Review of Soft Sensors in Anaerobic Digestion Process
Abstract
:1. Introduction
2. Anaerobic Digestion Process
2.1. Basic Principles of Anaerobic Digestion
2.2. Process Parameters of Anaerobic Digestion
- PH: The optimal pH range of different microorganisms is different. Methanogens are extremely sensitive to pH, and the optimal pH range is 6.5–7.2 [30]. The fermenting microorganisms produce acetic acid and butyric acid when the pH is low. Acetic acid and propionic acid are formed when the pH is higher than 8.0 [31]. Therefore, reasonable monitoring of pH can ensure the maximum biological activity of microorganisms.
- Alkalinity: Methanogens usually produce alkalinity in the form of carbon dioxide, ammonia, and bicarbonate, contributing to neutralizing VFA produced during anaerobic digestion [32]. Thus, real-time monitoring of alkalinity can improve the stability of the anaerobic digestion process when the concentration of carbon dioxide is stable.
- Temperature: Temperature has a crucial influence on the physical and chemical properties of anaerobic digestion and fermentation substrates. It affects the growth rate and metabolism of microorganisms, which in turn influences the population dynamics of the anaerobic digestion process [33]. When the temperature changes more than 1 °C/day, the biochemical activity of methanogens will be severely affected, causing the process to fail.
- VFA concentration: VFA concentration is an intermediate product of the anaerobic digestion process. Excessive accumulation of VFA can reduce the pH of the system and inhibit the activity of methanogens. The VFA concentration can reflect the current operating conditions of the system while being extremely sensitive to the incoming feed imbalance [34]. Hence, it is urgent to establish a soft sensor to predict the VFA concentration by monitoring the measurable and easy-to-obtain process variables in real-time.
- COD and biogas yield: COD is an imperative indicator to measure the organic content of the effluent from the anaerobic digestion process [35]. Biogas yield is a vital indicator to measure the efficiency of anaerobic digestion [36]. Real-time monitoring of COD and biogas yield can demonstrate the operating efficiency and stability of the anaerobic digestion process and contribute to achieving the real-time calibration and optimization of production conditions and control methods.
2.3. Anaerobic Digestion Process
3. Development History of Anaerobic Digestion Soft Sensor
3.1. Soft Sensor Based on Process Mechanism
3.2. Soft Sensor Based on State Estimation
3.3. Soft Sensor Based on Regression Analysis
3.4. Soft Sensor Based on Artificial Neural Network
3.5. Soft Sensor Based on Statistical Machine Learning
3.6. Practical Application of Soft Sensors for Anaerobic Digestion
4. The Latest Development of Anaerobic Digestion Soft Sensor
- The traditional soft sensor cannot extract the deep features of auxiliary variables. The performance of traditional soft sensors depends on the auxiliary variables provided, and the selection of auxiliary variables requires rich prior knowledge [94].
- The traditional soft sensor does not consider the large number of unlabeled samples in the anaerobic digestion process. There are many unlabeled samples in the anaerobic digestion process. The semi-supervised learning mechanism, which is used to mine unlabeled sample information, can effectively improve the prediction performance of soft sensors [95].
- The traditional soft sensor does not consider the dynamic and time lag characteristics of anaerobic digestion. The traditional soft sensor cannot adapt to changes in work and production conditions, and the prediction accuracy of the soft sensor gradually deteriorates over time [96]. Meanwhile, the slow hydrolysis process of anaerobic digestion would lead to a certain time lag between the real-time monitoring variables of the acid-producing tank and the real-time monitoring variables of the methane-producing tank.
- The traditional soft sensor only considers the mapping relationship between auxiliary variables and target variables while ignoring the mutual influence between auxiliary variables [97]. In the actual industry, the combined auxiliary variables are generally highly correlated with the target variable while the single auxiliary variable often has a weak correlation with the target variable.
