable Packaging, and Cook-Chilling; Taylor & Francis: New York, NY, USA, 2006; p. 485. [Google Scholar]
- Alizadeh, E.; Chapleau, N.; De Lamballerie, M.; LeBail, A. Effects of freezing and thawing processes on the quality of Atlantic salmon (Salmo salar) fillets. J. Food Sci. 2007, 72, 279–284. [Google Scholar] [CrossRef]
- Gokoglu, N.; Yerlikaya, P.; Cengiz, E. Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chem. 2004, 84, 19–22. [Google Scholar] [CrossRef]
- Otto, G.; Roehe, R.; Looft, H.; Thoelking, L.; Kalm, E. Comparison of different methods for determination of drip loss and their relationships to meat quality and carcass characteristics in pigs. Meat Sci. 2004, 68, 401–409. [Google Scholar] [CrossRef]
- Beggs, K.L.H.; Bowers, J.A.; Brown, D. Sensory and physical characteristics of reduced-fat turkey frankfurters with modified corn starch and water. J. Food Sci. 1997, 62, 1240–1244. [Google Scholar] [CrossRef]
- Pappa, I.C.; Bloukas, J.G.; Arvanitoyannis, I.S. Optimisation of salt, olive oil and pectin for low-fat frankfurters produced by replacing pork backfat with olive oil. Meat Sci. 2000, 56, 81–88. [Google Scholar] [CrossRef]
- Yildiz, P.O. Effect of essential oils and packaging on hot smoked rainbow trout during storage. J. Food Process. Preserv. 2015, 39, 806–815. [Google Scholar] [CrossRef]
- El-Sherif, S.A.; Ibrahim, S.M.; Abou-Taleb, M. Relationship between frozen pre-storage period on raw Tilapia and Mullet fish and quality criteria of its cooked products. Egypt. J. Aquat. Res. 2011, 37, 183–189. [Google Scholar]
- Chen, H.Z.; Zhang, M.; Bhandari, B.; Yang, C.H. Development of a novel colorimetric food package label for monitoring lean pork freshness. LWT Food Sci. Technol. 2019, 99, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Howgate, P. A critical review of total volatile bases and trimethylamine as indices of freshness of fish. Part 1. Determination. Electron. J. Environ. Agric. Food Chem. 2010, 9, 29–57. [Google Scholar]
- Servillo, L.; D’onofrio, N.; Giovane, A.; Casale, R.; Cautela, D.; Castaldo, D.; Iannaccone, F.; Neglia, G.; Campanile, G.; Balestrieri, M.L. Ruminant meat and milk contain delta-valerobetaine, another precursor of trimethylamine N-oxide (TMAO) like gamma-butyrobetaine. Food Chem. 2018, 260, 193–199. [Google Scholar] [CrossRef]
- Marimuthu, K.; Thilaga, M.; Kathiresan, S.; Xavier, R.; Mas, R.H.M.H. Effect of different cooking methods on proximate and mineral composition of striped snakehead fish (Channa striatus). J. Food Sci. Technol. 2012, 49, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, M.; Hosseini, S.F.; Langrudi, H.E.; Safari, R.; Hosseini, S.V. Effect of delayed icing on quality changes of iced rainbow trout (Oncorhynchus mykiss). Food Chem. 2008, 106, 1161–1165. [Google Scholar] [CrossRef]
- Pyrgotou, N.; Giatrakou, V.; Ntzimani, A.; Savvaidis, I.N. Quality assessment of salted, modified atmosphere packaged rainbow trout under treatment with oregano essential oil. J. Food Sci. 2010, 75, 406–411. [Google Scholar] [CrossRef]
- Weber, J.; Bochi, V.C.; Ribeiro, C.P.; Victório, A.M.; Emanuelli, T. Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chem. 2008, 106, 140–146. [Google Scholar] [CrossRef]
