Essential Oil Variability of Azorean Cryptomeria japonica Leaves under Different Distillation Methods, Part 2: Molluscicidal Activity and Brine Shrimp Lethality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Extraction and Chemical Analyses of EOs
2.4. Preparation of EOs Emulsions
2.5. Molluscicidal Activity
2.5.1. R. peregra Collection and Maintenance
2.5.2. Ovicidal Activity
2.5.3. Single-Dose Screening Assay against Juveniles and Adults
2.5.4. Dose-Response Assay on Adults (LCs)
2.5.5. Time-Response Assay on Adults (LTs)
2.6. Ecotoxicology Assay on Brine Shrimp
2.7. Statistical Analysis
3. Results
3.1. Ecotoxicity Activity
3.2. Molluscicidal Activity
3.3. Chemical Composition of EOs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beesley, N.J.; Caminade, C.; Charlier, J.; Flynn, R.J.; Hodgkinson, J.E.; Martinez-Moreno, A.; Martinez-Valladares, M.; Perez, J.; Rinaldi, L.; Williams, D.J.L. Fasciola and fasciolosis in ruminants in Europe: Identifying research needs. Transbound. Emerg. Dis. 2018, 65, 199–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mas-Coma, S.; Bargues, M.; Valero, M. Human fascioliasis infection sources, their diversity, incidence factors, analytical methods and prevention measures. Parasitology 2018, 145, 1665–1699. [Google Scholar] [CrossRef] [Green Version]
- WHO. Neglected Tropical Diseases: Fascioliasis. Available online: https://www.who.int/news-room/questions-and-answers/item/q-a-on-fascioliasis (accessed on 19 January 2023).
- Correa, A.C.; Escobar, J.S.; Durand, P.; Renaud, F.; David, P.; Jarne, P.; Pointier, J.-P.; Hurtrez-Bousse`s, S. Bridging gaps in the molecular phylogeny of the Lymnaeidae (Gastropoda: Pulmonata), vectors of Fascioliasis. BMC Evol. Biol. 2010, 10, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.K.; Yadav, R.P.; Singh, A. Molluscicides from some common medicinal plants of eastern Uttar Pradesh, India. J. Appl. Toxicol. 2010, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sergeeva, V. Use of plant extracts and essential oils in modern plant protection. Acta. Hortic. 2016, 1125, 361–368. [Google Scholar] [CrossRef]
- de Oliveira, J.L. Nano-biopesticides: Present concepts and future perspectives in integrated pest management. In Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture; Jogaiah, S., Singh, H.B., Fraceto, L.F., de Lima, R., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2021; pp. 1–27. [Google Scholar] [CrossRef]
- Jin, Y.; Han, D.; Tian, M.; Row, K.H. Supercritical CO2 extraction of essential oils from Chamaecyparis obtusa. Nat. Prod. Commun. 2010, 5, 461–464. [Google Scholar] [CrossRef] [Green Version]
- Kusuma, H.S.; Altway, A.; Mahfud, M. Solvent-free microwave extraction of essential oil from dried patchouli (Pogostemon cablin Benth) leaves. J. Ind. Eng. Chem. 2018, 58, 343–348. [Google Scholar] [CrossRef]
- Febriana, I.D.; Gala, S.; Mahfud, M. Ultrasound assisted extraction of natural dye from jackfruit’s wood (Artocarpus heterophyllus): The effect of ethanol concentration as a solvent. AIP Conf. Proc. 2017, 1840, 070004. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Variations in essential oil chemical composition and biological activities of Cryptomeria japonica (Thunb. ex L.f.) D. Don from different geographical origins–A critical review. Appl. Sci. 2021, 11, 11097. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Janeiro, A.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Biological activities of organic extracts and specialized metabolites from different parts of Cryptomeria japonica (Cupressaceae)–A critical review. Phytochemistry 2023, 206, 113520. [Google Scholar] [CrossRef]