4.1. Soft Sensors for Extracting Deep Features
4.2. Soft Sensors for Extracting Information from Unlabeled Samples
4.3. Soft Sensors for Extracting Dynamic Information
4.4. Soft Sensors for Extracting Spatiotemporal Information
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yang, H.; Mo, W.-l.; Xiong, Z.-X.; Huang, M.-Z.; Liu, H.-B. Soft sensor modeling of papermaking effluent treatment processes using RPLS. China Pulp Pap. 2018, 35, 31–35. [Google Scholar] [CrossRef]
- Yordanova, S.; Noikova, N.; Petrova, R.; Tzvetkov, P. Neuro-fuzzy modelling on experimental data in anaerobic digestion of organic waste in waters. In Proceedings of the 2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Sofia, Bulgaria, 5–7 September 2005; pp. 84–88. [Google Scholar]
- Liu, Z.-J.; Wan, J.-Q.; Ma, Y.-W.; Wang, Y. Online prediction of effluent COD in the anaerobic wastewater treatment system based on PCA-LSSVM algorithm. Env. Sci. Pollut. Res. Int. 2019, 26, 12828–12841. [Google Scholar] [CrossRef] [PubMed]
- Bryant, M.P.; Wolin, E.A.; Wolin, M.J.; Wolfe, R.S. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol. 1967, 59, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Bryant, M.P. Microbial methane production—theoretical aspects. J. Anim. Sci. 1979, 48, 193–201. [Google Scholar] [CrossRef]
- Franke-Whittle, I.H.; Walter, A.; Ebner, C.; Insam, H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 2014, 34, 2080–2089. [Google Scholar] [CrossRef] [Green Version]
- Sbarciog, M.; Loccufier, M.; Noldus, E. Determination of appropriate operating strategies for anaerobic digestion systems. Biochem. Eng. J. 2010, 51, 180–188. [Google Scholar] [CrossRef]
- Shen, S.; Premier, G.C.; Guwy, A.; Dinsdale, R. Bifurcation and stability analysis of an anaerobic digestion model. Nonlinear Dyn. 2007, 48, 391–408. [Google Scholar] [CrossRef]
- Lara-Cisneros, G.; Aguilar-López, R.; Femat, R. On the dynamic optimization of methane production in anaerobic digestion via extremum-seeking control approach. Comput. Chem. Eng. 2015, 75, 49–59. [Google Scholar] [CrossRef]
- Corona, F.; Mulas, M.; Haimi, H.; Sundell, L.; Heinonen, M.; Vahala, R. Monitoring nitrate concentrations in the denitrifying post-filtration unit of a municipal wastewater treatment plant. J. Process Control 2013, 23, 158–170. [Google Scholar] [CrossRef]
- Jimenez, J.; Latrille, E.; Harmand, J.; Robles, A.; Ferrer, J.; Gaida, D.; Wolf, C.; Mairet, F.; Bernard, O.; Alcaraz-Gonzalez, V.; et al. Instrumentation and control of anaerobic digestion processes: A review and some research challenges. Rev. Environ. Sci. Biotechnol. 2015, 14, 615–648. [Google Scholar] [CrossRef]
- Kawai, M.; Nagao, N.; Kawasaki, N.; Imai, A.; Toda, T. Improvement of COD removal by controlling the substrate degradability during the anaerobic digestion of recalcitrant wastewater. J. Environ. Manag. 2016, 181, 838–846. [Google Scholar] [CrossRef]
- Gaida, D.; Wolf, C.; Meyer, C.; Stuhlsatz, A.; Lippel, J.; Bäck, T.; Bongards, M.; McLoone, S. State estimation for anaerobic digesters using the ADM1. Water Sci. Technol. 2012, 66, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Haimi, H.; Mulas, M.; Corona, F.; Vahala, R. Data-derived soft-sensors for biological wastewater treatment plants: An overview. Environ. Model. Softw. 2013, 47, 88–107. [Google Scholar] [CrossRef]
- Gaida, D.; Wolf, C.; Bongards, M. Feed control of anaerobic digestion processes for renewable energy production: A review. Renew. Sustain. Energy Rev. 2017, 68, 869–875. [Google Scholar] [CrossRef]
- Langergraber, G.; Fleischmann, N.; Hofstaedter, F.; Weingartner, A. Monitoring of a paper mill wastewater treatment plant using UV/VIS spectroscopy. Water Sci. Technol. 2004, 49, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Zou, Z. Soft sensor and inferential control technology. J. Nanjing Univ. Sci. Technol. 2005, 212–216. [Google Scholar] [CrossRef]
