Rapid, Sensitive, and Sustainable Reversed-Phase HPTLC Method in Comparison to the Normal-Phase HPTLC for the Determination of Pterostilbene in Capsule Dosage Form
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis and Chromatography
2.3. Univariate Calibration Plot for PT
2.4. Sample Processing for the Estimation of PT in Capsule Dosage Form
2.5. Validation Studies
2.6. Selectivity/Degradation Studies
2.7. Estimation of PT in Commercial Capsules
2.8. Greenness Assessment
3. Results and Discussion
3.1. Method Development
3.2. Validation Studies
3.3. Selectivity/Degradation Studies
3.4. Determination of PT in Commercial Formulations
3.5. Assessment of Greenness Profile Using AGREE Approach
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caddeo, C.; Nacher, A.; Vassallo, A.; Armentano, M.F.; Pons, R.; Fernàndez-Busquets, X.; Carbone, C.; Valenti, D.; Fadda, A.M.; Manconi, M. Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int. J. Pharm. 2016, 513, 153–163. [Google Scholar] [CrossRef]
- Lee, K.W.; Bode, A.M.; Dong, Z. Molecular targets of phytochemicals for cancer prevention. Nat. Rev. Cancer 2011, 11, 211–218. [Google Scholar] [CrossRef]
- Alqarni, M.H.; Haq, N.; Alam, P.; Abdel-Kader, M.S.; Foudah, A.I.; Shakeel, F. Solubility data, Hansen solubility parameters and thermodynamic behavior of pterostilbene in some pure solvents and different (PEG-400 + water) cosolvent compositions. J. Mol. Liq. 2021, 331, E115700. [Google Scholar] [CrossRef]
- Seshadri, T.R. Polyphenols of Pterocarpus and Dalbergia woods. Phytochemistry 1972, 11, 881–898. [Google Scholar] [CrossRef]
- Mathew, J.; Rao, A. Chemical examination of Pterocarpus marsupium. J. Indian Chem. Soc. 1984, 61, 728–729. [Google Scholar]
- Paul, B.; Masih, I.; Deopujari, J.; Charpentier, C. Occurrence of resveratrol and pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J. Ethnopharmacol. 1999, 68, 71–76. [Google Scholar] [CrossRef]
- Waffo Teguo, P.; Fauconneau, B.; Deffieux, G.; Huguet, F.; Vercauteren, J.; Merillon, J.M. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from Vitis vinifera cell cultures. J. Nat. Prod. 1998, 61, 655–657. [Google Scholar] [CrossRef]
- Remsberg, C.M.; Yáñez, J.A.; Ohgami, Y.; Vega-Villa, K.R.; Rimando, A.M.; Davies, N.M. Pharmacometrics of pterostilbene: Preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother. Res. 2008, 22, 169–179. [Google Scholar] [CrossRef]
- Chiou, Y.; Tsai, M.; Nagabhushanam, K.; Wang, Y.J.; Wu, C.H.; Ho, C.T.; Pan, M.H. Pterostilbene is more potent than resveratrol in preventing azoxymethane (AOM)-induced colon tumorigenesis via activation of the NF-E2-related factor 2 (Nrf2)-mediated antioxidant signaling pathway. J. Agric. Food Chem. 2011, 59, 2725–2733. [Google Scholar] [CrossRef]
- Pari, L.; Satheesh, A.M. Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin- and nicotinamide-induced diabetic rats. Life Sci. 2006, 79, 641–645. [Google Scholar] [CrossRef]
- Kosuru, R.; Cai, Y.; Kandula, V.; Yan, D.; Wang, C.; Zheng, H.; Li, Y.; Irwin, M.G.; Singh, S.; Xia, Z. AMPK contributes to cardioprotective effects of pterostilbene against myocardial ischemia-reperfusion injury in diabetic rats by suppressing cardiac oxidative stress and apoptosis. Cell. Physiol. Biochem. 2018, 46, 1381–1397. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, H.; Yue, L.; Li, X.; Zhao, L.; Yang, X.; Wang, X.; Yang, Y.; Qu, Y. Neuroprotective effects of pterostilbene against oxidative stress injury: Involvement of nuclear factor erythroid 2-related factor 2 pathway. Brain Res. 2016, 1643, 70–79. [Google Scholar] [CrossRef]
