Green Synthesis of Silver Nanoparticles Using Extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., Physico-Chemical Characterization, Antimicrobial and Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction
2.3. Preparation of Silver Nanoparticles
2.4. Spectrophotometric Studies
2.4.1. Determination of Total Phenolic Content
2.4.2. Determination of Total Flavonoid Content
2.4.3. Determination of Total Proanthocyanidin Content
2.4.4. Determination of Total Content of Hydroxycinnamic Acid Derivatives
2.5. Analysis of Extract Antioxidant Activity
2.5.1. ABTS•+ Radical Cation Scavenging Assay
2.5.2. DPPH• Free Radical Scavenging Assay
2.5.3. CUPRAC Assay
2.5.4. Ferric Reducing Antioxidant Power (FRAP) Assay
2.5.5. TFPH•+ Radical Cation Scavenging Assay
2.5.6. Calculation of Antioxidant Activity of the Extracts
2.6. Microscopy
2.6.1. Scanning Electron Microscopy (SEM)
2.6.2. Transmission Electron Microscopy (TEM)
2.7. Antimicrobial Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Content of Phytochemicals
3.2. Determination of Antioxidant Properties
3.3. SEM Analysis
3.4. TEM
3.5. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hembram, K.C.; Kumar, R.; Kandha, L.; Parhi, P.K.; Kundu, C.N.; Bindhani, B.K. Therapeutic Prospective of Plant-Induced Silver Nanoparticles: Application as Antimicrobial and Anticancer Agent. Artif. Cells Nanomed. Biotechnol. 2018, 46, S38–S51. [Google Scholar] [CrossRef] [Green Version]
- Mahadevan, S.; Vijayakumar, S.; Arulmozhi, P. Green Synthesis of Silver Nano Particles from Atalantia Monophylla (L) Correa Leaf Extract, Their Antimicrobial Activity and Sensing Capability of H2O2. Microb. Pathog. 2017, 113, 445–450. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Du, J.; Singh, P.; Yi, T.H. Ecofriendly Synthesis of Silver and Gold Nanoparticles by Euphrasia Officinalis Leaf Extract and Its Biomedical Applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1163–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, E.-Y.; Park, Y. Anticancer Prospects of Silver Nanoparticles Green-Synthesized by Plant Extracts. Mater. Sci. Eng. C 2020, 116, 111253. [Google Scholar] [CrossRef]
- Benzie, I.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S.; Mehata, M.S. Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and Their Enhanced Antibacterial Property. Sci. Rep. 2017, 7, 15867. [Google Scholar] [CrossRef] [PubMed]
- Naeini, A.; Khosravi, A.R.; Chitsaz, M.; Shokri, H.; Kamlnejad, M. Anti-Candida Albicans Activity of Some Iranian Plants Used in Traditional Medicine. J. Mycol. Médicale 2009, 19, 168–172. [Google Scholar] [CrossRef]
- Fraisse, D.; Felgines, C.; Texier, O.; Lamaison, J.L. Caffeoyl Derivatives: Major Antioxidant Compounds of Some Wild Herbs of the Asteraceae Family. Food Nutr. Sci. 2011, 2. [Google Scholar] [CrossRef]
- Falcão, S.; Bacém, I.; Igrejas, G.; Rodrigues, P.J.; Vilas-Boas, M.; Amaral, J.S. Chemical Composition and Antimicrobial Activity of Hydrodistilled Oil from Juniper Berries. Ind. Crop. Prod. 2018, 124, 878–884. [Google Scholar] [CrossRef] [Green Version]
