Ultrasound-Assisted Extraction of Semi-Defatted Unripe Genipap (Genipa americana L.): Selective Conditions for the Recovery of Natural Colorants
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Reagents
2.3. Experimental
2.4. Extract Evaluation
2.4.1. Global Yield
2.4.2. Total Phenolic Content (TPC)
2.4.3. Iridoids Quantification by HPLC Analysis
2.4.4. Antioxidant Capacity
2.4.5. Color Analysis
2.5. Statistical Evaluation
3. Results and Discussion
3.1. Effect of the Process Parameters on Global Yield
3.2. Effect of the Process Parameters on Iridoid Content
3.3. Effect of the Process Parameters on Color
3.4. Effect of the Process Parameters on the Total Phenolic Content and Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Huang, A.-G.; Tan, X.-P.; Qu, S.-Y.; Wang, G.-X.; Zhu, B. Evaluation on the antiviral activity of genipin against white spot syndrome virus in crayfish. Fish Shellfish Immunol. 2019, 93, 380–386. [Google Scholar] [CrossRef]
- Ko, J.-W.; Shin, N.-R.; Park, S.-H.; Cho, Y.-K.; Kim, J.-C.; Seo, C.-S.; Shin, I.-S. Genipin inhibits allergic responses in ovalbumin-induced asthmatic mice. Int. Immunopharmacol. 2017, 53, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.H.; Silva, V.A.; Ahmed, I.; Shreiber, D.I.; Morrison, B. Neuroprotection by genipin against reactive oxygen and reactive nitrogen species-mediated injury in organotypic hippocampal slice cultures. Brain Res. 2014, 1543, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Li, R.; Tang, W.-j.; Meng, G.; Hu, X.-y.; Wu, T.N. Antidepressant-like effect of geniposide on chronic unpredictable mild stress-induced depressive rats by regulating the hypothalamus–pituitary–adrenal axis. Eur. Neuropsychopharmacol. 2015, 25, 1332–1341. [Google Scholar] [CrossRef]
- Guo, L.X.; Liu, J.H.; Zheng, X.X.; Yin, Z.Y.; Kosaraju, J.; Tam, K.Y. Geniposide improves insulin production and reduces apoptosis in high glucose-induced glucotoxic insulinoma cells. Eur. J. Pharm. Sci. 2017, 110, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Náthia-Neves, G.; Meireles, M.A.A. Genipap: A New Perspective on Natural Colorants for the Food Industry. Food Public Health 2018, 8, 21–33. [Google Scholar] [CrossRef]
- Yoo, J.S.; Kim, Y.J.; Kim, S.H.; Choi, S.H. Study on genipin: A new alternative natural crosslinking agent for fixing heterograft tissue. Korean J. Thorac. Cardiovasc. Surg. 2011, 44, 197–207. [Google Scholar] [CrossRef]
- Bentes, A.d.S.; Mercadante, A.Z. Influence of the Stage of Ripeness on the Composition of Iridoids and Phenolic Compounds in Genipap (Genipa americana L.). J. Agric. Food Chem. 2014, 62, 10800–10808. [Google Scholar] [CrossRef]
- Paik, Y.-S.; Lee, C.-M.; Cho, M.-H.; Hahn, T.-R. Physical Stability of the Blue Pigments Formed from Geniposide of Gardenia Fruits: Effects of pH, Temperature, and Light. J. Agric. Food Chem. 2001, 49, 430–432. [Google Scholar] [CrossRef]
- Bellé, A.S.; Hackenhaar, C.R.; Spolidoro, L.S.; Rodrigues, E.; Klein, M.P.; Hertz, P.F. Efficient enzyme-assisted extraction of genipin from genipap (Genipa americana L.) and its application as a crosslinker for chitosan gels. Food Chem. 2018, 246, 266–274. [Google Scholar] [CrossRef]