- Arruda, F.; Rosa, J.S.; Rodrigues, A.; Oliveira, L.; Lima, A.; Barroso, J.G.; Lima, E. Essential oil variability of Azorean Cryptomeria japonica leaves under different distillation methods, Part 1: Color, yield and chemical composition analysis. Appl. Sci. 2022, 12, 452. [Google Scholar] [CrossRef]
- Karimkhani, M.M.; Nasrollahzadeh, M.; Maham, M.; Jamshidi, A.; Kharazmi, M.S.; Dehnad, D.; Jafari, S.M. Extraction and purification of α-pinene; a comprehensive review. Crit. Rev. Food Sci. Nutr. 2022, 1–26. [Google Scholar] [CrossRef]
- WHO. Report of the Scientific Working Group on Plant Molluscicide and Guidelines for Evaluation of Plant Molluscicides; World Health Organization: Geneva, Switzerland, 1983; p. 9. [Google Scholar]
- Teixeira, T.; Rosa, J.S.; Rainha, N.; Baptista, J.; Rodrigues, A. Assessment of molluscicidal activity of essential oils from five Azorean plants against Radix peregra (Müller, 1774). Chemosphere 2012, 87, 1–6. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, J.L.; Rogers, L.L.; Anderson, J.E. The use of biological assays to evaluate botanicals. Drug Inf. J. 1998, 32, 513–524. [Google Scholar] [CrossRef]
- Solis, P.N.; Wright, C.W.; Anderson, M.M.; Gupta, M.P.; Phillipson, J.D. A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med. 1993, 59, 250–252. [Google Scholar] [CrossRef]
- Sousa, R.M.O.F.; Rosa, J.S.; Cunha, A.C.; Fernandes-Ferreira, M. Molluscicidal activity of four Apiaceae essential oils against the freshwater snail Radix peregra. J. Pest Sci. 2017, 90, 971–984. [Google Scholar] [CrossRef]
- Lahlou, M. Composition and molluscicidal properties of essential oils of five Moroccan Pinaceae. Pharm. Biol. 2003, 41, 207–210. [Google Scholar] [CrossRef]
- Pereira, L.P.L.A.; Ribeiro, E.C.G.; Brito, M.C.A.; Silveira, D.P.B.; Araruna, F.O.S.; Araruna, F.B.; Leite, J.A.C.; Dias, A.A.S.; Firmo, W.D.C.A.; Borges, M.O.D.R.; et al. Essential oils as molluscicidal agents against schistosomiasis transmitting snails—A review. Acta. Trop. 2020, 209, 105489. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, E.C.G.; Leite, J.A.C.; Luz, T.R.S.A.; Silveira, D.P.B.; Bezerra, S.A.; Frazão, G.C.C.G.; Pereira, L.P.L.A.; dos Santos, E.G.G.; Filho, P.R.C.F.R.; Soares, A.M.S.; et al. Molluscicidal activity of monoterpenes and their effects on inhibition of acetylcholinesterase activity on Biomphalaria glabrata, an intermediate host of Schistosoma mansoni. Acta. Trop. 2021, 223, 106089. [Google Scholar] [CrossRef]
- Abobakr, Y.; Al-Sarar, A.S.; Abdel-Kader, M.S. Fumigant toxicity and feeding deterrent activity of essential oils from Lavandula dentata, Juniperus procera, and Mentha longifolia against the land snail Monacha obstructa. Agriculture 2022, 12, 934. [Google Scholar] [CrossRef]
- Cheng, S.S.; Chang, H.T.; Chang, S.T.; Tsai, K.H.; Chen, W.J. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour. Technol. 2003, 89, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.S.; Chua, M.T.; Chang, E.H.; Huang, C.G.; Chen, W.J.; Chang, S.T. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour. Technol. 2009, 100, 465–470. [Google Scholar] [CrossRef] [PubMed]
EOs | Conc. (µg/mL) | LC50 (95% CL) a | LC90 (95% CL) a | Slope ± SEM (95% CL) a | H b |
---|---|---|---|---|---|
EO–HD | 75, 100, 150, 200 | 114.8 a (100.8–128.7) | 339.3 b (262.9–535.4) | 2.72 ± 0.42 b (1.90–3.54) | 0.91 |