- Wade, M.J. Not just numbers: Mathematical modelling and its contribution to anaerobic digestion processes. Processes 2020, 8, 888. [Google Scholar] [CrossRef]
- Brosilow, C.; Tong, M. Inferential control of processes: Part II. The structure and dynamics of inferential control systems. AIChE 1978, 24, 492–500. [Google Scholar] [CrossRef]
- He, B.; Zhu, X. Soft-sensing technique based on extension method. In Proceedings of the SPIE 5253, Fifth International Symposium on Instrumentation and Control Technology, Beijing, China, 24–27 October 2003; pp. 38–42. [Google Scholar]
- Wang, Z.-x.; Liu, Z.-w.; Xue, F.-x. Soft sensing technique for sewage treatment process. J. Beijing Technol. Bus. Univ. 2005, 23, 31–34. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, C. Soft-sensing techniques in process control. Control Theory Appl. 1996, 137–144. [Google Scholar]
- Zhu, X. Soft-sensing technique and its applications. J. South China Univ. Technol. 2002, 30, 61–67. [Google Scholar] [CrossRef]
- James, S.C.; Legge, R.L.; Budman, H. On-line estimation in bioreactors: A review. Rev. Chem. Eng. 2000, 16, 311–340. [Google Scholar] [CrossRef]
- Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33, 795–814. [Google Scholar] [CrossRef] [Green Version]
- Zeikus, J. Microbial populations in digesters. In Proceedings of the First International Symposium on Anaerobic Digestion, London, UK, 17–21 September 1979. [Google Scholar]
- Keymer, P.; Ruffell, I.; Pratt, S.; Lant, P. High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae. Bioresour. Technol. 2013, 131, 128–133. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Illi, L.; Lecker, B.; Lemmer, A.; Müller, J.; Oechsner, H. Biological methanation of injected hydrogen in a two-stage anaerobic digestion process. Bioresour. Technol. 2021, 333, 125126. [Google Scholar] [CrossRef]
- Kazemi, P.; Bengoa, C.; Steyer, J.-P.; Giralt, J. Data-driven techniques for fault detection in anaerobic digestion process. Process Saf. Environ. Prot. 2021, 146, 905–915. [Google Scholar] [CrossRef]
- Boe, K. Online Monitoring and Control of the Biogas Process; Institute of Environment & Resources, Technical University of Denmark: Copenhagen, Denmark, 2006. [Google Scholar]
- Hwang, M.H.; Jang, N.J.; Hyun, S.H.; Kim, I.S. Anaerobic bio-hydrogen production from ethanol fermentation: The role of pH. J. Biotechnol. 2004, 111, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Stichting Toegepast Onderzoek Reiniging Afvalwater. Optimalisatie van de Gistingsgasproduktie; Stora: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Turovskiy, I.S.; Mathai, P. Wastewater Sludge Processing; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Steyer, J.P.; Bouvier, J.C.; Conte, T.; Gras, P.; Harmand, J.; Delgenes, J.P. On-line measurements of COD, TOC, VFA, total and partial alkalinity in anaerobic digestion processes using infra-red spectrometry. Water Sci. Technol. 2002, 45, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Chae, K.J.; Jang, A.; Yim, S.K.; Kim, I.S. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 2008, 99, 1–6. [Google Scholar] [CrossRef]
- Massi, E. Anaerobic digestion. In Fuel Cells in the Waste-to-Energy Chain: Distributed Generation through Non-Conventional Fuels and Fuel Cells; McPhail, S.J., Cigolotti, V., Moreno, A., Eds.; Springer: London, UK, 2012; pp. 47–63. [Google Scholar]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Liu, X.; Han, Z.; Yang, J.; Ye, T.; Yang, F.; Wu, N.; Bao, Z. Review of enhanced processes for anaerobic digestion treatment of sewage sludge. IOP Conf. Ser. Earth Environ. Sci. 2018, 113, 012039. [Google Scholar] [CrossRef]