- Mukthinuthalapati, M.A.; Kumar, J.S.P. New derivative and differential spectrophotometric methods for the determination of pterostilbene-an antioxidant. Pharm. Methods 2015, 6, 143–147. [Google Scholar]
- Majeed, M.; Majeed, S.; Jain, R.; Mundkur, L.; Rajalakshmi, H.R.; Lad, P.; Neupane, P. A randomized study to determine the sun protection factor of natural pterostilbene from Pterocarpus marsupium. Cosmetics 2020, 7, E16. [Google Scholar] [CrossRef] [Green Version]
- Pezet, R.; Pont, V.; Cuenat, P. Method to determine resveratrol and pterostilbene in grape berries and wines using high-performance liquid chromatography and highly sensitive fluorimetric detection. J. Chromatogr. A 1994, 663, 191–197. [Google Scholar] [CrossRef]
- Annapurna, M.M.; Venkatesh, B.; Teja, G.R. Development of a validated stability indicating liquid chromatographic method for the determination of pterostilbene. Indian J. Pharm. Educ. Res. 2018, 52, S63–S70. [Google Scholar] [CrossRef] [Green Version]
- Waszczuk, M.; Bianchi, S.E.; Martiny, S.; Pittol, V.; Lacerda, D.S.; Araujo, A.S.D.S.; Bassani, V.L. Development and validation of a specific-stability indicating liquid chromatography method for quantitative analysis of pterostilbene: Application in food and pharmaceutical products. Anal. Methods 2020, 12, 4310–4318. [Google Scholar] [CrossRef]
- Remsberg, C.M.; Yanez, J.A.; Roupe, K.A.; Davies, N.M. High-performance liquid chromatographic analysis of pterostilbene in biological fluids using fluorescence detection. J. Pharm. Biomed. Anal. 2007, 43, 250–254. [Google Scholar] [CrossRef]
- Lin, H.S.; Yue, B.D.; Ho, P.C. Determination of pterostilbene in rat plasma by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic study. Biomed. Chromatogr. 2009, 23, 1308–1315. [Google Scholar] [CrossRef]
- Bindu, G.H.; Annapurna, M.M. New stability indicating liquid chromatographic method for the determination of pterostilbene in capsules. Res. J. Pharm. Technol. 2018, 11, 3851–3856. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Pan, Y.; Hu, J.H.; Huang, W.; Wang, Z.Z.; Xiao, X.; Wang, Y. Simultaneous determination of ten bioactive constituents of Sanjie Zhentong Capsule in rat plasma by ultra-high-performance liquid chromatography tandem mass spectrometry and its application to a pharmacokinetic study. J. Chromatogr. B 2017, 1054, 20–26. [Google Scholar] [CrossRef]
- Sun, J.; Huo, H.; Song, Y.; Zheng, J.; Zhao, Y.; Huang, W.; Wang, Y.; Zhu, J.; Tu, P.; Li, J. Method development and application for multi-component quantification in rats after oral administration of Longxuetongluo capsule by UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2018, 156, 252–262. [Google Scholar] [CrossRef]
- Mallavadhani, U.V.; Sahu, G. Pterostilbene: A highly reliable quality-control marker for the Ayurvedic antidiabrtic plant ‘Bijasar’. Chromatographia 2003, 58, 307–312. [Google Scholar]
- Foudah, A.I.; Alam, P.; Anwer, M.K.; Yusufoglu, H.S.; Abdel-Kader, M.S.; Shakeel, F. A green RP-HPTLC-densitometry method for the determination of diosmin in pharmaceutical formulations. Processes 2020, 8, E817. [Google Scholar] [CrossRef]
- Bhandari, P.; Kumar, N.; Gupta, A.P.; Singh, B.; Kaul, V.K. A rapid RP-HPTLC densitometry method for simultaneous determination of major flavonoids in important medicinal plants. J. Sep. Sci. 2007, 30, 2092–2096. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.K.; Sharma, N.; Gupta, A.P.; Kumar, V.; Sinha, A.K. RP-HPTLC determination and validation of vanillin and related phenolic compounds in accelerated solvent extract of Vanilla planifolia. J. Sep. Sci. 2007, 30, 3174–3180. [Google Scholar] [CrossRef]