- Cermak, P.; Paleckova, W.; Houska, M.; Strohalm, J.; Novotna, P.; Mikyska, A.; Jurkow, M.; Sikorova, M. Inhibitory Effects of Fresh Hops on Helicobacter Pylori Strains. Czech J. Food Sci. 2016, 33, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Zheljazkov, V.D.; Kacaniova, M.; Dincheva, I.; Radoukova, T.; Semerdjieva, I.B.; Astatkie, T.; Schlegel, V. Essential Oil Composition, Antioxidant and Antimicrobial Activity of the Galbuli of Six Juniper Species. Ind. Crop. Prod. 2018, 124, 449–458. [Google Scholar] [CrossRef]
- Selvan, D.A.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. Garlic, Green Tea and Turmeric Extracts-Mediated Green Synthesis of Silver Nanoparticles: Phytochemical, Antioxidant and in Vitro Cytotoxicity Studies. J. Photochem. Photobiol. B Biol. 2018, 180, 243–252. [Google Scholar] [CrossRef]
- Mughees, M.; Samim, M.; Ahmad, S.; Wajid, S. Comparative Analysis of the Cytotoxic Activity of Extracts from Different Parts of A. Absinthium L. on Breast Cancer Cell Lines and Correlation with Active Compounds Concentration. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2019, 153, 569–579. [Google Scholar] [CrossRef]
- Keskin, Ş.; Şirin, Y.; Çakir, H.E.; Keskin, M. An Investigation of Humulus lupulus L.: Phenolic Composition, Antioxidant Capacity and Inhibition Properties of Clinically Important Enzymes. S. Afr. J. Bot. 2019, 120, 170–174. [Google Scholar] [CrossRef]
- Alonso-Esteban, J.I.; Pinela, J.; Barros, L.; Ćirić, A.; Soković, M.; Calhelha, R.C.; Torija-Isasa, E.; de Cortes Sánchez-Mata, M.; Ferreira, I.C.F.R. Phenolic Composition and Antioxidant, Antimicrobial and Cytotoxic Properties of Hop (Humulus lupulus L.) Seeds. Ind. Crop. Prod. 2019, 134, 154–159. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Satoh-Yamaguchi, K.; Ono, M. In Vitro Evaluation of Antibacterial, Anticollagenase, and Antioxidant Activities of Hop Components (Humulus lupulus) Addressing Acne Vulgaris. Phytomedicine 2009, 16, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Abram, V.; Čeh, B.; Vidmar, M.; Hercezi, M.; Lazić, N.; Bucik, V.; Možina, S.S.; Košir, I.J.; Kač, M.; Demšar, L.; et al. A Comparison of Antioxidant and Antimicrobial Activity between Hop Leaves and Hop Cones. Ind. Crop. Prod. 2015, 64, 124–134. [Google Scholar] [CrossRef]
- Candiracci, M.; Citterio, B.; Piatti, E. Antifungal Activity of the Honey Flavonoid Extract against Candida Albicans. Food Chem. 2012, 131, 493–499. [Google Scholar] [CrossRef]
- Al-Bayati, F.A. Synergistic Antibacterial Activity between Thymus vulgaris and Pimpinella anisum Essential Oils and Methanol Extracts. J. Ethnopharmacol. 2008, 116, 403–406. [Google Scholar] [CrossRef]
- Baranauskienė, R.; Venskutonis, P.R.; Viškelis, P.; Dambrauskienė, E. Influence of Nitrogen Fertilizers on the Yield and Composition of Thyme (Thymus vulgaris). J. Agric. Food Chem. 2003, 51, 7751–7758. [Google Scholar] [CrossRef] [PubMed]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P.R. Variation of Total Phenolics, Anthocyanins, Ellagic Acid and Radical Scavenging Capacity in Various Raspberry (Rubus Spp.) Cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Heil, M.; Baumann, B.; Andary, C.; Linsenmair, E.K.; McKey, D. Extraction and Quantification of “Condensed Tannins” as a Measure of Plant Anti-Herbivore Defence? Revisiting an Old Problem. Naturwissenschaften 2002, 89, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Asghar, M.N.; Khan, I.U. Measurement of Antioxidant Activity with Trifluoperazine Dihydrochloride Radical Cation. Braz. J. Med. Biol. Res. 2008, 41, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saratale, G.D.; Saratale, R.G.; Kim, D.