- Ye, N.-F.; He, P.-J.; Lü, F.; Shao, L.-M. Effect of pH on microbial diversity and product distribution during anaerobic fermentation of vegetable waste. Chin. J. Appl. Environ. Biol. 2007, 13, 238–242. [Google Scholar] [CrossRef]
- Adekunle, K.F.; Okolie, J.A. A review of biochemical process of anaerobic digestion. Adv. Biosci. Biotechnol. 2015, 6, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The anaerobic digestion of solid organic waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Lettinga, G. Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 1995, 67, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Mumme, J.; Linke, B.; Tölle, R. Novel upflow anaerobic solid-state (UASS) reactor. Bioresour. Technol. 2010, 101, 592–599. [Google Scholar] [CrossRef]
- Angelidaki, I.; Chen, X.; Cui, J.; Kaparaju, P.; Ellegaard, L. Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: Start-up procedure for continuously stirred tank reactor. Water Res. 2006, 40, 2621–2628. [Google Scholar] [CrossRef]
- Tufaner, F.; Avşar, Y. Investigation of biogas production potential and adaptation to cattle manure of anaerobic flocular sludge seed. Sigma 2016, 7, 183–190. [Google Scholar]
- Dalkılıc, K.; Ugurlu, A. Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system. J. Biosci. Bioeng. 2015, 120, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Moral, H.; Aksoy, A.; Gokcay, C.F. Modeling of the activated sludge process by using artificial neural networks with automated architecture screening. Comput. Chem. Eng. 2008, 32, 2471–2478. [Google Scholar] [CrossRef]
- Güçlü, D.; Dursun, S. Amelioration of carbon removal prediction for an activated sludge process using an artificial neural network (ANN). CLEAN–Soil Air Water 2008, 36, 781–787. [Google Scholar] [CrossRef]
- Fang, F.; Ni, B.-J.; Yu, H.-Q. Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm. Water Res. 2009, 43, 2595–2604. [Google Scholar] [CrossRef] [PubMed]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. The IWA anaerobic digestion model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Bernard, O.; Hadj-Sadok, Z.; Dochain, D. Software sensors to monitor the dynamics of microbial communities: Application to anaerobic digestion. Acta Biotheor. 2000, 48, 197–205. [Google Scholar] [CrossRef]
- Fan, Q.; Qin, G.; Zhang, L. Research and application on hybrid modeling for the monitoring of anaerobic-thermophilic fermentation of cattle manure. Heilongjiang Sci. 2013, 45–47. [Google Scholar] [CrossRef]
- Luenberger, D. An introduction to observers. IEEE Trans. Automat. Contr. 1971, 16, 596–602. [Google Scholar] [CrossRef]
- Mohd Ali, J.; Ha Hoang, N.; Hussain, M.A.; Dochain, D. Review and classification of recent observers applied in chemical process systems. Comput. Chem. Eng. 2015, 76, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Bastin, G. On-Line Estimation and Adaptive Control of Bioreactors; Elsevier: Amsterdam, The Netherlands, 2013; Volume 1. [Google Scholar]
- Dochain, D. State and parameter estimation in chemical and biochemical processes: A tutorial. J. Process Control 2003, 13, 801–818. [Google Scholar] [CrossRef]
- Diop, S.; Simeonov, I. On the biomass specific growth rates estimation for anaerobic digestion using differential algebraic techniques. Bioautomation 2009, 13, 47–56. [Google Scholar]
- Stanke, M.; Hitzmann, B. Automatic control of bioprocesses. In Measurement, Monitoring, Modelling and Control of Bioprocesses; Mandenius, C.-F., Titchener-Hooker, N.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 35–63. [Google Scholar]
- Kalchev, B.; Simeonov, I.; Christov, N. Kalman filter design for a second-order model of anaerobic digestion. Int. J. Bioautomation 2011, 15, 85–100. [Google Scholar]
- Rodríguez, A.; Quiroz, G.; Femat, R.; Méndez-Acosta, H.O.; de León, J. An adaptive observer for operation monitoring of anaerobic digestion wastewater treatment. Chem. Eng. J. 2015, 269, 186–193. [Google Scholar] [CrossRef]
