Capillary Zone Electrophoresis with Light-Emitting Diode-Induced Fluorescence Detection for the Analysis of Monoclonal Antibodies: Detector Optimization through Design of Experiments and Comparison to UV Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Reagent Solutions
2.3. Capillary Electrophoresis System
2.4. Capillary Electrophoresis Methods
2.5. Design of Experiments
2.6. Linearity and Signal-to-Noise Ratio
2.7. Precision
2.8. Evaluation
3. Results
3.1. Design of Experiments
Verification of the Predicted Optimal Factor Settings
3.2. Signal-to-Noise Ratio
3.3. Linearity
3.4. Precision
4. Discussion
4.1. Design of Experiments
4.1.1. Selection of Factors and Responses
4.1.2. Results from the Design of Experiments
4.2. Signal-to-Noise Ratio
4.3. Linearity
4.4. Precision
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gassmann, E.; Kuo, J.E.; Zare, R.N. Electrokinetic separation of chiral compounds. Science 1985, 230, 813–814. [Google Scholar] [CrossRef] [PubMed]
- Galievsky, V.A.; Stasheuski, A.S.; Krylov, S.N. “Getting the best sensitivity from on-capillary fluorescence detection in capillary electrophoresis”—A tutorial. Anal. Chim. Acta 2016, 935, 58–81. [Google Scholar] [CrossRef]
- Ban, E.; Song, E.J. Recent developments and applications of capillary electrophoresis with laser-induced fluorescence detection in biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 929, 180–186. [Google Scholar] [CrossRef]
- Couderc, F.; Ong-Meang, V.; Poinsot, V. Capillary electrophoresis hyphenated with UV-native-laser induced fluorescence detection (CE/UV-native-LIF). Electrophoresis 2017, 38, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Morani, M.; Taverna, M.; Mai, T.D. A fresh look into background electrolyte selection for capillary electrophoresis-laser induced fluorescence of peptides and proteins. Electrophoresis 2019, 40, 2618–2624. [Google Scholar] [CrossRef] [PubMed]
- García-Campaña, A.M.; Taverna, M.; Fabre, H. LIF detection of peptides and proteins in CE. Electrophoresis 2007, 28, 208–232. [Google Scholar] [CrossRef]
- Szekrényes, Á.; Park, S.S.; Santos, M.; Lew, C.; Jones, A.; Haxo, T.; Kimzey, M.; Pourkaveh, S.; Szabó, Z.; Sosic, Z.; et al. Multi-Site N-glycan mapping study 1: Capillary electrophoresis—Laser induced fluorescence. MAbs 2016, 8, 56–64. [Google Scholar] [CrossRef]
- Skeidsvoll, J.; Ueland, P.M. Analysis of double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection using the monomeric dye SYBR green I. Anal. Biochem. 1995, 231, 359–365. [Google Scholar] [CrossRef]
- Ban, E.; Kwon, H.; Song, E.J. A rapid and reliable CE-LIF method for the quantitative analysis of miRNA-497 in plasma and organs and its application to a pharmacokinetic and biodistribution study. RSC Adv. 2020, 10, 18648–18654. [Google Scholar] [CrossRef]
- Ta, H.Y.; Collin, F.; Perquis, L.; Poinsot, V.; Ong-Meang, V.; Couderc, F. Twenty years of amino acid determination using capillary electrophoresis: A review. Anal. Chim. Acta 2021, 1174, 338233. [Google Scholar] [CrossRef]
- Le Potier, I.; Boutonnet, A.; Ecochard, V.; Couderc, F. Chemical and Instrumental Approaches for Capillary Electrophoresis (CE)-Fluorescence Analysis of Proteins. Methods Mol. Biol. 2016, 1466, 1–10. [Google Scholar] [CrossRef]