-S.; Kim, D.-Y.; Shin, H.-S. Exploiting Fruit Waste Grape Pomace for Silver Nanoparticles Synthesis, Assessing Their Antioxidant, Antidiabetic Potential and Antibacterial Activity Against Human Pathogens: A Novel Approach. Nanomaterials 2020, 10, 1457. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Singh, S.; Srivastava, B.; Bhadouria, R.; Singh, R. Green Synthesis of Silver Nanoparticles Using Leaf Extract of Holoptelea Integrifolia and Preliminary Investigation of Its Antioxidant, Anti-Inflammatory, Antidiabetic and Antibacterial Activities. J. Environ. Chem. Eng. 2019, 7, 103094. [Google Scholar] [CrossRef]
- Maliar, T.; Nemeček, P.; Ürgeová, E.; Maliarová, M.; Nesvadba, V.; Krofta, K.; Vulganová, K.; Krošlák, E.; Kraic, J. Secondary Metabolites, Antioxidant and Anti-Proteinase Activities of Methanolic Extracts from Cones of Hop (Humulus lupulus L.) Cultivars. Chem. Pap. 2017, 71, 41–48. [Google Scholar] [CrossRef]
- Habashy, N.H.; Serie, M.M.A.; Attia, W.E.; Abdelgaleil, S.A.M. Chemical Characterization, Antioxidant and Anti-Inflammatory Properties of Greek Thymus Vulgaris Extracts and Their Possible Synergism with Egyptian Chlorella Vulgaris. J. Funct. Foods 2018, 40, 317–328. [Google Scholar] [CrossRef]
- Hajhashemi, V.; Vaseghi, G.; Pourfarzam, M.; Abdollahi, A. Are Antioxidants Helpful for Disease Prevention? Res. Pharm. Sci. 2010, 5, 1–8. [Google Scholar]
- García-Sánchez, A.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 2082145. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hydamaka, A.; Lowry, L.; Beta, T. Comparison of Antioxidant Capacity and Phenolic Compounds of Berries, Chokecherry and Seabuckthorn. Cent. Eur. J. Biol. 2009, 4, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Schlesier, K.; Harwat, M.; Böhm, V.; Bitsch, R. Assessment of Antioxidant Activity by Using Different In Vitro Methods. Free Radic. Res. 2002, 36, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Taghouti, M.; Martins-Gomes, C.; Félix, L.M.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Polyphenol Composition and Biological Activity of Thymus Citriodorus and Thymus Vulgaris: Comparison with Endemic Iberian Thymus Species. Food Chem. 2020, 331, 127362. [Google Scholar] [CrossRef]
- Kambale, E.K.; Nkanga, C.I.; Mutonkole, B.-P.I.; Bapolisi, A.M.; Tassa, D.O.; Liesse, J.-M.I.; Krause, R.W.M.; Memvanga, P.B. Green Synthesis of Antimicrobial Silver Nanoparticles Using Aqueous Leaf Extracts from Three Congolese Plant Species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea). Heliyon 2020, 6, e04493. [Google Scholar] [CrossRef]
- Ismail, M.; Khan, M.I.; Khan, S.B.; Akhtar, K.; Khan, M.A.; Asiri, A.M. Catalytic Reduction of Picric Acid, Nitrophenols and Organic Azo Dyes via Green Synthesized Plant Supported Ag Nanoparticles. J. Mol. Liq. 2018, 268, 87–101. [Google Scholar] [CrossRef]