- Sigurdson, G.T.; Tang, P.; Giusti, M.M. Natural Colorants: Food Colorants from Natural Sources. Annu. Rev. Food Sci. Technol. 2017, 8, 261–280. [Google Scholar] [CrossRef]
- Zhou, T.; Fan, G.; Hong, Z.; Chai, Y.; Wu, Y. Large-scale isolation and purification of geniposide from the fruit of Gardenia jasminoides Ellis by high-speed counter-current chromatography. J. Chromatogr. A 2005, 1100, 76–80. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Tarone, A.G.; Tosi, M.M.; Maróstica Júnior, M.R.; Meireles, M.A.A. Extraction of bioactive compounds from genipap (Genipa americana L.) by pressurized ethanol: Iridoids, phenolic content and antioxidant activity. Food Res. Int. 2017, 102, 595–604. [Google Scholar] [CrossRef]
- Ramos-de-la-Peña, A.M.; Montañez, J.C.; de la Luz Reyes-Vega, M.; Hendrickx, M.E.; Contreras-Esquivel, J.C. Recovery of genipin from genipap fruit by high pressure processing. LWT Food Sci. Technol. 2015, 63, 1347–1350. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Vardanega, R.; Hatami, T.; Meireles, M.A.A. Process integration for recovering high added-value products from Genipa americana L.: Process optimization and economic evaluation. J. Supercrit. Fluids 2020, 164, 104897. [Google Scholar] [CrossRef]
- Viganó, J.; Aguiar, A.C.; Moraes, D.R.; Jara, J.L.P.; Eberlin, M.N.; Cazarin, C.B.B.; Maróstica, M.R.; Martínez, J. Sequential high pressure extractions applied to recover piceatannol and scirpusin B from passion fruit bagasse. Food Res. Int. 2016, 85, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Lachos-Perez, D.; Baseggio, A.M.; Mayanga-Torres, P.C.; Maróstica, M.R.; Rostagno, M.A.; Martínez, J.; Forster-Carneiro, T. Subcritical water extraction of flavanones from defatted orange peel. J. Supercrit. Fluids 2018, 138, 7–16. [Google Scholar] [CrossRef]
- Strieder, M.M.; Silva, E.K.; Meireles, M.A.A. Specific Energy: A New Approach to Ultrasound-assisted Extraction of Natural Colorants. Probe 2019, 23, 30. [Google Scholar]
- Rahimi, S.; Mikani, M. Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: Application in tomato processing wastes. Microchem. J. 2019, 146, 1033–1042. [Google Scholar] [CrossRef]
- Grassino, A.N.; Brnčić, M.; Vikić-Topić, D.; Roca, S.; Dent, M.; Brnčić, S.R. Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chem. 2016, 198, 93–100. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Biosci. 2019, 28, 66–73. [Google Scholar] [CrossRef]
- Ramos-De-La-Peña, A.M.; Renard, C.M.; Wicker, L.; Montañez, J.C.; García-Cerda, L.A.; Contreras-Esquivel, J.C. Environmental friendly cold-mechanical/sonic enzymatic assisted extraction of genipin from genipap (Genipa americana). Ultrason. Sonochem. 2014, 21, 43–49. [Google Scholar] [CrossRef]
- MI ASAE. Method of Determining and Expressing Particle Size of Chopped Forage Material by Screening. 1998, pp. 562–564. Available online: https://standards.globalspec.com/std/373056/s424-1 (accessed on 2 July 2021).