- Toseland, C.P. Fluorescent labeling and modification of proteins. J. Chem. Biol. 2013, 6, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Malek, A.; Khaledi, M.G. Expression and analysis of green fluorescent proteins in human embryonic kidney cells by capillary electrophoresis. Anal. Biochem. 1999, 268, 262–269. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, C.; Meng, L.; Chen, J.; Li, M.; Zhu, Z.; Lin, J. A CE-LIF method to monitor autophagy by directly detecting LC3 proteins in HeLa cells. Analyst 2012, 137, 5571–5575. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer Science+Business Media LLC: Boston, MA, USA, 2006; ISBN 978-0-387-46312-4. [Google Scholar]
- Mukunda, D.C.; Joshi, V.K.; Mahato, K.K. Light emitting diodes (LEDs) in fluorescence-based analytical applications: A review. Appl. Spectrosc. Rev. 2022, 57, 1–38. [Google Scholar] [CrossRef]
- de Kort, B.J.; de Jong, G.J.; Somsen, G.W. Native fluorescence detection of biomolecular and pharmaceutical compounds in capillary electrophoresis: Detector designs, performance and applications: A review. Anal. Chim. Acta 2013, 766, 13–33. [Google Scholar] [CrossRef]
- Rodat-Boutonnet, A.; Naccache, P.; Morin, A.; Fabre, J.; Feurer, B.; Couderc, F. A comparative study of LED-induced fluorescence and laser-induced fluorescence in SDS-CGE: Application to the analysis of antibodies. Electrophoresis 2012, 33, 1709–1714. [Google Scholar] [CrossRef]
- Couderc, F.; Nertz, M.; Nouadje, G. Laser-Induced Fluorescence Detector and Method for the Implementation of Said Device. WO1999FR00800, 7 April 1999. [Google Scholar]
- Bayle, C.; Siri, N.; Poinsot, V.; Treilhou, M.; Caussé, E.; Couderc, F. Analysis of tryptophan and tyrosine in cerebrospinal fluid by capillary electrophoresis and “ball lens” UV-pulsed laser-induced fluorescence detection. J. Chromatogr. A 2003, 1013, 123–130. [Google Scholar] [CrossRef]
- Kumar, R.; Guttman, A.; Rathore, A.S. Applications of capillary electrophoresis for biopharmaceutical product characterization. Electrophoresis 2022, 43, 143–166. [Google Scholar] [CrossRef]
- Gilardoni, E.; Regazzoni, L. Liquid phase separation techniques for the characterization of monoclonal antibodies and bioconjugates. J. Chromatogr. Open 2022, 2, 100034. [Google Scholar] [CrossRef]
- Dadouch, M.; Ladner, Y.; Perrin, C. Analysis of Monoclonal Antibodies by Capillary Electrophoresis: Sample Preparation, Separation, and Detection. Separations 2021, 8, 4. [Google Scholar] [CrossRef]
- Salas-Solano, O.; Tomlinson, B.; Du, S.; Parker, M.; Strahan, A.; Ma, S. Optimization and validation of a quantitative capillary electrophoresis sodium dodecyl sulfate method for quality control and stability monitoring of monoclonal antibodies. Anal. Chem. 2006, 78, 6583–6594. [Google Scholar] [CrossRef] [PubMed]
- Rodat, A.; Gavard, P.; Couderc, F. Improving detection in capillary electrophoresis with laser induced fluorescence via a bubble cell capillary and laser power adjustment. Biomed. Chromatogr. 2009, 23, 42–47. [Google Scholar] [CrossRef]
- Kahle, J.; Zagst, H.; Wiesner, R.; Wätzig, H. Comparative charge-based separation study with various capillary electrophoresis (CE) modes and cation exchange chromatography (CEX) for the analysis of monoclonal antibodies. J. Pharm. Biomed. Anal. 2019, 174, 460–470. [Google Scholar] [CrossRef]
- Candreva, J.; Esterman, A.L.; Ge, D.; Patel, P.; Flagg, S.C.; Das, T.K.; Li, X. Dual-detection approach for a charge variant analysis of monoclonal antibody combination products using imaged capillary isoelectric focusing. Electrophoresis 2022, 43, 1701–1709. [Google Scholar] [CrossRef]
- Kahle, J.; Wätzig, H. Determination of protein charge variants with (imaged) capillary isoelectric focusing and capillary zone electrophoresis. Electrophoresis 2018, 39, 2492–2511. [Google Scholar] [CrossRef]
