Mini-Review on the Synthesis of Furfural and Levulinic Acid from Lignocellulosic Biomass
Abstract
:1. Introduction
2. Mechanism for the Formation of Furfural
3. Production of Furfural from Biomass
3.1. Homogeneous Catalysts for the Furfural Production
3.2. Heterogeneous Catalysts for Furfural Production
4. Mechanism of the Formation of Levulinic Acid
5. Production of Levulinic Acid from Biomass
5.1. Homogeneous Catalysts for the Levulinic Acid Production
5.2. Heterogeneous Catalysts for the Levulinic Acid Production
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [Green Version]
- Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem. 2010, 12, 1493–1513. [Google Scholar] [CrossRef]
- Yan, K.; Li, R.; Yang, Z.; Li, X.; Wang, Y.; Wu, G. Biomass waste-derived porous carbon efficient for simultaneous removal of chlortetracycline and hexavalent chromium. iScience 2021, 24, 102421. [Google Scholar] [CrossRef]
- Giang, C.H.; Osatiashtiani, A.; dos Santos, V.; Lee, A.F.; Wilson, D.R.; Waldron, K.W.; Wilson, K. Valorisation of Vietnamese Rice Straw Waste: Catalytic Aqueous Phase Reforming of Hydrolysate from Steam Explosion to Platform Chemicals. Catalysts 2014, 4, 414–426. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Xu, S.; Zhang, M.; Li, X.; Decarolis, D.; Liu, Y.; Wang, Y.; Gibson, E.K.; Catlow, C.R.A.; Yan, K. Electrochemical Upgrading of Biomass-Derived 5-Hydroxymethylfurfural and Furfural over Oxygen Vacancy-Rich Nicomn-Layered Double Hydroxides Nanosheets. Green Chem. 2021, 23, 4034–4043. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Liu, B.; Chen, Z.; Xu, H.; Yan, K. Trimetallic NiCoFe-Layered Double Hydroxides Nanosheets Efficient for Oxygen Evolution and Highly Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural. ACS Catal. 2020, 10, 5179–5189. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, Z.; Song, J.; Meng, Q.; Zhou, H.; He, Z.; Han, B. Metal-Oxide-Catalyzed Efficient Conversion of Cellulose to Oxalic Acid in Alkaline Solution under Low Oxygen Pressure. ACS Sustain. Chem. Eng. 2016, 4, 305–311. [Google Scholar] [CrossRef]
- Wang, A.; Zheng, Z.; Li, R.; Hu, D.; Lu, Y.; Luo, H.; Yan, K. Biomass-derived porous carbon highly efficient for removal of Pb(II) and Cd(II). Green Energy Environ. 2019, 4, 414–423. [Google Scholar] [CrossRef]
- Yan, K.; Liu, Y.; Lu, Y.; Chai, J.; Sun, L. Catalytic application of layered double hydroxide-derived catalysts for the conversion of biomass-derived molecules. Catal. Sci. Technol. 2017, 7, 1622–1645. [Google Scholar] [CrossRef]
- Hayes, G.C.; Becer, C.R. Levulinic acid: A sustainable platform chemical for novel polymer architectures. Polym. Chem. 2020, 11, 4068–4077. [Google Scholar] [CrossRef]
- Wang, T.; Du, J.; Sun, Y.; Tang, X.; Wei, Z.-J.; Zeng, X.; Liu, S.-J.; Lin, L. Catalytic Transfer Hydrogenation of Biomass-Derived Furfural to Furfuryl Alcohol with Formic Acid as Hydrogen Donor over Cucs-Mcm Catalyst. Chin. Chem. Lett. 2021, 32, 1186–1190. [Google Scholar] [CrossRef]
- Malhotra, M.; Garg, A. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge. Front. Environ. Sci. Eng. 2021, 15, 13. [Google Scholar] [CrossRef]
- Ma, H.; Long, J.X.; Wang, F.-R.; Wang, L.-F.; Li, X.-H. Conversion of Cellulose to Butyl Levulinate in Bio-Butanol Medium Catalyzed by Acidic Ionic Liquids. Acta Phys. Chim. Sin. 2015, 31, 973–979. [Google Scholar] [CrossRef]
- Bozell, J.J.; Petersen, G.R. Technology Development for the Production of Biobased Products from Biorefinery Carbohydrates—The US Department of Energy’s “Top 10” Revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, M.; Xu, H.; Wang, Y.; Yan, K. Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural. Renew. Sustain. Energy Rev. 2021, 147, 111253. [Google Scholar] [CrossRef]
- Zhang, Z.; Huber, G.W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem. Soc. Rev. 2018, 47, 1351–1390. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lu, X.; Yu, Z.; Xiong, J.; Bai, H.; Zhang, R. Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems. Catalysts 2020, 10, 1006. [Google Scholar] [CrossRef]
- Badgujar, K.C.; Wilson, L.D.; Bhanage, B.M. Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges. Renew. Sustain. Energy Rev. 2019, 102, 266–284. [Google Scholar] [CrossRef]
- Mika, L.T.; Cséfalvay, E.; Németh, Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem. Rev. 2018, 118, 505–613. [Google Scholar] [CrossRef] [PubMed]
- Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; Granados, M.L. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144–1189. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, M.; Liu, B.; Yang, Z.; Li, R.; Yan, K. Efficient electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using the facilely synthesized 3D porous WO3/Ni electrode. Mol. Catal. 2021, 504, 111459. [Google Scholar] [CrossRef]
- Agirrezabal-Telleria, I.; Gandarias, I.; Arias, P.L. Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrates: A review. Catal. Today 2014, 234, 42–58. [Google Scholar] [CrossRef]
- Akpinar, O.; Erdogan, K.; Bostanci, S. Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr. Res. 2009, 344, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Asghari, F.S.; Yoshida, H. Acid-Catalyzed Production of 5-Hydroxymethyl Furfural from D-Fructose in Subcritical Water. Ind. Eng. Chem. Res. 2006, 45, 2163–2173. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C.; Galgano, A. Pyrolysis of Corncobs Catalyzed by Zinc Chloride for Furfural Production. Ind. Eng. Chem. Res. 2010, 49, 9743–9752. [Google Scholar] [CrossRef]
- Dutta, S.; DE, S.; Saha, B.; Alam, M.I. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal. Sci. Technol. 2012, 2, 2025–2036. [Google Scholar] [CrossRef]
- Hayes, D.J.; Fitzpatrick, S.; Hayes, M.H.B.; Ross, J.R.H. The Biofine Process—Production of Levulinic Acid, Furfural, and Formic Acid from Lignocellulosic Feedstocks. In Biorefineries-Industrial Processes and Products; Wiley: Weinheim, Germany, 2008; pp. 139–164. [Google Scholar]
- Marcotullio, G.; de Jong, W. Furfural Formation from D-Xylose: The Use of Different Halides in Dilute Aqueous Acidic Solutions Allows for Exceptionally High Yields. Carbohydr. Res. 2011, 346, 1291–1293. [Google Scholar] [CrossRef]
- Yan, K.; Wu, G.; Lafleur, T.; Jarvis, C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew. Sustain. Energy Rev. 2014, 38, 663–676. [Google Scholar] [CrossRef]
- Zeitsch, K.J. The Chemistry and Technology of Furfural and Its Many By-Products; Elsevier: Amsterdam, The Netherlands, 2000; pp. 28–33. [Google Scholar]
- Antal, M.J.; Leesomboon, T.; Mok, W.S.; Richards, G.N. Mechanism of formation of 2-furaldehyde from d-xylose. Carbohydr. Res. 1991, 217, 71–85. [Google Scholar] [CrossRef]
- Nimlos, M.R.; Qian, X.; Davis, M.; Himmel, M.E.; Johnson, D.K. Energetics of Xylose Decomposition as Determined Using Quantum Mechanics Modeling. J. Phys. Chem. A 2006, 110, 11824–11838. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, H.J.; Miner, C.S. Industrial Development of Furfural. Ind. Eng. Chem. 1948, 40, 201–204. [Google Scholar] [CrossRef]
- Binder, J.B.; Raines, R.T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. J. Am. Chem. Soc. 2009, 131, 1979–1985. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Z.K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour. Technol. 2010, 101, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Ruiz, J.C.; Campelo, J.M.; Francavilla, M.; Romero, A.A.; Luque, R.; Menéndez-Vázquez, C.; Garcia, A.B.; García-Suárez, E.J. Efficient microwave-assisted production of furfural from C5 sugars in aqueous media catalysed by Brönsted acidic ionic liquids. Catal. Sci. Technol. 2012, 2, 1828–1832. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Chen, B.; Peng, Z.; Li, C.; Feng, Y.; Sun, Y.; Tang, A.X.; Zeng, X.; Lin, L. Catalytic Conversion of Biomass to Furanic Derivatives with Deep Eutectic Solvents. ChemSusChem 2021, 14, 1496–1506. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.B.T.L.; Wu, T.Y.; Ting, C.H.; Tan, J.K.; Siow, L.F.; Cheng, C.K.; Jahim, J.M.; Mohammad, A.W. One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions. Bioresour. Technol. 2019, 278, 486–489. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, H.; Wang, K.; Lu, K.; Qu, Y.; Zhu, L.; Wang, S. Enhanced furfural production from biomass and its derived carbohydrates in the renewable butanone–water solvent system. Sustain. Energy Fuels 2019, 3, 3208–3218. [Google Scholar] [CrossRef]
- Dias, A.S.; Pillinger, M.; Valente, A.A. Liquid phase dehydration of d-xylose in the presence of Keggin-type heteropolyacids. Appl. Catal. A Gen. 2005, 285, 126–131. [Google Scholar] [CrossRef]