EO–WSD | 80, 100, 125, 150 | 97.7 a (93.1–102.0) | 144.0 a (135.1–157.1) | 7.60 ± 0.75 a (6.15–9.09) | 2.05 |
Treatments | Conc. (µg/mL) | Dose-Dependent Lethality | |||
---|---|---|---|---|---|
LC50 (95% CL) a | LC90 (95% CL) a | Slope ± SEM (95% CL) a | H b | ||
CuSO4 | 0.1, 0.2, 0.3, 0.5, 0.75 | 0.27 a (0.21–0.32) | 0.66 a (0.48–1.17) | 3.2 ± 0.23 a (2.70–3.69) | 3.00 |
EO–HD | 20, 40, 60, 80 | 61.8 c (55.1–71.3) | 180.8 c (137.6–279.6) | 2.75 ± 0.34 a (2.08–3.42) | 1.31 |
EO–WSD | 20, 35, 40, 60 | 33.3 b (30.6–35.9) | 69.4 b (60.6–84.5) | 4.02 ± 0.43 a (3.17–4.87) | 0.32 |
Treatments | Time-Dependent Lethality | |||
---|---|---|---|---|
LT50 (95% CL) a | LT90 (95% CL) a | Slope ± SEM (95% CL) a | H b | |
8 h Exposure | ||||
CuSO4 c | 25.3 a (24.7–26.2) | 33.5 a (31.8–35.7) | 10.7 ±1.1a (9.1–13.6) | 1.36 |
EO–HD | – d | – d | – | – |
EO–WSD | 31.8 b (30.5–33.2) | 51.2 b (46.7–58.2) | 6.2 ± 0.6 b (5.1–7.4) | 0.37 |
16 h Exposure | ||||
CuSO4 c | 21.7 a (20.0–22.4) | 29.7 a (26.5–32.5) | 8.3 ± 0.96 a (6.5–10.4) | 1.04 |
EO–HD | 25.6 b (24.3–26.8) | 47.0 b (42.6–53.9) | 4.8 ± 0.5 b (3.9–5.8) | 1.33 |
EO–WSD | 20.7 a (20.1–21.3) | 27.7 a (26.6–29.2) | 10.2 ± 0.9 a (8.4–12.0) | 0.83 |
Continuous Exposure | ||||
CuSO4 c | 20.2 a (19.6–20.9) | 25.6 a (24.8–26.8) | 11.9 ± 1.2 b (10.5–13.6) | 0.97 |
EO–HD | 21.8 b (21.2–22.4) | 29.6 b (28.3–31.5) | 9.6 ± 0.8 b (8.0–11.3) | 1.42 |
EO–WSD | 20.8 a (20.4–21.1) | 24.8 a (24.2–25.6) | 16.6 ± 1.2 a (14.2–18.9) | 0.81 |
Components | Class | EO–WSD | EO–HD |
---|---|---|---|
α-Pinene | Monoterpene Hydrocarbon | 46.4 | 17.1 |
Camphene | 3.8 | 1.5 | |
Sabinene | 11.6 | 15.1 | |
β-Pinene | 1.7 | 0.7 | |
β-Myrcene | 5.8 | 3.9 | |
α-Terpinene | 1.1 | 4.1 | |
ρ-Cymene | 4.4 | 0.3 | |
Limonene | 3.2 | 1.7 | |
γ-Terpinene | 2.6 | 6.4 | |
Terpinen-4-ol | Oxygenated Monoterpene | 5.4 | 13.7 |
Elemol | Oxygenated Sesquiterpene | 1.5 | 7.8 |
γ-Eudesmol | 0.2 | 6.1 | |
α-Eudesmol | 0.3 | 3.4 | |
Phyllocladene | Diterpene Hydrocarbon | 0.2 | 7.5 |
Others | – | 9.9 | 9.6 |
% Identification | – | 98.1 | 98.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arruda, F.; Lima, A.; Oliveira, L.; Rodrigues, T.; Janeiro, A.; Rosa, J.S.; Lima, E. Essential Oil Variability of Azorean Cryptomeria japonica Leaves under Different Distillation Methods, Part 2: Molluscicidal Activity and Brine Shrimp Lethality. Separations 2023, 10, 241. https://doi.org/10.3390/separations10040241
Arruda F, Lima A, Oliveira L, Rodrigues T, Janeiro A, Rosa JS, Lima E. Essential Oil Variability of Azorean Cryptomeria japonica Leaves under Different Distillation Methods, Part 2: Molluscicidal Activity and Brine Shrimp Lethality. Separations. 2023; 10(4):241. https://doi.org/10.3390/separations10040241
Chicago/Turabian StyleArruda, Filipe, Ana Lima, Luísa Oliveira, Tânia Rodrigues, Alexandre Janeiro, José S. Rosa, and Elisabete Lima. 2023. "Essential Oil Variability of Azorean Cryptomeria japonica Leaves under Different Distillation Methods, Part 2: Molluscicidal Activity and Brine Shrimp Lethality" Separations 10, no. 4: 241. https://doi.org/10.3390/separations10040241
APA StyleArruda, F., Lima, A., Oliveira, L., Rodrigues, T., Janeiro, A., Rosa, J. S., & Lima, E. (2023). Essential Oil Variability of Azorean Cryptomeria japonica Leaves under Different Distillation Methods, Part 2: Molluscicidal Activity and Brine Shrimp Lethality. Separations, 10(4), 241. https://doi.org/10.3390/separations10040241