- Lara-Cisneros, G.; Aguilar-López, R.; Dochain, D.; Femat, R. On-line estimation of VFA concentration in anaerobic digestion via methane outflow rate measurements. Comput. Chem. Eng. 2016, 94, 250–256. [Google Scholar] [CrossRef]
- Haugen, F.; Bakke, R.; Lie, B. State estimation and model-based control of a pilot anaerobic digestion reactor. J. Control Sci. Eng. 2014, 2014, 572621. [Google Scholar] [CrossRef] [Green Version]
- Benyahia, B.; Sari, T.; Cherki, B.; Harmand, J. Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes. J. Process Control 2012, 22, 1008–1019. [Google Scholar] [CrossRef] [Green Version]
- Hess, J.; Bernard, O. Design and study of a risk management criterion for an unstable anaerobic wastewater treatment process. J. Process Control 2008, 18, 71–79. [Google Scholar] [CrossRef]
- Sbarciog, M.; Loccufier, M.; Vande Wouwer, A. On the optimization of biogas production in anaerobic digestion systems. IFAC Proc. Vol. 2011, 44, 7150–7155. [Google Scholar] [CrossRef] [Green Version]
- Schaum, A.; Alvarez, J.; Garcia-Sandoval, J.P.; Gonzalez-Alvarez, V.M. On the dynamics and control of a class of continuous digesters. J. Process Control 2015, 34, 82–96. [Google Scholar] [CrossRef]
- Eberly, L.E. Multiple linear regression. In Topics in Biostatistics; Ambrosius, W.T., Ed.; Humana Press: Totowa, NJ, USA, 2007; pp. 165–187. [Google Scholar]
- Hu, K.-Q.; Li, L.-H.; Sun, Y.-M.; Kong, X.-Y.; Zhang, Y.; Yuan, Z.-H. The methane yield forecasting model of energy crops in anaerobic digestion based on feedstock components. Adv. New Renew. Energy 2016, 4, 100–104. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Li, N.; Zhou, H. Comparing multiple regression and BP artificial nerve net model used on prediction of anaerobic co-digestion gas-producing process. Chin. J. Environ. Eng. 2013, 7, 747–752. [Google Scholar]
- Mejdell, T.; Skogestad, S. Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression. Ind. Eng. Chem. Res. 1991, 30, 2543–2555. [Google Scholar] [CrossRef]
- Tufaner, F.; Avşar, Y.; Gönüllü, M.T. Modeling of biogas production from cattle manure with co-digestion of different organic wastes using an artificial neural network. Clean Techn. Environ. Policy 2017, 19, 2255–2264. [Google Scholar] [CrossRef]
- Güçlü, D.; Yılmaz, N.; Ozkan-Yucel, U.G. Application of neural network prediction model to full-scale anaerobic sludge digestion. J. Chem. Technol. Biotechnol. 2011, 86, 691–698. [Google Scholar] [CrossRef]
- Holubar, P.; Zani, L.; Hager, M.; Fröschl, W.; Radak, Z.; Braun, R. Advanced controlling of anaerobic digestion by means of hierarchical neural networks. Water Res. 2002, 36, 2582–2588. [Google Scholar] [CrossRef]
- Strik, D.P.B.T.B.; Domnanovich, A.M.; Zani, L.; Braun, R.; Holubar, P. Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB Neural Network Toolbox. Environ. Model. Softw. 2005, 20, 803–810. [Google Scholar] [CrossRef]
- Ozkaya, B.; Demir, A.; Bilgili, M.S. Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environ. Model. Softw. 2007, 22, 815–822. [Google Scholar] [CrossRef]
- Sathish, S.; Vivekanandan, S. Parametric optimization for floating drum anaerobic bio-digester using response surface methodology and artificial neural network. Alex. Eng. J. 2016, 55, 3297–3307. [Google Scholar] [CrossRef] [Green Version]
- Holubar, P.; Zani, L.; Hagar, M.; Fröschl, W.; Radak, Z.; Braun, R. Modelling of anaerobic digestion using self-organizing maps and artificial neural networks. Water Sci. Technol. 2000, 41, 149–156. [Google Scholar] [CrossRef]
- Jacob, S.; Banerjee, R. Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm. Bioresour. Technol. 2016, 214, 386–395. [Google Scholar] [CrossRef]