- Foudah, A.I.; Alam, P.; Shakeel, F.; Alqasoumi, S.I.; Alqarni, M.H.; Yusufoglu, H.S. Eco-friendly RP-HPTLC method for determination of valerenic acid in methanolic extract of Valeriana officinalis and commercial herbal products. Lat. Am. J. Pharm. 2020, 39, 420–424. [Google Scholar]
- Alqarni, M.H.; Alam, P.; Foudah, A.I.; Muharram, M.M.; Shakeel, F. Combining normal/reversed-phase HPTLC with univariate calibration for the quantification with traditional ultrasound-assisted extracts of various food spices of Piper nigrum L. under green analytical chemistry viewpoint. Molecules 2021, 26, E732. [Google Scholar] [CrossRef] [PubMed]
- Foudah, A.I.; Shakeel, F.; Yusufoglu, H.S.; Ross, S.A.; Alam, P. Simultaneous determination of 6-shogaol and 6-gingerol in various ginger (Zingiber officinale Roscoe) extracts and commercial formulations using a green RP-HPTLC-densitometry method. Foods 2020, 9, E1136. [Google Scholar] [CrossRef]
- Nowak, P.M.; Koscielniak, P. What color is your method? Adaptation of the RGB additive color model to analytical method evaluation. Anal. Chem. 2019, 91, 10343–10352. [Google Scholar] [CrossRef]
- Duan, X.; Liu, X.; Dong, Y.; Yang, J.; Zhang, J.; He, S.; Yang, F.; Wang, Z.; Dong, Y. A green HPLC method for determination of nine sulfonamides in milk and beef, and its greenness assessment with analytical eco-scale and greenness profile. J. AOAC Int. 2020, 103, 1181–1189. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE-Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Alam, P. A rapid and sensitive stability-indicating green RP-HPTLC method for the quantitation of flibanserin compared to green NP-HPTLC method: Validation studies and greenness assessment. Microchem. J. 2021, 164, E105960. [Google Scholar] [CrossRef]
- Alam, P.; Salem-Bekhit, M.M.; Al-Joufi, F.A.; Alqarni, M.H.; Shakeel, F. Quantitative analysis of cabozantinib in pharmaceutical dosage forms using green RP-HPTLC and green NP-HPTLC methods: A comparative evaluation. Sustain. Chem. Pharm. 2021, 21, E100413. [Google Scholar] [CrossRef]
- International Conference on Harmonization (ICH). Q2 (R1): Validation of Analytical Procedures–Text and Methodology; International Conference on Harmonization: Geneva, Switzerland, 2005. [Google Scholar]
- Escandar, G.M.; Goicoechea, H.C.; Pena, A.M.D.L.; Olivieri, A.C. Second- and higher-order data generation and calibration: A tutorial. Anal. Chim. Acta 2014, 806, 8–26. [Google Scholar] [CrossRef]
- Mazivila, S.J.; Ricardo, I.A.; Leitao, J.M.M.; da Silva, J.C.J.E. A review on advanced oxidation process: From classical to new perspectives coupled to two- and multi-way strategies to monitor degradation of contaminants in environmental samples. Trends Environ. Anal. Chem. 2019, 24, E00072. [Google Scholar] [CrossRef]
- Patel, D.B.; Patel, N.J.; Patel, S.K.; Patel, P.U. Validated stability indicating HPTLC method for the determination of dutasteride in pharmaceutical dosage forms. Chromatogr. Res. Int. 2011, 2011, E278923. [Google Scholar] [CrossRef] [Green Version]
- Hewala, I.I.; Bedair, M.M.; Shousha, S.M. New concept for HPTLC peak purity assessment and identification of drugs in multi-component mixtures. Talanta 2012, 88, 623–630. [Google Scholar] [CrossRef] [PubMed]
Parameters | Routine Normal-Phase HPTLC | Sustainable Reversed-Phase HPTLC |
---|---|---|
Linearity range (ng band−1) | 30–400 | 10–1600 |
Regression equation | y = 44.05x + 1855.30 | y = 47.97x + 487.40 |
R2 | 0.9941 | 0.9992 |
Slope ± SD | 44.05 ± 2.18 | 47.97 ± 1.74 |
Intercept ± SD | 1855.30 ± 31.74 | 487.40 ± 6.21 |
Standard error of slope | 0.80 | 0.71 |
Standard error of intercept | 12.96 | 2.53 |
95% confidence interval of slope | 40.22–47.88 | 44.91–51.02 |