- Mazar, A.; Jemaa, N.; Al Dajani, W.W.; Marinova, M.; Perrier, M. Furfural production from a pre-hydrolysate generated using aspen and maple chips. Biomass Bioenergy 2017, 104, 8–16. [Google Scholar] [CrossRef]
- Vaz, S., Jr.; Donate, P.M. Microwave-Assisted Green Production of Furfural from D-Xylose of Sugarcane Bagasse. Bioresources 2015, 10, 8168–8180. [Google Scholar]
- Chen, Z.; Wan, C. A novel deep eutectic solvent/acetone biphasic system for high-yield furfural production. Bioresour. Technol. Rep. 2019, 8, 100318. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, H. Conversion of Xylan and Xylose into Furfural in Biorenewable Deep Eutectic Solvent with Trivalent Metal Chloride Added. Bioresources 2013, 8, 6014–6025. [Google Scholar] [CrossRef]
- Zhang, T.; Kumar, R.; Wyman, C.E. Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass. RSC Adv. 2013, 3, 9809–9819. [Google Scholar] [CrossRef]
- Rong, C.; Ding, X.; Zhu, Y.; Li, Y.; Wang, L.; Qu, Y.; Ma, X.; Wang, Z. Production of furfural from xylose at atmospheric pressure by dilute sulfuric acid and inorganic salts. Carbohydr. Res. 2012, 350, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, P.; Bo, D.; Chang, H. The optimization of formic acid hydrolysis of xylose in furfural production. Carbohydr. Res. 2012, 357, 53–61. [Google Scholar] [CrossRef]
- Gürbüz, E.I.; Wettstein, S.G.; Dumesic, J.A. Conversion of Hemicellulose to Furfural and Levulinic Acid using Biphasic Reactors with Alkylphenol Solvents. ChemSusChem 2012, 5, 383–387. [Google Scholar] [CrossRef]
- Choudhary, V.; Sandler, S.I.; Vlachos, D.G. Conversion of Xylose to Furfural Using Lewis and Brønsted Acid Catalysts in Aqueous Media. ACS Catal. 2012, 2, 2022–2028. [Google Scholar] [CrossRef]
- Wang, Y.; Delbecq, F.; Varma, R.S.; Len, C. Comprehensive study on expeditious conversion of pre-hydrolyzed alginic acid to furfural in Cu(II) biphasic systems using microwaves. Mol. Catal. 2018, 445, 73–79. [Google Scholar] [CrossRef]
- Park, G.; Jeon, W.; Ban, C.; Woo, H.C.; Kim, D.H. Direct catalytic conversion of brown seaweed-derived alginic acid to furfural using 12-tungstophosphoric acid catalyst in tetrahydrofuran/water co-solvent. Energy Convers. Manag. 2016, 118, 135–141. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, H.; Wang, P.; Dong, H.; Peng, X. Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid. Bioresour. Technol. 2013, 130, 110–116. [Google Scholar] [CrossRef]
- Yemiş, O.; Mazza, G. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour. Technol. 2011, 102, 7371–7378. [Google Scholar] [CrossRef]
- Delbecq, F.; Wang, Y.; Muralidhara, A.; El Ouardi, K.; Marlair, G.; Len, C. Hydrolysis of Hemicellulose and Derivatives—A Review of Recent Advances in the Production of Furfural. Front. Chem. 2018, 6, 146. [Google Scholar] [CrossRef]
- Fang, R.; Dhakshinamoorthy, A.; Li, Y.; Garcia, H. Metal organic frameworks for biomass conversion. Chem. Soc. Rev. 2020, 49, 3638–3687. [Google Scholar] [CrossRef] [PubMed]
- Dulie, N.W.; Woldeyes, B.; Demsash, H.D.; Jabasingh, A.S. An Insight into the Valorization of Hemicellulose Fraction of Biomass into Furfural: Catalytic Conversion and Product Separation. Waste Biomass Valoriz. 2021, 12, 531–552. [Google Scholar] [CrossRef]
- Zhang, T.; Li, W.; Xu, Z.; Liu, Q.; Ma, Q.; Jameel, H.; Chang, H.-M.; Ma, L. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone. Bioresour. Technol. 2016, 209, 108–114. [Google Scholar] [CrossRef]
- Qi, Z.; Wang, Q.; Liang, C.; Yue, J.; Liu, S.; Ma, S.; Wang, X.; Wang, Z.; Li, Z.; Qi, W. Highly Efficient Conversion of Xylose to Furfural in a Water–MIBK System Catalyzed by Magnetic Carbon-Based Solid Acid. Ind. Eng. Chem. Res. 2020, 59, 17046–17056. [Google Scholar] [CrossRef]
- Wang, R.; Liang, X.; Shen, F.; Qiu, M.; Yang, J.; Qi, X. Mechanochemical Synthesis of Sulfonated Palygorskite Solid Acid Catalysts for Selective Catalytic Conversion of Xylose to Furfural. ACS Sustain. Chem. Eng. 2020, 8, 1163–1170. [Google Scholar] [CrossRef]
- Hoang, P.H.; Cuong, T.D. Simultaneous Direct Production of 5-Hydroxymethylfurfural (HMF) and Furfural from Corncob Biomass Using Porous HSO3-ZSM-5 Zeolite Catalyst. Energy Fuels 2021, 35, 546–551. [Google Scholar] [CrossRef]
- Gupta, N.K.; Fukuoka, A.; Nakajima, K. Amorphous Nb2O5 as a Selective and Reusable Catalyst for Furfural Production from Xylose in Biphasic Water and Toluene. ACS Catal. 2017, 7, 2430–2436. [Google Scholar] [CrossRef]