- Escárcega-González, C.E.; Garza-Cervantes, J.A.; Vazquez-Rodríguez, A.; Montelongo-Peralta, L.Z.; Treviño-Gonzalez, M.T.; Barriga, C.E.D.; Saucedo-Salazar, E.M.; Morales, R.M.C.; Regalado-Soto, D.I.; Treviño-González, F.M.; et al. In Vivo Antimicrobial Activity of Silver Nanoparticles Produced via a Green Chemistry Synthesis Using Acacia Rigidula as a Reducing and Capping Agent. Int. J. Nanomed. 2018, 13, 2349–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, G.M.; Mohammed, W.H.; Marzoog, T.R.; Al-Amiery, A.A.A.; Kadhum, A.A.H.; Mohamad, A.B. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed. 2013, 3, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Tripathia, D.; Modib, A.; Narayanb, G.; Rai, S.P. Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater. Sci. Eng. 2019, 19, 152–164. [Google Scholar] [CrossRef]
- Singh, J.; Singh, N.; Rathi, A.; Kukkar, D.; Rawat, M. Facile Approach to Synthesize and Characterization of Silver Nanoparticles by Using Mulberry Leaves Extract in Aqueous Medium and its Application in Antimicrobial Activity. J. Nanostruct. 2017, 7, 134–140. [Google Scholar]
- Lia, R.; Pana, Y.; Lia, N.; Wanga, Q.; Chena, Y.; Phisalaphongb, M.; Chen, H. Antibacterial and cytotoxic activities of a green synthesized silver nanoparticles using corn silk aqueous extract. Colloids Surf. A 2020, 598, 124827. [Google Scholar] [CrossRef]
- Yan-yu, R.; Hui, Y.; Tao, W.; Chuang, W. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract. Phys. Lett. 2016, 45, 3773–3777. [Google Scholar]
- Alsammarraie, F.K.; Wang, W.; Zhou, P.; Mustapha, A.; Lin, M. Green Synthesis of Silver Nanoparticles Using Turmeric Extracts and Investigation of Their Antibacterial Activities. Colloids Surf. B Biointerfaces 2018, 171, 398–405. [Google Scholar] [CrossRef] [PubMed]
Compound Name | A. absinthium | H. lupulus | T. vulgaris |
The total amount of proanthocyanidins, mg EE/g DW | 0.99 ± 0.63 | 6.31 ± 0.26 | 1.28 ± 0.55 |
The total amount of hydroxycinnamic acid derivatives, mg ChAE/g DW | 2.34 ± 0.01 | 3.94 ± 0.13 | 8.12 ± 1.17 |
The total amount of phenolic content, mg GAE/g DW | 10.88 ± 0.62 | 10.79 ± 1.44 | 55.83 ± 2.55 |
The total amount of flavonoids, mg RE/g DW | 4.42 ± 0.28 | 2.28 ± 0.09 | 24.77 ± 0.37 |
A. absinthium/AgNPs | H. lupulus/AgNPs | T. vulgaris/AgNPs | |
The total amount of proanthocyanidins, mg EE/g DW | 0.86 ± 0.28 | 3.46 ± 0.17 | 0.78 ± 0.21 |
The total amount of hydroxycinnamic acid derivatives, mg ChAE/g DW | 2.05 ± 0.20 | 3.64 ± 0.09 | 7.14 ± 0.55 |
The total amount of phenolic compounds, mg GAE/g DW | 8.98 ± 0.24 | 6.76 ± 0.32 | 44.00 ± 4.54 |
The total amount of flavonoids, mg RE/g DW | 3.94 ± 0.31 | 1.52 ± 0.08 | 19.04 ± 10.33 |
Extract Name | ABTS, TE, mmol/g DW | DPPH, TE, mmol/g DW | CUPRAC, TE, mmol/g DW | TFPH, TE, mmol/g DW | FRAP, TE, mmol/g DW |
---|---|---|---|---|---|
A. absinthium | 0.49 ± 0.03 | 0.13 ± 0.00 | 0.10 ± 0.00 | 0.015 ± 0.005 | 0.26 ± 0.01 |
H. lupulus | 0.51 ± 0.05 | 0.14 ± 0.00 | 0.18 ± 0.00 | 0.034 ± 0.001 | 0.36 ± 0.04 |
T. vulgaris | 0.96 ± 0.21 | 0.10 ± 0.01 | 0.15 ± 0.03 | 0.046 ± 0.004 | 3.35 ± 0.17 |
A. absinthium/AgNPs | 0.55 ± 0.05 | 0.14 ± 0.00 | 0.10 ± 0.00 | 0.057 ± 0.005 | 0.26 ± 0.01 |
H. lupulus/AgNPs | 0.86 ± 0.05 | 0.11 ± 0.00 | 0.073 ± 0.002 | 0.073 ± 0.002 | 0.25 ± 0.02 |
T. vulgaris/AgNPs | 0.55 ± 0.05 | 0.14 ± 0.00 | 0.10 ± 0.00 | 0.068 ± 0.01 | 0.26 ± 0.01 |
Pathogenic and Opportunistic Bacteria Strains | Samples | ||||||