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemistry, 16th ed.; AOAC International: Gaithersburg, MD, USA, 1997; Volume 2, 850p. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Náthia-Neves, G.; Nogueira, G.; Vardanega, R.; Meireles, M.A.A. Identification and quantification of genipin and geniposide from Genipa americana L. by HPLC-DAD using a fused-core column. Food Sci. Technol. Camp. 2018, 38, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Alcázar-Alay, S.C.; Osorio-Tobón, J.F.; Forster-Carneiro, T.; Meireles, M.A.A. Obtaining bixin from semi-defatted annatto seeds by a mechanical method and solvent extraction: Process integration and economic evaluation. Food Res. Int. 2017, 99, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Toma, M.; Vinatoru, M.; Paniwnyk, L.; Mason, T.J. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 2001, 8, 137–142. [Google Scholar] [CrossRef]
- Pereira, G.A.; Silva, E.K.; Peixoto Araujo, N.M.; Arruda, H.S.; Meireles, M.A.A.; Pastore, G.M. Obtaining a novel mucilage from mutamba seeds exploring different high-intensity ultrasound process conditions. Ultrason. Sonochem. 2019, 55, 332–340. [Google Scholar] [CrossRef]
- Prado, J.M.; Veggi, P.C.; Náthia-Neves, G.; Meireles, M.A.A. Extraction Methods for Obtaining Natural Blue Colorants. Curr. Anal. Chem. 2018, 14, 1–28. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Vardanega, R.; Meireles, M.A.A. Extraction of natural blue colorant from Genipa americana L. using green technologies: Techno-economic evaluation. Food Bioprod. Process. 2019, 114, 132–143. [Google Scholar] [CrossRef]
- Wu, S.; Horn, G. Genipin-Rich Material and Its Use. U.S. Patent No. 61/556,441, 7 November 2012. [Google Scholar]
- Xu, M.; Sun, Q.; Su, J.; Wang, J.; Xu, C.; Zhang, T.; Sun, Q. Microbial transformation of geniposide in Gardenia jasminoides Ellis into genipin by Penicillium nigricans. Enzym. Microb. Technol. 2008, 42, 440–444. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, L.; Bao, Y.; Hao, A.; Qin, Y.; Wen, Z.; Xiu, Z. Biotransformation of geniposide in Gardenia jasminoides to genipin by Trichoderma harzianum CGMCC 2979. Chin. J. Catal. 2014, 35, 1534–1546. [Google Scholar] [CrossRef]
- Reyes-Giraldo, A.F.; Gutierrez-Montero, D.J.; Rojano, B.A.; Andrade-Mahecha, M.M.; Martínez-Correa, H.A. Sequential Extraction Process of Oil and Antioxidant Compounds from Chontaduro Epicarp. J. Supercrit. Fluids 2020, 166, 105022. [Google Scholar] [CrossRef]