- Guo, X.; Guo, F.; Li, Y.; Zheng, Z.; Xing, Z.; Zhu, Z.; Liu, T.; Zhang, X.; Jin, Y. Dehydration of D-xylose into furfural over bimetallic salts of heteropolyacid in DMSO/H2O mixture. Appl. Catal. A Gen. 2018, 558, 18–25. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, C.; Huang, C.; Fu, Y.; Chang, J. Efficient Conversion of Xylose into Furfural Using Sulfonic Acid-Functionalized Metal–Organic Frameworks in a Biphasic System. Ind. Eng. Chem. Res. 2018, 57, 16628–16634. [Google Scholar] [CrossRef]
- Lam, E.; Majid, E.; Leung, A.C.W.; Chong, J.H.; Mahmoud, K.A.; Luong, J.H.T. Synthesis of Furfural from Xylose by Heterogeneous and Reusable Nafion Catalysts. ChemSusChem 2011, 4, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Baig, R.B.N.; Nadagouda, M.N.; Len, C.; Varma, R.S. Sustainable pathway to furanics from biomass via heterogeneous organo-catalysis. Green Chem. 2017, 19, 164–168. [Google Scholar] [CrossRef]
- Li, X.; Lu, X.; Liang, M.; Xu, R.; Yu, Z.; Duan, B.; Lu, L.; Si, C. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst. Waste Manag. 2020, 108, 119–126. [Google Scholar] [CrossRef]
- Chatterjee, A.; Hu, X.; Lam, F.L.-Y. A dual acidic hydrothermally stable MOF-composite for upgrading xylose to furfural. Appl. Catal. A Gen. 2018, 566, 130–139. [Google Scholar] [CrossRef]
- Fúnez-Núñez, I.; García-Sancho, C.; Cecilia, J.A.; Moreno-Tost, R.; Pérez-Inestrosa, E.; Cantador, L.S.; Maireles-Torres, P. Synergistic effect between CaCl2 and γ-Al2O3 for furfural production by dehydration of hemicellulosic carbohydrates. Appl. Catal. A Gen. 2019, 585, 117188. [Google Scholar] [CrossRef]
- Chatterjee, A.; Hu, X.; Lam, F.L.-Y. Towards a recyclable MOF catalyst for efficient production of furfural. Catal. Today 2018, 314, 129–136. [Google Scholar] [CrossRef]
- Krzelj, V.; Ferrandez, D.P.; Neira D’Angelo, M.F. Sulfonated Foam Catalysts for the Continuous Dehydration of Xylose to Furfural in Biphasic Media. Catal. Today 2021, 365, 274–281. [Google Scholar] [CrossRef]
- Dulie, N.W.; Woldeyes, B.; Demsash, H.D. Synthesis of lignin-carbohydrate complex-based catalyst from Eragrostis tef straw and its catalytic performance in xylose dehydration to furfural. Int. J. Biol. Macromol. 2021, 171, 10–16. [Google Scholar] [CrossRef]
- Lin, Q.; Li, H.; Wang, X.; Jian, L.; Ren, J.; Liu, C.; Sun, R. SO42−/Sn-MMT Solid Acid Catalyst for Xylose and Xylan Conversion into Furfural in the Biphasic System. Catalysts 2017, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Ke, J.; Laskar, D.D.; Singh, D.; Chen, S. In-Situ Lignocellulosic Unlocking Mechanism for Carbohydrate Hydrolysis in Termites: Crucial Lignin Modification. Biotechnol. Biofuels 2011, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Jiang, Z.; Xu, H.; Yan, K. Selective Production of Phenol-Rich Bio-Oil From Corn Straw Waste by Direct Microwave Pyrolysis Without Extra Catalyst. Front. Chem. 2021. [Google Scholar] [CrossRef]
- Rackemann, D.W.; Bartley, J.P.; Doherty, W.O.S. Methanesulfonic acid-catalyzed conversion of glucose and xylose mixtures to levulinic acid and furfural. Ind. Crop. Prod. 2014, 52, 46–57. [Google Scholar] [CrossRef]
- Ramli, N.A.S.; Amin, N.A.S. Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: Characterization and catalytic performance. Appl. Catal. B Environ. 2015, 163, 487–498. [Google Scholar] [CrossRef]
- Antal, M.J., Jr.; Mok, W.S.L.; Richards, G.N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr. Res. 1990, 199, 91–109. [Google Scholar] [CrossRef]
- Moreau, C.; Durand, R.; Duhamet, J.; Rivalier, P. Hydrolysis of Fructose and Glucose Precursors in the Presence of H-form Zeolites. J. Carbohydr. Chem. 1997, 16, 709–714. [Google Scholar] [CrossRef]
- Moreau, C.; Durand, R.; Razigade, S.; Duhamet, J.; Faugeras, P.; Rivalier, P.; Ros, P.; Avignon, G. Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl. Catal. A Gen. 1996, 145, 211–224. [Google Scholar] [CrossRef]
- Jow, J.; Rorrer, G.L.; Hawley, M.C.; Lamport, D.T.A. Dehydration of d-fructose to levulinic acid over LZY zeolite catalyst. Biomass 1987, 14, 185–194. [Google Scholar] [CrossRef]
- Assary, R.S.; Curtiss, L.A.; Dumesic, J.A. Exploring Meerwein–Ponndorf–Verley Reduction Chemistry for Biomass Catalysis Using a First-Principles Approach. ACS Catal. 2013, 3, 2694–2704. [Google Scholar] [CrossRef]