- Wiesner, R.; Zagst, H.; Lan, W.; Bigelow, S.; Holper, P.; Hübner, G.; Josefsson, L.; Lancaster, C.; Lo, L.; Lößner, C.; et al. An interlaboratory capillary zone electrophoresis-UV study of various monoclonal antibodies, instruments, and ε-aminocaproic acid lots. Electrophoresis 2023. accepted manuscript. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, I.M.; Pinto, C.F.F.; Moreira, C.d.S.; Saviano, A.M.; Lourenço, F.R. Design of Experiments (DoE) applied to Pharmaceutical and Analytical Quality by Design (QbD). Braz. J. Pharm. Sci. 2018, 54. [Google Scholar] [CrossRef]
- Silva Araújo, A.; Fernandes Andrade, D.; Babos, D.V.; Castro, J.P.; Garcia, J.A.; Sperança, M.A.; Gamela, R.R.; Cardoso Machado, R.; Câmara Costa, V.; Nascimento Guedes, W.; et al. Key information related to quality by design (QbD) applications in analytical methods development. Braz. J. Anal. Chem. 2020, 8, 14–28. [Google Scholar] [CrossRef]
- Emonts, P.; Avohou, H.T.; Hubert, P.; Ziemons, E.; Fillet, M.; Dispas, A. Optimization of a robust and reliable FITC labeling process for CE-LIF analysis of pharmaceutical compounds using design of experiments strategy. J. Pharm. Biomed. Anal. 2021, 205, 114304. [Google Scholar] [CrossRef] [PubMed]
- van Tricht, E.; Geurink, L.; Backus, H.; Germano, M.; Somsen, G.W.; Sänger-van de Griend, C.E. One single, fast and robust capillary electrophoresis method for the direct quantification of intact adenovirus particles in upstream and downstream processing samples. Talanta 2017, 166, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Hancu, G.; Orlandini, S.; Papp, L.A.; Modroiu, A.; Gotti, R.; Furlanetto, S. Application of Experimental Design Methodologies in the Enantioseparation of Pharmaceuticals by Capillary Electrophoresis: A Review. Molecules 2021, 26, 4681. [Google Scholar] [CrossRef]
- Krait, S.; Heuermann, M.; Scriba, G.K.E. Development of a capillary electrophoresis method for the determination of the chiral purity of dextromethorphan by a dual selector system using quality by design methodology. J. Sep. Sci. 2018, 41, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Michels, D.A.; Parker, M.; Salas-Solano, O. Quantitative impurity analysis of monoclonal antibody size heterogeneity by CE-LIF: Example of development and validation through a quality-by-design framework. Electrophoresis 2012, 33, 815–826. [Google Scholar] [CrossRef]
- Moritz, B.; Locatelli, V.; Niess, M.; Bathke, A.; Kiessig, S.; Entler, B.; Finkler, C.; Wegele, H.; Stracke, J. Optimization of capillary zone electrophoresis for charge heterogeneity testing of biopharmaceuticals using enhanced method development principles. Electrophoresis 2017, 38, 3136–3146. [Google Scholar] [CrossRef]
- EDQM Council of Europe. 2.2.47 Kapillarelektrophorese. In Europäisches Arzneibuch 10.5: Ph. Eur. 10.5—Grundwerk 2020 inkl. 5. Nachtrag (Online Version), 10th ed.; Deutscher Apotheker Verlag Dr. Roland Schmiedel GmbH & Co. KG: Stuttgart, Germany, 2020; pp. 119–126. [Google Scholar]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Validation of Analytical Procedures: Text and Methodology Q2(R1): ICH Q2(R1), Step 4. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use: 2005; (Q2(R1)). Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 17 January 2023).
- National Institute of Standards and Technology. Reference Material Information Sheet, Reference Material 8671 NISTmAb, Humanized IgG1κ Monoclonal Antibody Lot 14HB-D-002; 2022. Available online: https://tsapps.nist.gov/srmext/certificates/8671.pdf (accessed on 12 January 2023).