- Rebelatto, E.A.; Rodrigues, L.G.G.; Rudke, A.R.; Andrade, K.S.; Ferreira, S.R.S. Sequential green-based extraction processes applied to recover antioxidant extracts from pink pepper fruits. J. Supercrit. Fluids 2020, 166, 105034. [Google Scholar] [CrossRef]
- Azilah Abdul Rahman, N.; Marsinah Tumin, S.; Tajuddin, R. Optimization of Ultrasonic Extraction Method of Natural Dyes from Xylocarpus Moluccensis. Int. J. Biosci. Biochem. Bioinform. 2013, 3, 53–55. [Google Scholar] [CrossRef]
- Aryanti, N.; Nafiunisa, A.; Wardhani, D. Conventional and ultrasound-assisted extraction of anthocyanin from red and purple roselle (Hibiscus sabdariffa L.) calyces and characterisation of its anthocyanin powder. Int. Food Res. J. 2019, 26, 529–535. [Google Scholar]
- İlter, I.; Akyıl, S.; Demirel, Z.; Koç, M.; Conk-Dalay, M.; Kaymak-Ertekin, F. Optimization of phycocyanin extraction from Spirulina platensis using different techniques. J. Food Compos. Anal. 2018, 70, 78–88. [Google Scholar] [CrossRef]
- Porto, R.G.C.L.; Cardoso, B.V.S.; Barros, N.V.d.A.; Cunha, E.M.F.; Araújo, M.A.d.M.; Moreira-Araújo, R. Chemical Composition and Antioxidant Activity of Genipa americana L. (Jenipapo) of the Brazilian Cerrado. J. Agric. Environ. Sci. 2014, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, A.; Ishaq, M.; Zhao, L.; Yaqoob, S.; Safdar, B.; Nadeem, M.; Munir, M.; Wang, C. Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). Ultrason. Sonochem. 2019, 51, 12–19. [Google Scholar] [CrossRef] [PubMed]
Water Solvent | |||||||
Power (w) | Time (min) | X0 (wt.%) | Genipin (mg/g Extract) | Geniposide (mg/g Extract) | TPC (mg GAE/g Extract) | FRAP (mg TE/g extract) | ORAC (mg TE/g Extract) |
150 | 1 | 14.9 ± 0.1 e | 101 ± 1 g | 52.30 ± 0.03 h | 28.9 ± 0.1 a | 5.5 ± 0.7 a | 87 ± 6 cdefg |
3 | 19 ± 1 d | 113 ± 1 e | 57 ± 1 h | 27 ± 2 a | 5 ± 1 a | 106 ± 13 abcdef | |
5 | 19.8 ± 0.1 cd | 120.8 ± 0.4 ab | 23.1 ±0.2 ij | 19.3 ±0.4 b | 5.4 ± 0.2 a | 89 ± 7 bcdefg | |
7 | 22.1 ± 0.3 bc | 121.7 ± 0.5 a | 19.6 ± 0.3 jk | 21 ± 1 b | 5.05 ± 0.04 a | 121 ± 12 ab | |
300 | 1 | 24.52 ± 0.1 ab | 120 ± 1 ab | 22.2 ± 0.5 ijk | 22 ± 1 b | 6 ± 1 a | 113 ± 16 abcd |
3 | 25 ± 1 a | 116 ± 1 cd | 29 ± 1 ij | 21.4 ± 0.4 b | 4.4 ± 0.6 a | 110 ± 9 abcde | |