- Assary, R.S.; Redfern, P.C.; Hammond, J.R.; Greeley, J.; Curtiss, L.A. Computational Studies of the Thermochemistry for Conversion of Glucose to Levulinic Acid. J. Phys. Chem. B 2010, 114, 9002–9009. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, G.M.G.; Assary, R.S.; Dumesic, J.; Curtiss, L.A. Experimental and theoretical studies of the acid-catalyzed conversion of furfuryl alcohol to levulinic acid in aqueous solution. Energy Environ. Sci. 2012, 5, 6981–6989. [Google Scholar] [CrossRef]
- Hsu, C.C.; Chasar, D.W.A.L. Process for the Manufacture of Levulinic Acid and Esters. U.S. Patent 4236021, 25 November 1980. [Google Scholar]
- Mulder, G.J. Untersuchungen über die Humussubstanzen. Journal Praktische Chemie 1840, 21, 203–240. [Google Scholar] [CrossRef] [Green Version]
- Wettstein, S.G.; Alonso, D.M.; Chong, Y.; Dumesic, J.A. Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energy Environ. Sci. 2012, 5, 8199–8203. [Google Scholar] [CrossRef]
- Ji, H.; Dong, C.; Yang, G.; Pang, Z. Production of levulinic acid from lignocellulosic biomass with a recyclable aromatic acid and its kinetic study. Bioresources 2018, 14, 725–736. [Google Scholar] [CrossRef]
- de Guzman, D.; de Leon, R. Preliminary Optimization and Kinetics of SnCl2-HCl Catalyzed Hydrothermal Conversion of Microcrystalline Cellulose to Levulinic Acid. J. Renew. Mater. 2021, 9, 145–162. [Google Scholar] [CrossRef]
- Du, H.; Deng, F.; Kommalapati, R.R.; Amarasekara, A.S. Iron based catalysts in biomass processing. Renew. Sustain. Energy Rev. 2020, 134, 110292. [Google Scholar] [CrossRef]
- Wei, W.Q.; Wu, S.B. Experimental and Kinetic Study of Glucose Conversion to Levulinic Acid Catalyzed by Synergy of Lewis and Bronsted Acids. Chem. Eng. J. 2017, 307, 389–398. [Google Scholar] [CrossRef]
- Yang, F.; Fu, J.; Mo, J.; Lu, X. Synergy of Lewis and Brønsted Acids on Catalytic Hydrothermal Decomposition of Hexose to Levulinic Acid. Energy Fuels 2013, 27, 6973–6978. [Google Scholar] [CrossRef]
- Ramli, N.A.S.; Amin, N.A.S. Catalytic Conversion of Carbohydrate Biomass in Ionic Liquids to 5-Hydroxymethyl Furfural and Levulinic Acid: A Review. BioEnergy Res. 2020, 13, 693–736. [Google Scholar] [CrossRef]
- Tiong, Y.W.; Yap, C.L.; Gan, S.Y.; Yap, W.S.P. Conversion of Biomass and Its Derivatives to Levulinic Acid and Levulinate Esters via Ionic Liquids. Ind. Eng. Chem. Res. 2018, 57, 4749–4766. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, Y.; Liu, L. Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids. Bioresour. Technol. 2013, 129, 616–619. [Google Scholar] [CrossRef]
- Li, X.; Lu, X.; Nie, S.; Liang, M.; Yu, Z.; Duan, B.; Yang, J.; Xu, R.; Lu, L.; Si, C. Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent. Ind. Crop. Prod. 2020, 145, 112154. [Google Scholar] [CrossRef]
- Lappalainen, K.; Kuorikoski, E.; Vanvyve, E.; Dong, Y.; Karkkainen, J.; Niemela, M.; Lassi, U. Bronsted and Lewis Acid Catalyzed Conversion of Pulp Industry Waste Biomass to Levulinic Acid. Bioresources 2019, 14, 7025–7040. [Google Scholar]
- Lappalainen, K.; Vogeler, N.; Kärkkäinen, J.; Dong, Y.; Niemelä, M.; Rusanen, A.; Ruotsalainen, A.L.; Wäli, P.; Markkola, A.; Lassi, U. Microwave-assisted conversion of novel biomass materials into levulinic acid. Biomass Convers. Biorefinery 2018, 8, 965–970. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.S.; Man, Z.; Bustam, M.A.; Nasrullah, A.; Ullah, Z.; Sarwono, A.; Shah, F.U.; Muhammad, N. Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids. Carbohydr. Polym. 2018, 181, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, S.-K.; Jeong, G.-T. Efficient conversion of glucosamine to levulinic acid in a sulfamic acid-catalyzed hydrothermal reaction. RSC Adv. 2018, 8, 3198–3205. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Pathak, S.; Upadhyayula, S. 2nd generation biomass derived glucose conversion to 5-hydroxymethylfurfural and levulinic acid catalyzed by ionic liquid and transition metal sulfate: Elucidation of kinetics and mechanism. J. Clean. Prod. 2020, 256, 120292. [Google Scholar] [CrossRef]
- Wang, K.; Ye, J.; Zhou, M.; Liu, P.; Liang, X.; Xu, J.; Jiang, J. Selective conversion of cellulose to levulinic acid and furfural in sulfolane/water solvent. Cellulose 2017, 24, 1383–1394. [Google Scholar] [CrossRef]