- Schiel, J.E.; Davis, D.L.; Borisov, O. (Eds.) Biopharmaceutical Characterization: The NISTmAb Case Study; American Chemical Society: Washington, DC, USA; Distributed in Print by Oxford University Press: Oxford, UK, 2015; ISBN 9780841230293. [Google Scholar]
- Waters Corporation. Intact mAb Mass Check Standard Care and Use Manual. 720004420EN. 2013. Available online: https://www.waters.com/webassets/cms/support/docs/720004420en.pdf (accessed on 12 January 2023).
- Knoechel, T.; Schmiedel, J.; Ferguson, K.M. Crystalline Egfr—Matuzumab Complex and Matuzumab Mimetics Obtained Thereof. WO2008EP07889, 19 September 2008. [Google Scholar]
- Seiden, M.V.; Burris, H.A.; Matulonis, U.; Hall, J.B.; Armstrong, D.K.; Speyer, J.; Weber, J.D.A.; Muggia, F. A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol. Oncol. 2007, 104, 727–731. [Google Scholar] [CrossRef]
- Rao, S.; Starling, N.; Cunningham, D.; Sumpter, K.; Gilligan, D.; Ruhstaller, T.; Valladares-Ayerbes, M.; Wilke, H.; Archer, C.; Kurek, R.; et al. Matuzumab plus epirubicin, cisplatin and capecitabine (ECX) compared with epirubicin, cisplatin and capecitabine alone as first-line treatment in patients with advanced oesophago-gastric cancer: A randomised, multicentre open-label phase II study. Ann. Oncol. 2010, 21, 2213–2219. [Google Scholar] [CrossRef]
- Taiga Uranaka. UPDATE 1-Merck, Takeda Cancel Development of Cancer Drug. Thomson Reuters. 2008. Available online: https://www.reuters.com/article/takeda-idUST35282120080218 (accessed on 12 January 2023).
- González-Ruiz, V.; Drouin, N.; Reginato, E.; Rudaz, S.; Schappler, J. zeecalc: 1.0b. Available online: https://ispso.unige.ch/labs/fanal/zeecalc:en (accessed on 31 August 2018).
- Baumann, K.; Wätzig, H. Appropriate calibration functions for capillary electrophoresis II. Heteroscedasticity and its consequences. J. Chromatogr. A 1995, 700, 9–20. [Google Scholar] [CrossRef]
- DIN Deutsches Institut für Normung e. V. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung—Allgemeine Angaben (Gruppe A)—Teil 51: Kalibrierung von Analysenverfahren—Lineare Kalibrierfunktion (A 51): (German Standard Methods for the Examination of Water, Waste Water and Sludge—General Information (Group A)—Part 51: Calibration of Analytical Methods—Linear Calibration (A 51)), 2017-05; Beuth Verlag GmbH: Berlin, Germany, 2017; 13.060.50 (DIN 38402-51). [Google Scholar]
- Köppel, H.; Wätzig, H. Trends in der statistischen QC Teil 2: Verteilungsabhägige Test. PZ Prisma 2009, 16, 251–256. [Google Scholar]
- Köppel, H.; Cianciulli, C.; Wätzig, H. Trendtests für die statistische Qualitätskontrolle Teil 3: Anwendung und Leistungsbewertung. PZ Prisma 2010, 17, 229–243. [Google Scholar]
- Platen, H.; Jähnichen, S. Prüfung der Gleichwertigkeit Zweier Analysenverfahren Mittels Two One-Sided t-Test (TOST) nach DIN 38402-71:2020-10. Available online: https://www.wasserchemische-gesellschaft.de/dev/validierungsdokumente?download=204:a71-gleichwertigkeitspruefung-tost-verfahren&lang=de (accessed on 24 January 2023).