- Meinert, L.; Andersen, L.T.; Bredle, W.L.P.; Bjergegaard, C.; Aaslyng, M.D. Chemical and sensory characterization of pan-fried pork flavour: Interactions between rawmeat quality, ageing and frying temperature. Meat Sci. 2007, 75, 229–242. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Moral, A. Correlation between biochemical and sensory quality indices in Hake stored in ice. Food Res. Int. 2001, 34, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Desrosier, N.W.; Tressler, D.K. Fundamentals of Food Freezing; Avi Publishing Company: Westport, CT, USA, 1977; Chapter 8; pp. 318–356. [Google Scholar]
- Hidaka, T.; Fukuda, N.; Sakamoto, K. Evaluation of Quality of Oils and Fats Used in Vacuum Frying. Bull. Fac. Agric. 1991, 38, 35–38. [Google Scholar]
- Kato, E.; Sato, K. Vacuum Frying Tempeh. Bull. Fac. Agric. 1991, 88, 25–32. [Google Scholar]
- Mariscal, M.; Bouchon, P. Comparison between atmospheric and vacuum frying of apple slices. Food Chem. 2008, 107, 1561–1569. [Google Scholar] [CrossRef]
- Kemp, S.E.; Hollowood, T.; Hort, J. Sensory Evaluation: A Practical Handbook; John Wiley & Sons Inc.: New York, NY, USA, 2009; p. 208. [Google Scholar]
- Fan, L.P.; Zhang, M.; Mujumdar, A.S. Vacuum frying of carrot chips. Dry. Technol. 2005, 23, 645–656. [Google Scholar] [CrossRef]
- Tarmizi, A.H.A.; Niranjan, K. Post-frying oil drainage from potato chips and French fries. A comparative study of atmospheric and vacuum drainage. Food Bioproc. Technol. 2013, 6, 489–497. [Google Scholar] [CrossRef]
- Setyawan, A.D.; Sugiyarto, S.; Solichatun, S.; Susilowati, A. Review: Physical, physical chemistries, chemical and sensorial characteristics of the several fruits and vegetable chips produced by low-temperature of vacuum frying machine. Nusant. Biosci. 2013, 5, 86–103. [Google Scholar]
- Germaine, M.J.E.; Tsafack, A.L.S.; Maboune, A.S.; Eyenga, E.F.; Sophie, N.E.; Bongse, K.P. Quality evaluation of local Cameroonian mackerel (Scomber scombrus) processed by different methods. Int. J. Food Sci. Nutr. 2019, 4, 162–167. [Google Scholar]
- Juárez, M.; Failla, S.; Ficco, A.; Peña, F.; Avilés, C.; Polvillo, O. Buffalo meatcomposition as affected by different cooking methods. Food Bioprod. Process. 2010, 88, 145–148. [Google Scholar] [CrossRef]
- Mekonnen, M.F.; Desta, D.T.; Alemayehu, F.R.; Kelikay, G.N.; Daba, A.K. Evaluation of fatty acid-related nutritional quality indices in fried and raw nile tilapia, (Oreochromis Niloticus), fish muscles. Food Sci. Nutr. 2020, 8, 4814–4821. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.S.; Galano, J.M.; Durand, T.; Lee, J.C.Y. Profiling of omega-polyunsaturated fatty acids and their oxidized products in salmon after different cooking methods. Antioxidants 2018, 7, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deman, J.M. Principles of Food Chemistry, 3rd ed.; Aspen Publishers, Inc.: Gaithersburg, MD, USA, 1999; pp. 118–149. [Google Scholar]
- Steiner-Asiedu, M.; Julsham, K.; Lie, Q. Effect of local processing methods (cooking, frying and smoking) on three fish species from Ghana. Food Chem. 1991, 40, 309–321. [Google Scholar] [CrossRef]
- Ozden, O. Changes in amino acid and fatty acid composition during shelf-life of marinated fish. J. Sci. Food Agric. 2005, 85, 2015–2020. [Google Scholar] [CrossRef]
Treatment | Quadratic Polynomial Model Equations | R2 |
---|---|---|
Deep fry | 0.417 X1 + 3.63 X2 − 0.001258 X12 − 0.500 X22 − 0.0026 X1X2 | 97.8% |
Vacuum fry | 9.02 X1 + 4.56 X2 − 0.04605 X12 − 0.1376 X22 − 0.0250 X1X2 | 96.9% |