- Mthembu, L.D.; Lokhat, D.; Gupta, R.; Deenadayalu, N. Optimization of Levulinic Acid Production from Depithed Sugarcane Bagasse in 1- Ethyl-3-methylimidazolium hydrogen sulfate [EMim][HSO4]. Waste Biomass Valoriz. 2021, 12, 3179–3191. [Google Scholar] [CrossRef]
- Mthembu, L.D.; Lokhat, D.; Deenadayalu, N. Valorization of Sugarcane Bagasse to a Platform Chemical (Levulinic Acid) Catalysed by 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate ([BMMim][BF4]). Waste Biomass Valoriz. 2021, 12, 199–209. [Google Scholar] [CrossRef]
- Jeong, G.-T.; Kim, S.-K. Thermochemical conversion of defatted microalgae Scenedesmus obliquus into levulinic and formic acids. Fuel 2021, 283, 118907. [Google Scholar] [CrossRef]
- Nis, B.; Ozsel, B.K. Efficient direct conversion of lignocellulosic biomass into biobased platform chemicals in ionic liquid-water medium. Renew. Energy 2021, 169, 1051–1057. [Google Scholar] [CrossRef]
- Tulaphol, S.; Hossain, M.A.; Rahaman, M.S.; Liu, L.-Y.; Phung, T.K.; Renneckar, S.; Grisdanurak, N.; Sathitsuksanoh, N. Direct Production of Levulinic Acid in One Pot from Hemp Hurd by Dilute Acid in Ionic Liquids. Energy Fuels 2020, 34, 1764–1772. [Google Scholar] [CrossRef]
- Jeong, G.-T.; Kim, S.-K. Statistical optimization of levulinic acid and formic acid production from lipid-extracted residue of Chlorella vulgaris. J. Environ. Chem. Eng. 2021, 9, 105142. [Google Scholar] [CrossRef]
- Zhao, P.; Zhou, C.; Li, J.; Xu, S.; Hu, C.-W. Synergistic Effect of Different Species in Stannic Chloride Solution on the Production of Levulinic Acid from Biomass. ACS Sustain. Chem. Eng. 2019, 7, 5176–5183. [Google Scholar] [CrossRef]
- Zheng, X.; Zhi, Z.; Gu, X.; Li, X.; Zhang, R.; Lu, X. Kinetic study of levulinic acid production from corn stalk at mild temperature using FeCl3 as catalyst. Fuel 2017, 187, 261–267. [Google Scholar] [CrossRef]
- Ji, H.; Zhu, J.Y.; Gleisner, R. Integrated production of furfural and levulinic acid from corncob in a one-pot batch reaction incorporating distillation using step temperature profiling. RSC Adv. 2017, 7, 46208–46214. [Google Scholar] [CrossRef] [Green Version]
- Haykir, N.I.; Guler, F. Levulinic acid production from wood with green solvents. J. Wood Chem. Technol. 2020, 41, 58–64. [Google Scholar] [CrossRef]
- Signoretto, M.; Taghavi, S.; Ghedini, E.; Menegazzo, F. Catalytic Production of Levulinic Acid (LA) from Actual Biomass. Molecules 2019, 24, 2760. [Google Scholar] [CrossRef] [Green Version]
- Boonyakarn, T.; Wataniyakul, P.; Boonnoun, P.; Quitain, A.T.; Kida, T.; Sasaki, M.; Laosiripojana, N.; Jongsomjit, B.; Shotipruk, A. Enhanced Levulinic Acid Production from Cellulose by Combined Brønsted Hydrothermal Carbon and Lewis Acid Catalysts. Ind. Eng. Chem. Res. 2019, 58, 2697–2703. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; He, J.; Zhao, W.; Yang, T.; Yang, S. Catalytic conversion of carbohydrates to levulinic acid with mesoporous niobium-containing oxides. Catal. Commun. 2017, 93, 20–24. [Google Scholar] [CrossRef]
- Wei, W.; Wu, S. Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr/HZSM-5 catalyst. Fuel 2018, 225, 311–321. [Google Scholar] [CrossRef]
- Chen, S.; Yu, I.K.; Tsang, D.C.; Yip, A.; Khan, E.; Wang, L.; Ok, Y.S.; Poon, C.S. Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: Temperature and solvent effects. Chem. Eng. J. 2017, 327, 328–335. [Google Scholar] [CrossRef]
- Pyo, S.-H.; Glaser, S.J.; Rehnberg, N.; Hatti-Kaul, R. Clean Production of Levulinic Acid from Fructose and Glucose in Salt Water by Heterogeneous Catalytic Dehydration. ACS Omega 2020, 5, 14275–14282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Sun, N.; Wang, S.; Wang, X.; Jiang, Z. High production of levulinic acid from cellulosic feedstocks being catalyzed by temperature-responsive transition metal substituted heteropolyacids. Renew. Energy 2019, 141, 802–813. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Wu, W.; Chen, Y.; Fang, L.; Li, W.; Ji, H. Production of Levulinic Acid via Cellulose Conversion Over Metal Oxide-Loaded MOF Catalysts in Aqueous Medium. Catal. Lett. 2020, 150, 322–331. [Google Scholar] [CrossRef]
- Qu, H.; Liu, B.; Gao, G.; Ma, Y.; Zhou, Y.; Zhou, H.; Li, L.; Li, Y.; Liu, S. Metal-organic framework containing Brønsted acidity and Lewis acidity for efficient conversion glucose to levulinic acid. Fuel Process. Technol. 2019, 193, 1–6. [Google Scholar] [CrossRef]