---|---|---|---|---|---|---|---|
A. absinthium | H. lupulus | T. vulgaris | |||||
Pure | AgNPs | Pure | AgNPs | Pure | AgNPs | ||
S. aureus | Inhibition zones, mm | 6.3 ± 0.1 | 13.3 ± 0.6 | 20.3 ± 0.6 | 25.6 ± 0.3 | 0.0 ± 0.0 | 18.3 ± 0.4 |
S. haemolyticus | 0.0 ± 0.0 | 13.2 ± 0.4 | 14.2 ± 0.4 | 17.2 ± 0.5 | 5.0 ± 0.8 | 16.2 ± 0.8 | |
P. aeruginosa | 0.0 ± 0.0 | 15.6 ± 0.5 | 0.0 ± 0.0 | 15.6 ± 0.4 | 0.0 ± 0.0 | 17.9 ± 0.3 | |
E. durans | 4.3 ± 0.2 | 13.6 ± 0.5 | 13.4 ± 0.4 | 18.1 ± 0.7 | 6.7 ± 0.5 | 16.6 ± 0.3 | |
B. pseudomycoides | 0.0 ± 0.0 | 15.1 ± 0.4 | 14.5 ± 0.9 | 21.4 ± 0.6 | 15.3 ± 0.2 | 16.7 ± 0.2 | |
S. enterica | 0.0 ± 0.0 | 12.2 ± 0.6 | 0.0 ± 0.0 | 14.3 ± 0.4 | 0.0 ± 0.0 | 13.4 ± 0.1 | |
A. hydrophila | 0.0 ± 0.0 | 11.3 ± 0.8 | 0.0 ± 0.0 | 9.1 ± 0.2 | 0.0 ± 0.0 | 13.4 ± 0.1 | |
A. veronii | 0.0 ± 0.0 | 9.3 ± 0.1 | 0.0 ± 0.0 | 12.1 ± 0.7 | 0.0 ± 0.0 | 11.6 ± 0.3 | |
A. baumannii | 0.0 ± 0.0 | 11.5 ± 0.8 | 6.0 ± 0.8 | 18.1 ± 0.2 | 0.0 ± 0.0 | 16.3 ± 0.2 | |
A. johnsonii | 8.4 ± 0.7 | 17.6 ± 0.7 | 10.0 ± 0.3 | 19.2 ± 0.3 | 7.2 ± 0.6 | 18.2 ± 0.6 | |
E. cloacea | 3.4 ± 0.5 | 9.0 ± 0.1 | 8.0 ± 0.4 | 17.2 ± 0.1 | 0.0 ± 0.0 | 11.6 ± 0.4 | |
C. sakazakii | 6.7 ± 0.1 | 19.3 ± 0.7 | 7.0 ± 0.4 | 21.3 ± 0.6 | 2.8 ± 0.4 | 20.4 ± 0.3 | |
K. cryocrescens | 0.0 ± 0.0 | 13.3 ± 0.6 | 0.0 ± 0.0 | 13.7 ± 0.4 | 0.0 ± 0.0 | 14.3 ± 0.6 | |
K. pneumoniae | 0.0 ± 0.0 | 12.1 ± 0.0 | 0.0 ± 0.0 | 17.3 ± 0.5 | 0.0 ± 0.0 | 14.5 ± 0.7 | |
E. coli | 3.0 ± 0.7 | 13.3 ± 0.4 | 7.0 ± 0.8 | 18.5 ± 0.3 | 3.4 ± 0.5 | 15.6 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balciunaitiene, A.; Viskelis, P.; Viskelis, J.; Streimikyte, P.; Liaudanskas, M.; Bartkiene, E.; Zavistanaviciute, P.; Zokaityte, E.; Starkute, V.; Ruzauskas, M.; et al. Green Synthesis of Silver Nanoparticles Using Extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., Physico-Chemical Characterization, Antimicrobial and Antioxidant Activity. Processes 2021, 9, 1304. https://doi.org/10.3390/pr9081304
Balciunaitiene A, Viskelis P, Viskelis J, Streimikyte P, Liaudanskas M, Bartkiene E, Zavistanaviciute P, Zokaityte E, Starkute V, Ruzauskas M, et al. Green Synthesis of Silver Nanoparticles Using Extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., Physico-Chemical Characterization, Antimicrobial and Antioxidant Activity. Processes. 2021; 9(8):1304. https://doi.org/10.3390/pr9081304
Chicago/Turabian StyleBalciunaitiene, Aiste, Pranas Viskelis, Jonas Viskelis, Paulina Streimikyte, Mindaugas Liaudanskas, Elena Bartkiene, Paulina Zavistanaviciute, Egle Zokaityte, Vytaute Starkute, Modestas Ruzauskas, and et al. 2021. "Green Synthesis of Silver Nanoparticles Using Extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., Physico-Chemical Characterization, Antimicrobial and Antioxidant Activity" Processes 9, no. 8: 1304. https://doi.org/10.3390/pr9081304
APA StyleBalciunaitiene, A., Viskelis, P., Viskelis, J., Streimikyte, P., Liaudanskas, M., Bartkiene, E., Zavistanaviciute, P., Zokaityte, E., Starkute, V., Ruzauskas, M., & Lele, V. (2021). Green Synthesis of Silver Nanoparticles Using Extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., Physico-Chemical Characterization, Antimicrobial and Antioxidant Activity. Processes, 9(8), 1304. https://doi.org/10.3390/pr9081304