5 | 24.1 ± 0.2 ab | 116.0 ± 0.4 d | 20.3 ± 0.4 ijk | 20.9 ± 0.3 b | 5.06 ± 0.04 a | 100 ± 3 abcdefg | |
7 | 23.4 ± 0.2 ab | 119 ± 1 bc | 18.8 ± 0.4 jk | 20 ± 2 b | 6 ± 1 a | 129 ± 8 a | |
450 | 1 | 25.5 ± 0.7 a | 118.8 ± 0.5 bc | 31.4 ± 0.6 i | 21 ± 1 b | 6 ± 1 a | 110 ± 11 abcde |
3 | 25 ± 1 a | 114.6 ± 0.5 de | 7.01 ± 0.5 l | 18 ± 1 b | 5.1 ± 0.1 a | 112 ± 14 abcde | |
5 | 24.9 ± 0.2 a | 110.3 ± 0.5 f | 7.1 ± 0.1 l | 17.9 ± 0.2 b | 4.9 ± 0.1 a | 119 ± 3 abc | |
7 | 23 ± 1 abc | 108.58 ± 0.04 f | 11 ± 3 kl | 21 ± 1 b | 5.2 ± 0.5 a | 126 ± 7 a | |
Ethanol Solvent | |||||||
Power (w) | Time (min) | X0 (%) | Genipin (mg/g Extract) | Geniposide (mg/g Extract) | TPC (mg GAE/g Extract) | FRAP (mg TE/g Extract) | ORAC (mg TE/g Extract) |
150 | 1 | 2.9 ± 0.7 i | 71.1 ± 0.3 l | 247 ± 5 c | 8.7 ± 0.4 c | 15 ± 5 b | 73 ± 7 g |
3 | 2.1 ± 0.2 i | 86.3 ± 0.2 ij | 198 ± 5 g | 10 ± 1 c | 15 ± 3 b | 72 ± 2 g | |
5 | 3.1 ± 0.7 i | 92 ± 1 h | 242 ± 5 c | 9 ± 1 c | 17 ± 2 b | 86 ± 13 cdefg | |
7 | 3.4 ± 0.7 i | 103.04 ± 0.05 g | 312 ± 10 a | 8 ± 1 c | 12 ± 3 b | 70 ± 19 g | |
300 | 1 | 6.9 ± 0.6 h | 78.5 ± 0.7 k | 225 ± 0.3 ef | 9 ± 2 c | 16 ± 2 b | 89 ± 7 bcdefg |
3 | 8.3 ± 0.1 gh | 80 ± 1 k | 235 ± 2 cde | 8.4 ± 0.3 c | 16 ± 2 b | 77 ± 8 fg | |
5 | 9.1 ± 0.2 fgh | 83 ± 1 j | 243 ± 5 c | 8 ± 1 c | 16 ± 1 b | 82 ± 7 defg | |
7 | 9.7 ± 0.6 fg | 81 ± 1 k | 228 ± 11 def | 7.8 ± 0.4 c | 14.8 ± 0.2 b | 92 ± 2 bcdefg | |
450 | 1 | 7.02 ± 0.05 h | 85 ± 1 ij | 260 ± 6 b | 10 ± 1 c | 15 ± 1 b | 89.67 ± 0.04 bcdefg |
3 | 9 ± 1 fg | 84 ± 1 ij | 232 ± 12 cde | 8.6 ± 0.3 c | 16 ± 1 b | 91 ± 3 bcdefg | |
5 | 11.3 ± 0.2 f | 85 ± 1 ij | 223 ± 12 ef | 7.6 ± 0.2 c | 16 ± 1 b | 80 ± 5 efg | |
7 | 12 ± 1 f | 87 ± 1 i | 223 ± 5 f | 7.5 ± 0.3 c | 16.1 ± 0.1 b | 87.2 ± 0.2 cdefg |
Water | |||||||
Power (W) | Time (min) | L* | C* | H | a* | b* | |
150 | 1 | 1.91 ± 0.03 | 1.4 ± 0.1 | 333.5 ± 1.3 | 1.3 ± 0.1 | −0.64 ± 0.05 | |
3 | 2.2 ± 0.4 | 1.5 ± 0.1 | 332.3± 1.7 | 1.4 ± 0.1 | −0.72 ± 0.05 | ||
5 | 2.02 ± 0.03 | 1.45 ± 0.01 | 324 ± 2 | 1.18 ± 0.03 | −0.85 ± 0.03 | ||
7 | 1.42 ± 0.14 | 1.3 ± 0.1 | 347 ± 12 | 1.25 ± 0.04 | −0.3 ± 0.03 | ||
300 | 1 | 1.9 ± 0.1 | 1.7 ± 0.1 | 319 ± 6 | 1.3 ± 0.1 | −1.1 ± 0.2 | |
3 | 4.3 ± 0.1 | 3.8 ± 0.1 | 106 ± 2 | 1.03 ± 0.09 | −1.6 ± 0.1 | ||
5 | 3.9 ± 0.9 | 3.2 ± 0.1 | 110 ± 2 | 1.01 ± 0.09 | −1.5 ± 0.1 | ||
7 | 3.0 ± 0.8 | 2.3 ± 0.3 | 312 ± 8 | 1.5 ± 0.1 | −1.3 ± 0.4 | ||