- Bisen, S.K.; Niphadkar, P.S.; Nandanwar, S.U.; Simakova, I.; Bokade, V.V. Milder Operating Parameters for One-Step Conversion of Fructose to Levulinic Acid over Sulfonated H--β Zeolite in Aqueous Media. Environ. Prog. Sustain. Energy 2021, 40, 13530. [Google Scholar] [CrossRef]
- Pizzolitto, C.; Ghedini, E.; Menegazzo, F.; Signoretto, M.; Giordana, A.; Cerrato, G.; Cruciani, G. Effect of grafting solvent in the optimisation of Sba-15 acidity for levulinIc acid production. Catal. Today 2020, 345, 183–189. [Google Scholar] [CrossRef]
- Thapa, I.; Mullen, B.; Saleem, A.; Leibig, C.; Baker, R.T.; Giorgi, J.B. Efficient green catalysis for the conversion of fructose to levulinic acid. Appl. Catal. A Gen. 2017, 539, 70–79. [Google Scholar] [CrossRef]
- Zhu, Q.-Q.; Zhuang, J.-P.; Wang, L.-Y.; Liu, Y.; Wu, S.-B. Silicotungstate: An Inexpensive and Efficient Catalyst for Conversion of Glucose to Levulinic Acid in Aqueous Medium. J. Biobased Mater. Bioenergy 2019, 13, 677–682. [Google Scholar] [CrossRef]
- Siregar, Y.D.I.; Saepudin, E.; Krisnandi, Y.K. One-Pot Reaction Conversion of Delignified Sorghum Bicolor Biomass into Levulinic Acid using a Manganese Metal Based Catalyst. Int. J. Technol. 2020, 11, 852. [Google Scholar] [CrossRef]
- Li, X.; Xu, R.; Liu, Q.; Liang, M.; Yang, J.; Lu, S.; Li, G.; Lu, L.; Si, C. Valorization of corn stover into furfural and levulinic acid over SAPO-18 zeolites: Effect of Brønsted to Lewis acid sites ratios. Ind. Crop. Prod. 2019, 141, 111759. [Google Scholar] [CrossRef]
- Pratama, A.P.; Rahayu, D.U.C.; Krisnandi, Y.K. Levulinic Acid Production from Delignified Rice Husk Waste over Manganese Catalysts: Heterogeneous Versus Homogeneous. Catalysts 2020, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, C.; Lin, Q.; Cheng, B.; Kong, F.; Li, H.; Ren, J. Solid acid-induced hydrothermal treatment of bagasse for production of furfural and levulinic acid by a two-step process. Ind. Crop. Prod. 2018, 123, 118–127. [Google Scholar] [CrossRef]
No. | Substrate | Catalyst | Reaction Conditions | Solvent | Conversion (%) | Yfurfural (%) | Ref. |
---|---|---|---|---|---|---|---|
1 | Xylose | H2SO4 (3.6 mg/mL) | 240 °C, 60 min | H2O | ---- | 78 | [42] |
2 | Xylose | HCl (4 mg/mL) | 200 °C, 10 min | H2O | 95 | 64 | [43] |
3 | Xylose | AlCl3 (1.5 w/v%) | 180 °C, 30 min | ChCl:EG/acetone | 83.3 | 75 | [44] |
4 | Xylose | AlCl3 (2 mg/mL) | 140 °C, 25 min | ChCl:citric acid/MIBK | 99.8 | 73 | [45] |
5 | Xylose | HCl (0.1 mol/mol) | 170 °C, 50 min | H2O/MIBK | ---- | 85 | [46] |
6 | Xylose | H2SO4 (10 w/w%), NaCl (0.24 g/mL) | B.T., 5 h | H2O/toluene | 98% | 83 | [47] |
7 | Xylose | Formic acid (10 g/L) | 180 °C, 6.5 h | H2O | 94.9 | 74 | [48] |
8 | Xylose | HCl (0.25 mol/L), NaCl (36%) | 170 °C, 20 min | H2O/SBP | 95 | 78 | [49] |
9 | Xylose | HCl (0.1 M), (CrCl3 6 mM) | 145 °C, 2 h | H2O/toluene | 95.8 | 76 | [50] |
10 | Alginic acid | CuCl2 (0.29 mmol) | 220 °C, 1 min, MW | H2O/MIBK | ---- | 31 | [51] |
11 | Alginic acid | H3PW12O40 (10 mg) | 180 °C, 30 min | H2O/THF | ---- | 33.8 | [52] |
12 | Xylan | AlCl3 (0.25 mmol) | 170 °C, 10 s | [BMIM]Cl | ---- | 84.8 | [53] |
13 | Xylan | AlCl3 (2 mg/mL) | 140 °C, 35 min | ChCl:citric acid/MIBK | 99.8 | 69 | [45] |
14 | Flax shives | HCl (pH = 1.12) | 180 °C, 20 min | H2O | ---- | 72.1 | [54] |
15 | Wheat straw | HCl (pH = 1.12) | 180 °C, 20 min | H2O | ---- | 48.4 | [54] |
No. | Substrate | Catalyst | Reaction Conditions | Solvent | Conversion (%) | Yfurfural (%) | Ref. |
---|---|---|---|---|---|---|---|
1 | Xylose | Nb2O5 (100 mg) | 120 °C, 3 h | Toluene/H2O | >99 | 72 | [62] |
2 | Xylose | Nafion117 (1.82 wt%) | 150 °C, 2 h | DMSO | 91 | 60 | [65] |
3 | Xylose | Sn0.65Cs0.5PW (0.08 g) | 200 °C, 3 h | DMSO/H2O | 98 | 63 | [63] |
4 | Xylose | g-CN-SO3H (50 mg) | 100 °C, 30 min | H2O | ---- | 95 | [66] |
5 | Xylose | g-CN-SO3H (50 mg) | 100 °C, 25 min | DMSO | ---- | 95 | [66] |
6 | Xylose | Carbon-SO3H (50 mg) | 170 °C, 30 min | GVL/H2O | 99.5 | 75.1 | [67] |
7 | Xylose | Carbon-SO3H (0.2 g) | 170 °C, 30 min | GVL | ---- | 78.5 | [58] |
8 | Xylose | SnP@MIL-101(Cr) (0.1 g) | 150 °C, 3 h | Toluene/H2O | 93.2 | 86.7 | [68] |
9 | Xylose | MIL-101(Cr)-SO3H (0.27 g) | 170 °C, 3 h | CPME/NaCl-H2O | 97.8 | 70.8 | [64] |
10 | Xylose | CaCl2/γ-Al2O3 (0.65 g) | 150 °C, 50 min | Toluene/H2O | 100 | 55 | [69] |