- Abu Qdais, H.; Bani Hani, K.; Shatnawi, N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour. Conserv. Recycl. 2010, 54, 359–363. [Google Scholar] [CrossRef]
- Lu, J.-J.; Chen, H. Researching development on BP neural networks. Control Eng. China 2006, 13, 449–451. [Google Scholar] [CrossRef]
- Yilmaz, T.; Seckin, G.; Yuceer, A. Modeling of effluent COD in UAF reactor treating cyanide containing wastewater using artificial neural network approaches. Adv. Eng. Softw. 2010, 41, 1005–1010. [Google Scholar] [CrossRef]
- Han, W.; Huang, M.-z.; Ma, Y.-w.; Wan, J.-q. Multi-objective optimization in the anaerobic digestion of papermaking wastewater based on NSGA-2 and BP neural network. Pap. Sci. Technol. 2014, 33, 145–147, 165. [Google Scholar]
- Huang, M.; Han, W.; Wan, J.; Ma, Y.; Chen, X. Multi-objective optimization for design and operation of anaerobic digestion using GA-ANN and NSGA-II. J. Chem. Technol. Biotechnol. 2016, 91, 226–233. [Google Scholar] [CrossRef]
- Hua, Y.; Zhao, X.; Wang, X.; Teng, K. Prediction modeling for gas production of anaerobic fermentation based on improved BP neural network. Chin. J. Environ. Eng. 2016, 10, 5951–5956. [Google Scholar] [CrossRef]
- Behera, S.K.; Meher, S.K.; Park, H.-S. Artificial neural network model for predicting methane percentage in biogas recovered from a landfill upon injection of liquid organic waste. Clean Techn. Environ. Policy 2015, 17, 443–453. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, J. BP neural network modeling and particle swarm algorithm optimization of anaerobic fermentation process. Appl. Energy Technol. 2015, 8–12. [Google Scholar] [CrossRef]
- Liu, L.; Xie, B.; Ma, Y.; Wan, J.; Wang, Y. Hybrid model of measuring biogas yield in anaerobic digestion process based on incorporated bio-kinetic model with support vector machine model. China Pulp Pap. 2017, 36, 31–36. [Google Scholar] [CrossRef]
- Kazemi, P.; Steyer, J.-P.; Bengoa, C.; Font, J.; Giralt, J. Robust data-driven soft sensors for online monitoring of volatile fatty acids in anaerobic digestion processes. Processes 2020, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ma, Y.; Wan, J.; Wang, Y.; Xie, B.; Wu, S. An accuracy soft-sensing model for the estimation of anaerobic digestion process based on pso-SVM model. Acta Sci. Circumstantiae 2017, 37, 2122–2129. [Google Scholar] [CrossRef]
- Cui, G.; Sun, T.; Zhang, Y. Forecast of blast furnace hot metal temperature based on least support vector machine. Comput. Simul. 2013, 30, 354–357. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, Z.; Yang, R.; Shan, S. Soft-sensor modeling for paper mill effluent COD based on PCA-PSO-LSSVM. Comput. Appl. Chem. 2017, 34, 706–710. [Google Scholar] [CrossRef]
- Xing, Y.; Cheng, Z.; Shan, S. Dynamic soft sensing of organic pollutants in effluent from UMIC anaerobic reactor for industrial papermaking wastewater. IOP Conf. Ser. Mater. Sci. Eng. 2019, 490, 062027. [Google Scholar] [CrossRef]
- Du, X.; Cai, Y.; Wang, S.; Zhang, L. Overview of deep learning. In Proceedings of the 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 159–164. [Google Scholar]
- Yao, L.; Ge, Z. Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application. ITIE 2018, 65, 1490–1498. [Google Scholar] [CrossRef]
- Yuan, X.; Li, L.; Shardt, Y.A.W.; Wang, Y.; Yang, C. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development. ITIE 2021, 68, 4404–4414. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, C.; Huang, Z.; Sheng, Y.; Ju, Y. Skeleton-based action recognition with temporal action graph and temporal adaptive graph convolution structure. Multimed. Tools Appl. 2021. [Google Scholar] [CrossRef]
- Bengio, Y. Learning Deep Architectures for AI; Now Publishers Inc.: Hanover, MA, USA, 2009. [Google Scholar]
- Song, H.A.; Lee, S.-Y. Hierarchical representation using NMF. In Proceedings of the Neural Information Processing, Berlin, Heidelberg, 3 November 2013; pp. 466–473. [Google Scholar]