450 | 1 | 2.1 ± 0.1 | 1.6 ± 0.1 | 333 ± 4 | 1.4 ± 0.02 | −1.7 ± 0.1 | |
3 | 3.9 ± 0.2 | 2.7 ± 0.5 | 302 ± 2 | 1.4 ± 0.3 | −2.3 ± 0.4 | ||
5 | 3.5 ± 0.3 | 3.3 ± 0.6 | 301 ± 6 | 1.7 ± 0.2 | −2.8 ± 0.7 | ||
7 | 3.44 ± 0.04 | 2.6 ± 0.1 | 306 ± 1 | 1.51 ± 0.04 | −2.1 ± 0.1 | ||
Ethanol | |||||||
Power (W) | Time (min) | L* | C* | H | a* | b* | |
150 | 1 | 4.0 ± 0.2 | 1.2 ± 0.2 | 110 ± 4 | −0.4 ± 0.2 | 1.2 ± 0.2 | |
3 | 5.14 ± 0.02 | 1.0 ± 0.1 | 101 ± 3 | −0.2 ± 0.1 | 1.0± 0.1 | ||
5 | 4.7 ± 0.3 | 1.7 ± 0.3 | 114 ± 4 | −0.7 ± 0.1 | 1.6 ± 0.3 | ||
7 | 3.19 ± 0.01 | 0.9 ± 0.1 | 105 ± 3 | −0.2 ± 0.1 | 1.9± 0.1 | ||
300 | 1 | 4.3 ± 0.2 | 3.2 ± 0.2 | 105 ± 2 | −0.8 ± 0.1 | 3.1 ± 0.1 | |
3 | 4.4 ± 0.2 | 3.8 ± 0.2 | 107 ± 2 | −0.9 ± 0.2 | 3.6 ± 0.3 | ||
5 | 5.7 ± 0.3 | 4.1 ± 0.3 | 109 ± 3 | −1.29 ± 0.07 | 3.9 ± 0.4 | ||
7 | 5.03 ± 0.03 | 4.79 ± 0.03 | 104.1 ± 0.1 | −1.17 ± 0.02 | 4.65± 0.02 | ||
450 | 1 | 5.6 ± 0.9 | 3.8 ± 0.5 | 110 ± 1 | −1.3 ± 0.2 | 3.5 ± 0.4 | |
3 | 4.6 ± 1.1 | 2.6 ± 0.1 | 109 ± 5 | −0.8 ± 0.2 | 2.4 ± 0.1 | ||
5 | 6.6 ± 1.3 | 4.6 ± 0.5 | 107 ± 5 | −1.0 ± 0.2 | 5.4 ± 0.3 | ||
7 | 8.1 ± 0.9 | 6.8 ± 0.1 | 106.7 ± 0.4 | −1.9 ± 0.1 | 6.5 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Náthia-Neves, G.; Santana, Á.L.; Viganó, J.; Martínez, J.; Meireles, M.A.A. Ultrasound-Assisted Extraction of Semi-Defatted Unripe Genipap (Genipa americana L.): Selective Conditions for the Recovery of Natural Colorants. Processes 2021, 9, 1435. https://doi.org/10.3390/pr9081435
Náthia-Neves G, Santana ÁL, Viganó J, Martínez J, Meireles MAA. Ultrasound-Assisted Extraction of Semi-Defatted Unripe Genipap (Genipa americana L.): Selective Conditions for the Recovery of Natural Colorants. Processes. 2021; 9(8):1435. https://doi.org/10.3390/pr9081435
Chicago/Turabian StyleNáthia-Neves, Grazielle, Ádina L. Santana, Juliane Viganó, Julian Martínez, and Maria Angela A. Meireles. 2021. "Ultrasound-Assisted Extraction of Semi-Defatted Unripe Genipap (Genipa americana L.): Selective Conditions for the Recovery of Natural Colorants" Processes 9, no. 8: 1435. https://doi.org/10.3390/pr9081435
APA StyleNáthia-Neves, G., Santana, Á. L., Viganó, J., Martínez, J., & Meireles, M. A. A. (2021). Ultrasound-Assisted Extraction of Semi-Defatted Unripe Genipap (Genipa americana L.): Selective Conditions for the Recovery of Natural Colorants. Processes, 9(8), 1435. https://doi.org/10.3390/pr9081435