11 | Xylose | MIL-OTS-0.5 (200 mg) | 170 °C, 3 h | Toluene/H2O | 94.6 | 62.6 | [70] |
12 | Xylose | PAL-SO3H (50 mg) | 180 °C, 60 min | GVL/H2O | 90.6 | 87 | [60] |
13 | Xylose | Form-SO3H (0.1 M acid sites) | 170 °C, 10 min | Toluene/H2O | ---- | 70–80% | [71] |
14 | Xylose | CST (200mg) | 170 °C, 30 min | Toluene/H2O | 82.5 | 62.4% | [72] |
13 | Xylan | SO42−/Sn-MMT (5 g/g) | 160 °C, 90 min | 2-MTHF/NaCl-H2O | ---- | 77.4 | [73] |
No. | Substrate | Catalysts | Reaction Conditions | Solvent | Conversion (%) | YLA (%) | Ref. |
---|---|---|---|---|---|---|---|
1 | Glucose | [IL-SO3H][Cl] (400 mg), NiSO4 (1.8 wt%) | 155 °C, 5 h | Water | 99.92 | 56.4 | [101] |
2 | Glucose | Phosphotungstic acid (30 mg/mL) | 195 °C, 80 min | GVL/water | 100 | 98.9 | [96] |
3 | Cellulose | H2SO4 (1 wt%) | 180 °C, 1 h | Sulfolane/water | 100 | 72.5 | [102] |
4 | Cellulose | Phosphotungstic acid (30 mg/mL) | 195 °C, 120 min | GVL/water | 100 | 88.6 | [96] |
5 | MCC | SnCl2: HCl (1:1, 0.17 M) | 198 °C, 5 h | Water | 100 | 63.5 | [89] |
6 | DSB | [EMim][HSO4] (4 g) | 100 °C, 7 h | MIBK | 100 | 62 | [103] |
7 | DSB | [BMMim][BF4] (4 g) | 100 °C, 7 h | MIBK | 100 | 54.2 | [104] |
8 | Microalgae | H2SO4 (0.8 M) | 180 °C, 40 min | Water | 100 | 39.9 | [105] |
9 | Sorghum | [BMIM][HSO4] (16.7%) | 180 °C, 30 min | Water | 100 | 11.7 | [106] |
10 | Hemp hurd | HCl (0.1 g/g) | 120 °C, 12 h | [EMIM]Cl | 100 | 59 | [107] |
11 | Chlorella vulgaris | HCl (0.95 M) | 170 °C, 30 min | Water | 100 | 39.3 | [108] |
12 | Lignocellulose | p-TsOH (0.95 M) | 162 °C, 64 min | Water | 100 | 57.9 | [88] |
13 | Corncob | SnCl4 (0.768 M) | 180 °C, 1 h | Water | ---- | 64.6 | [109] |
14 | Corn stalk | FeCl3 (0.5 M) | 180 °C, 40 min | Water | ---- | 48.9 | [110] |
15 | Corncob | p-TsOH (1.1 M) | 180 °C, 70 min | Water | ---- | 61.3 | [111] |
16 | Pine | CrCl3 (0.1 M) | 180 °C, 4 h | GVL/water | ---- | 78 | [112] |
No. | Substrate | Catalysts | Reaction Conditions | Solvent | Conversion (%) | YLA (%) | Ref. |
---|---|---|---|---|---|---|---|
1 | Fructose | H-Resin (30 wt%), NaCl (10 wt%) | 110 °C, 24 h | Water | >98 | 74.6 | [118] |
2 | Fructose | S-beta zeolite (3 wt%) | 160 °C, 7 h | Water | 98.15 | 43.5 | [122] |
3 | Fructose | HSO3-SBA-15 (200 mg) | 180 °C, 5 h | Water | 100 | 30 | [123] |
4 | Fructose | Dowex 50×8-100 (50 mg) | 120 °C, 24 h | Water/GVL | 99 | 72 | [124] |
5 | Glucose | Cr/HZSM-5 (0.75 g) | 180 °C, 3 h | Water | 100 | 64.4 | [116] |
6 | Glucose | Fe-NbP (50 mg) | 180 °C, 3 h | Water | 98.9 | 64.2 | [115] |
7 | Glucose | H-Resin (60 mg), NaCl (10 wt%) | 145 °C, 24 h | Water | 100 | 74.6 | [118] |
8 | Glucose | Al4/3SiW12O40 (0.45 g) | 180 °C, 2 h | Water | 100 | 50.4 | [125] |
9 | Glucose | Lys-PM2 (25 mg) | 150 °C, 9 h | Water | 98.7 | 57.9 | [121] |
10 | Cellulose | Ga2O3-UiO-66 (2.5%) | 240 °C, 6 h | Water | ---- | 32 | [120] |
11 | Cellulose | ChH4PWTi (3.09 mmol) | 130 °C, 8 h | MIBK/water | 93.8 | 76.1 | [119] |
12 | Cellulose | HTCG-SO3H 5 wt%, CrCl3 (0.015 M) | 200 °C, 5 min | Water | ---- | 40 | [114] |
13 | Sorghum stems | Mn3O4 (2%), phosphoric acid (40%), H2O2 (30%) | 130 °C, 10 h | Water | ---- | 26.6 | [126] |
14 | Corn stover | SAPO-18 (0.3 g) | 190 °C, 80 min | Water | ---- | 70.2 | [127] |
15 | Rice Husk | Mn3O4/ZSM-5, H3PO4 (10%), H2O2 (2%) | 130 °C, 8 h | Water | ---- | 39.8 | [128] |
16 | Bagasse | Sn-MMT /SO42- (0.1 g), saturated NaCl | 180 °C, 3 h | Water | ---- | 62.1 | [129] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Hu, D.; Zhao, Z.; Yi, Z.; Chen, Z.; Yan, K. Mini-Review on the Synthesis of Furfural and Levulinic Acid from Lignocellulosic Biomass. Processes 2021, 9, 1234. https://doi.org/10.3390/pr9071234
Jiang Z, Hu D, Zhao Z, Yi Z, Chen Z, Yan K. Mini-Review on the Synthesis of Furfural and Levulinic Acid from Lignocellulosic Biomass. Processes. 2021; 9(7):1234. https://doi.org/10.3390/pr9071234
Chicago/Turabian StyleJiang, Zhiwei, Di Hu, Zhiyue Zhao, Zixiao Yi, Zuo Chen, and Kai Yan. 2021. "Mini-Review on the Synthesis of Furfural and Levulinic Acid from Lignocellulosic Biomass" Processes 9, no. 7: 1234. https://doi.org/10.3390/pr9071234
APA StyleJiang, Z., Hu, D., Zhao, Z., Yi, Z., Chen, Z., & Yan, K. (2021). Mini-Review on the Synthesis of Furfural and Levulinic Acid from Lignocellulosic Biomass. Processes, 9(7), 1234. https://doi.org/10.3390/pr9071234