- Wang, Y.; Li, X. Soft measurement for VFA concentration in anaerobic digestion for treating kitchen waste based on improved DBN. IEEE Access 2019, 7, 60931–60939. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S. Soft sensor for VFA concentration in anaerobic digestion process for treating kitchen waste based on SSAE-KELM. IEEE Access 2021, 9, 36466–36474. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H. Data supplement for a soft sensor using a new generative model based on a variational autoencoder and Wasserstein GAN. J. Process Control 2020, 85, 91–99. [Google Scholar] [CrossRef]
- Yan, P.; Shen, B.; Wang, Y. Soft sensor for VFA concentration in anaerobic digestion process for treating kitchen waste based on DSTHELM. IEEE Access 2020, 8, 223618–223625. [Google Scholar] [CrossRef]
- Ranzato, M.; Huang, F.J.; Boureau, Y.; LeCun, Y. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- McCormick, M.; Villa, A.E.P. LSTM and 1-D convolutional neural networks for predictive monitoring of the anaerobic digestion process. In Proceedings of the Artificial Neural Networks and Machine Learning–ICANN 2019: Workshop and Special Sessions, Cham, Switzerland, 9 September 2019; pp. 725–736. [Google Scholar]
- Zhuang, C.; Ma, Q. Dual graph convolutional networks for graph-based semi-supervised classification. In Proceedings of the Proceedings of the 2018 World Wide Web Conference, Lyon, France, 10 April 2018; pp. 499–508. [Google Scholar]
- Wang, Y.; Yan, P.; Gai, M. Dynamic soft sensor for anaerobic digestion of kitchen waste based on SGSTGAT. IEEE Sens. J. 2021, 1. [Google Scholar] [CrossRef]
Soft Sensors | Advantages of Soft Sensor | Defects of Soft Sensor |
---|---|---|
Soft sensor based on process mechanism | High precision, strong interpretability, clear industrial background | It is difficult to build an accurate mechanism model |
Soft sensor based on state estimation | Solve the problem of dynamic characteristic differences and system lag between variables | Simplifying the system will increase forecast errors |
Soft sensor based on MLR | Only consider the mapping relationship of data; do not require a clear internal mechanism | The accuracy is not high, and it is easily affected by external interference |
Soft sensor based on PLSR | Solve the problem of collinearity between auxiliary variables | Inability to handle strong nonlinear problems |
Soft sensor based on BP neural network | Able to achieve an arbitrary precision approximation of nonlinear functions | Easy to fall into local optimal or over-fitting state |
Soft sensor based on RBF neural network | Realize the global best approximation and solve the local optimal problem | Affected by network topology and hyperparameters |
Soft sensor based on SVR | Solve the problem of high dimensions and small samples | Unable to handle large-scale data |
Soft sensor based on LS-SVR | Further reduce the complexity of the model and increase the calculation speed | Very sensitive to outliers and poor robustness |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, P.; Gai, M.; Wang, Y.; Gao, X. Review of Soft Sensors in Anaerobic Digestion Process. Processes 2021, 9, 1434. https://doi.org/10.3390/pr9081434
Yan P, Gai M, Wang Y, Gao X. Review of Soft Sensors in Anaerobic Digestion Process. Processes. 2021; 9(8):1434. https://doi.org/10.3390/pr9081434
Chicago/Turabian StyleYan, Pengfei, Minghui Gai, Yuhong Wang, and Xiaoyong Gao. 2021. "Review of Soft Sensors in Anaerobic Digestion Process" Processes 9, no. 8: 1434. https://doi.org/10.3390/pr9081434
APA StyleYan, P., Gai, M., Wang, Y., & Gao, X. (2021). Review of Soft Sensors in Anaerobic Digestion Process. Processes, 9(8), 1434. https://doi.org/10.3390/pr9081434