- Limentani, G.B.; Ringo, M.C.; Ye, F.; Berquist, M.L.; McSorley, E.O. Beyond the t-test: Statistical equivalence testing. Anal. Chem. 2005, 77, 221A–226A. [Google Scholar] [CrossRef]
- DIN Deutsches Institut für Normung e. V. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung—Allgemeine Angaben (Gruppe A)—Teil 71: Gleichwertigkeit von Zwei Analysenverfahren Aufgrund des Vergleichs von Analysenergebnissen (A 71): (German Standard Methods for the Examination of Water, Waste Water and Sludge—General Information (Group A)—Part 71: Equivalence of Two Analysis Methods Based on the Comparison of Analysis Results (A 71)), 2020-10; Beuth Verlag GmbH: Berlin, Germany, 2020; 13.060.45 (DIN 38402-71). [Google Scholar]
- Valeur, B.; Berberan-Santos, M.N. Molecular Fluorescence: Principles and Applications, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2012; ISBN 9783527650002. [Google Scholar]
- Christophe, A.B. Valley to peak ratio as a measure for the separation of two chromatographic peaks. Chromatographia 1971, 4, 455–458. [Google Scholar] [CrossRef]
- Stutz, H. Protein attachment onto silica surfaces—A survey of molecular fundamentals, resulting effects and novel preventive strategies in CE. Electrophoresis 2009, 30, 2032–2061. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Isele, C.; Hou, W.; Ruesch, M. Rapid analysis of charge variants of monoclonal antibodies with capillary zone electrophoresis in dynamically coated fused-silica capillary. J. Sep. Sci. 2011, 34, 548–555. [Google Scholar] [CrossRef]
- Foret, F.; Szoko, E.; Karger, B.L. On-column transient and coupled column isotachophoretic preconcentration of protein samples in capillary zone electrophoresis. J. Chromatogr. A 1992, 608, 3–12. [Google Scholar] [CrossRef]
- Malá, Z.; Gebauer, P. Analytical isotachophoresis 1967–2022: From standard analytical technique to universal on-line concentration tool. TrAC Trends Anal. Chem. 2023, 158, 116837. [Google Scholar] [CrossRef]
- Křivánková, L.; Boček, P. Synergism of capillary isotachophoresis and capillary zone electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 1997, 689, 13–34. [Google Scholar] [CrossRef]
- Vinther, A.; Soeberg, H.; Nielsen, L.; Pedersen, J.; Biedermann, K. Thermal degradation of a thermolabile Serratia marcescens nuclease using capillary electrophoresis with stacking conditions. Anal. Chem. 1992, 64, 187–191. [Google Scholar] [CrossRef]
- Formolo, T.; Ly, M.; Levy, M.; Kilpatrick, L.; Lute, S.; Phinney, K.; Marzilli, L.; Brorson, K.; Boyne, M.; Davis, D.; et al. Determination of the NISTmAb Primary Structure. In Biopharmaceutical Characterization: The NISTmAb Case Study; Schiel, J.E., Davis, D.L., Borisov, O., Eds.; American Chemical Society: Washington, DC, USA; Distributed in Print by Oxford University Press: Oxford, UK, 2015; pp. 1–62. ISBN 9780841230293. [Google Scholar]
- DIN Deutsches Institut für Normung e. V. Lineare Kalibrierung unter Verwendung von Referenzmaterialien (ISO 11095:1996); Text Deutsch und Englisch: (Linear Calibration Using Reference Materials (ISO 11095:1996); Text German and English), 2008-04; Beuth Verlag GmbH: Berlin, Germany, 2008; 17.020 (DIN ISO 11095). [Google Scholar]