Air fry | 0.348 X1 + 16.78 X2 − 0.001320 X12 − 0.580 X22 + 0.0046 X1X2 | 97.4% |
Parameters | Unit | Treatment | |
---|---|---|---|
Raw | Vacuum Fry | ||
Calories | kcal | 248.36 | 390.79 |
Sodium | mg | 0.06 | 0.01 |
Carbohydrate | g | 0.06 | 0.88 |
Sugars | g | 0.00 | 0.13 |
Dietary fiber | g | 5.32 | 2.44 |
Crude fat | g | 1.45 | 2.32 |
Fat | g | 18.44 | 29.95 |
Trans fat | g | 0 | 0 |
Saturated fat | g | 9.96 | 5.63 |
Cholesterol | mg | 60.98 | 117.1 |
Crude protein | g | 20.54 | 29.43 |
Vitamin D | μg | 0 | 0 |
Iron | mg | 1.43 | 1.2 |
Potassium | g | 0.31 | 0.29 |
Calcium | g | 0.03 | 0.02 |
Moisture | % | 71.36 | 23.98 |
Fatty Acids | Treatment | |
---|---|---|
Raw | Vacuum Fry | |
Capric acid | 0.00 | 0.00 |
Lauric acid | 0.01 | 0.00 |
Myristic acid | 0.42 | 0.14 |
Pentadecanoic acid | 0.08 | 0.02 |
Palmitic acid | 2.24 | 0.68 |
Magaric acid | 0.10 | 0.02 |
Stearic acid | 0.67 | 0.19 |
Arachidic acid | 0.08 | 0.00 |
Heneicosylic acid | 0.02 | 0.00 |
Behenic acid | 0.00 | 0.01 |
Lignoceric acid | 0.16 | 0.01 |
Saturated fatty acid | 3.77 | 1.06 |
Myristoleic acid | 0.02 | 0.01 |
Pentadecenoic acid | 0.01 | 0.01 |
Palmitoleic acid | 0.43 | 0.11 |
Magaoleic acid | 0.09 | 0.01 |
Oleic acid | 2.40 | 2.39 |
Linoleic acid | 0.17 | 0.63 |
γ-Linolenic acid | 0.01 | 0.03 |
Linolenic acid | 0.09 | 0.29 |
Eicosenoic acid | 0.31 | 0.15 |
Eicosadienoic acid | 0.03 | 0.06 |
Dihomoδ-Linoleicacid | 0.00 | 0.01 |
Eicosatrienoicacid | 0.00 | 0.01 |
Arachidonic acid | 0.11 | 0.15 |
EPA | 0.69 | 0.16 |
Erucic acid | 0.24 | 0.01 |
Docosadienoicacid | 0.00 | 0.01 |
Nervonic acid | 0.07 | 0.01 |
DPA | 0.00 | 0.03 |
DHA | 1.51 | 0.37 |
Unsaturated fatty acid | 6.19 | 4.44 |
Amino Acid | Treatment | |
---|---|---|
Raw | Vacuum Fry | |
Alanine | 1.22 | 1.63 |
Aspartic acid | 1.84 | 2.43 |
Cystine | 0.28 | 0.33 |
Glutamic acid | 2.6 | 3.57 |
Glycine | 1.10 | 1.41 |
Proline | 0.76 | 1.02 |
Serine | 0.74 | 1.07 |
Tyrosine | 0.43 | 0.71 |
Total Non-Essential | 8.97 | 12.17 |
Arginine | 1.15 | 1.6 |
Histidine | 1.09 | 1.12 |
Isoleucine | 0.87 | 1.14 |
Leucine | 1.54 | 2.13 |
Lysine | 1.78 | 2.4 |
Methionine | 0.83 | 1.06 |
Phenylalanine | 0.75 | 0.99 |
Threonine | 0.88 | 1.22 |
Tryptophan | 0.15 | 0.22 |
Valine | 1.05 | 1.33 |
Total Essential | 10.09 | 13.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negara, B.F.S.P.; Lee, M.-J.; Tirtawijaya, G.; Cho, W.-H.; Sohn, J.-H.; Kim, J.-S.; Choi, J.-S. Application of Deep, Vacuum, and Air Frying Methods to Fry Chub Mackerel (Scomber japonicus). Processes 2021, 9, 1225. https://doi.org/10.3390/pr9071225
Negara BFSP, Lee M-J, Tirtawijaya G, Cho W-H, Sohn J-H, Kim J-S, Choi J-S. Application of Deep, Vacuum, and Air Frying Methods to Fry Chub Mackerel (Scomber japonicus). Processes. 2021; 9(7):1225. https://doi.org/10.3390/pr9071225
Chicago/Turabian StyleNegara, Bertoka Fajar Surya Perwira, Mi-Jeong Lee, Gabriel Tirtawijaya, Woo-Hee Cho, Jae-Hak Sohn, Jin-Soo Kim, and Jae-Suk Choi. 2021. "Application of Deep, Vacuum, and Air Frying Methods to Fry Chub Mackerel (Scomber japonicus)" Processes 9, no. 7: 1225. https://doi.org/10.3390/pr9071225
APA StyleNegara, B. F. S. P., Lee, M. -J., Tirtawijaya, G., Cho, W. -H., Sohn, J. -H., Kim, J. -S., & Choi, J. -S. (2021). Application of Deep, Vacuum, and Air Frying Methods to Fry Chub Mackerel (Scomber japonicus). Processes, 9(7), 1225. https://doi.org/10.3390/pr9071225