95% confidence interval of intercept | 1799.53–1911.06 | 476.48–498.31 |
LOD ± SD (ng band−1) | 11.12 ± 0.37 | 3.51 ± 0.06 |
LOQ ± SD (ng band−1) | 33.36 ± 1.11 | 10.53 ± 0.18 |
Parameters | Routine Normal-Phase HPTLC | Sustainable Reversed-Phase HPTLC |
---|---|---|
Rf | 0.62 | 0.60 |
As | 1.08 | 1.02 |
N m−1 | 4388 | 4784 |
Conc. (ng band−1) | Conc. Found (ng band−1) ± SD | Recovery (%) | CV (%) |
---|---|---|---|
Routine normal-phase HPTLC | |||
50 | 45.21 ± 1.12 | 90.42 | 2.47 |
150 | 163.24 ± 3.76 | 108.82 | 2.30 |
350 | 332.78 ± 7.16 | 95.08 | 2.15 |
Sustainable reversed-phase HPTLC | |||
30 | 30.21 ± 0.26 | 100.70 | 0.86 |
500 | 493.98 ± 2.71 | 98.79 | 0.54 |
1500 | 1514.21 ± 7.91 | 100.94 | 0.52 |
Conc. (ng band−1) | Intraday Precision | Interday Precision | ||||
---|---|---|---|---|---|---|
Area ± SD | Standard Error | CV (%) | Area ± SD | Standard Error | CV (%) | |
Routine normal-phase HPTLC | ||||||
50 | 4008 ± 134 | 54.71 | 3.34 | 3965 ± 138 | 56.34 | 3.48 |
150 | 12,878 ± 412 | 168.23 | 3.19 | 13,453 ± 452 | 184.56 | 3.35 |
350 | 17,672 ± 542 | 221.31 | 3.06 | 16,986 ± 564 | 230.29 | 3.32 |
Sustainable reversed-phase HPTLC | ||||||
30 | 2213 ± 12 | 4.89 | 0.54 | 2176 ± 14 | 5.71 | 0.64 |
500 | 21,342 ± 86 | 35.11 | 0.40 | 22,521 ± 98 | 40.01 | 0.43 |
1500 | 73,654 ± 125 | 51.04 | 0.16 | 72,876 ± 133 | 54.30 | 0.18 |
Conc. (ng band−1) | Mobile Phase Composition (CHCl3-MeOH) | Results | ||||
---|---|---|---|---|---|---|
Original | Used | Area ± SD | % CV | Rf | ||
Routine normal-phase HPTLC | ||||||
92:8 | +2.0 | 12,982 ± 398 | 3.06 | 0.60 | ||
150 | 90:10 | 90:10 | 0.0 | 13,654 ± 406 | 2.97 | 0.62 |
88:12 | −2.0 | 14,321 ± 423 | 2.95 | 0.64 | ||
Sustainable reversed-phase HPTLC | ||||||
Mobile phase composition (EtOH-H2O) | ||||||
82:18 | +2.0 | 22,981 ± 87 | 0.37 | 0.59 | ||
500 | 80:20 | 80:20 | 0.0 | 23,113 ± 93 | 0.40 | 0.60 |
78:22 | −2.0 | 23,541 ± 98 | 0.41 | 0.61 |
Stress Condition | Number of Degradation Products (Rf) | PT Rf | PT Remaining (ng band−1) | PT Recovered (%) | Peak Purity Index |
---|---|---|---|---|---|
1M HCl | 1 (0.74) | 0.60 | 412.30 | 82.46 | 1.02 |
1M NaOH | 1 (0.35) | 0.60 | 496.40 | 99.28 | 0.998 |
3% H2O2 | 2 (0.81, 0.83) | 0.60 | 403.60 | 80.72 | 1.04 |
Thermal | 0 | 0.60 | 500.00 | 100.00 | 0.999 |
Photolytic | 0 | 0.60 | 500.00 | 100.00 | 0.994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, P.; Shakeel, F.; Alqarni, M.H.; Foudah, A.I.; Faiyazuddin, M.; Alshehri, S. Rapid, Sensitive, and Sustainable Reversed-Phase HPTLC Method in Comparison to the Normal-Phase HPTLC for the Determination of Pterostilbene in Capsule Dosage Form. Processes 2021, 9, 1305. https://doi.org/10.3390/pr9081305
Alam P, Shakeel F, Alqarni MH, Foudah AI, Faiyazuddin M, Alshehri S. Rapid, Sensitive, and Sustainable Reversed-Phase HPTLC Method in Comparison to the Normal-Phase HPTLC for the Determination of Pterostilbene in Capsule Dosage Form. Processes. 2021; 9(8):1305. https://doi.org/10.3390/pr9081305
Chicago/Turabian StyleAlam, Prawez, Faiyaz Shakeel, Mohammed H. Alqarni, Ahmed I. Foudah, Md. Faiyazuddin, and Sultan Alshehri. 2021. "Rapid, Sensitive, and Sustainable Reversed-Phase HPTLC Method in Comparison to the Normal-Phase HPTLC for the Determination of Pterostilbene in Capsule Dosage Form" Processes 9, no. 8: 1305. https://doi.org/10.3390/pr9081305
APA StyleAlam, P., Shakeel, F., Alqarni, M. H., Foudah, A. I., Faiyazuddin, M., & Alshehri, S. (2021). Rapid, Sensitive, and Sustainable Reversed-Phase HPTLC Method in Comparison to the Normal-Phase HPTLC for the Determination of Pterostilbene in Capsule Dosage Form. Processes, 9(8), 1305. https://doi.org/10.3390/pr9081305