- Kaminski, L.; Schepers, U.; Wätzig, H. Analytical method transfer using equivalence tests with reasonable acceptance criteria and appropriate effort: Extension of the ISPE concept. J. Pharm. Biomed. Anal. 2010, 53, 1124–1129. [Google Scholar] [CrossRef]
Response | S/N Basic (n = 4) | S/N Main (n = 5) | P/V Acidic (n = 5) | P/V Basic (n = 5) |
---|---|---|---|---|
Mean | 712.0 | 2.410 × 104 | 1.419 | 1.132 |
SD | 10.24 | 177.8 | 0.005327 | 0.007638 |
95% CI | 625.8–753.1 | 2.388 × 104–2.433 × 104 | 1.412–1.425 | 1.123–1.123 |
RSD | 1.439% | 0.7378% | 0.3755% | 0.6745% |
Predicted value | 778.4 | 2.678 × 104 | 1.468 | 1.160 |
Absolute deviation experimental value | −66.37 | −2674 | −0.04938 | −0.02760 |
Relative deviation experimental value | −8.526% | −9.986% | −3.363% | −2.379% |
Matuzumab | NISTmAb | ||||
---|---|---|---|---|---|
Concentration (mg/mL) | UV Detection | LEDIF Detection | Concentration (mg/mL) | UV Detection | LEDIF Detection |
0.01 | 8.7 | 59 | 0.003 | - | 1.7 |
0.02 | 27 | 188 | 0.004 | - | 2.1 * |
0.03 | 42 | 249 | 0.005 | - | 2.0 |
0.04 | 42 | 412 | 0.01 | 2.7 | 28 |
0.05 | 55 | 465 | 0.02 | 14 | 85 |
0.10 | 180 | 1983 | 0.05 | 114 | 452 |
0.25 | 542 | 6745 | 0.10 | 316 | 997 |
0.50 | 1046 | 1.12 × 104 | 0.20 | 828 | 2125 |
1.00 | 1964 | 1.92 × 104 | 0.50 | 2220 | 4241 |
Parameter | Time Interval | Mean | 95% CI | SD | RSD | ||||
---|---|---|---|---|---|---|---|---|---|
UV | LEDIF | UV | LEDIF | UV | LEDIF | UV | LEDIF | ||
Migration time | Week 1, day 1 | 27.86 min | 27.67 min * | 27.78 min–27.93 min | 27.61 min–27.74 min * | 0.1025 min | 0.07062 min * | 0.3681% | 0.2552% * |
Week 1, day 2 | 27.67 min | 27.60 min | 27.57 min–27.77 min | 27.53 min–27.67 min | 0.1405 min | 0.09533 min | 0.5079% | 0.3454% | |
Week 2 | 28.44 min | 27.67 min * | 28.38 min–28.50 min | 27.55 min–27.79 min * | 0.08552 min | 0.1573 min * | 0.3007% | 0.5684% * | |
Week 1 and 2 | 27.99 min | 27.64 min * | 27.86 min–28.12 min | 27.60 min–27.69 min * | 0.3509 min | 0.1161 min | 1.254% | 0.4199% * | |
%area basic | Week 1, day 1 | 7.473% | 7.395% * | 7.215–7.732% | 7.118–7.671% * | 0.3618% | 0.2989% * | 4.841% | 4.042% * |
Week 1, day 2 | 7.278% | 6.521% | 7.152–7.404% | 6.465–6.577% | 0.1762% | 0.07832% | 2.421% | 1.201% | |
Week 2 | 7.296% | 6.215% * | 7.143–7.450% | 6.133–6.297% * | 0.2146% | 0.1063% * | 2.941% | 1.711% * | |
Week 1 and 2 | 7.349% | 6.650% * | 7.249–7.450% | 6.446–6.855% * | 0.2694% | 0.5072% * | 3.666% | 7.627% * | |
%area main 1 | Week 1, day 1 | 18.26% | 16.98% * | 18.20–18.32% | 16.82–17.14% * | 0.08628% | 0.1715% * | 0.4726% | 1.010% * |
Week 1, day 2 | 18.25% | 17.78% | 18.19–18.32% | 17.75–17.82% | 0.09175% | 0.04757% | 0.5026% | 0.2676% | |
Week 2 | 17.96% | 17.48% * | 17.86–18.05% | 17.36–17.60% * | 0.1334% | 0.1568% * | 0.7427% | 0.8972% * | |
Week 1 and 2 | 18.16% | 17.46% * | 18.09–18.22% | 17.32–17.60% * | 0.1762% | 0.3474% * | 0.9702% | 1.990% * | |
%area mid | Week 1, day 1 | 3.615% | 4.009% * | 3.591–3.639% | 3.982–4.036% * | 0.03346% | 0.02957% * | 0.9254% | 0.7376% * |
Week 1, day 2 | 3.559% | 3.945% | 3.542–3.575% | 3.903–3.987% | 0.02317% | 0.05898% | 0.6510% | 1.495% | |
Week 2 | 3.602% | 4.001% * | 3.576–3.628% | 3.975–4.026% * | 0.03644% | 0.03321% * | 1.012% | 0.8301% * | |
Week 1 and 2 | 3.592% | 3.982% * | 3.577–3.607% | 3.961–4.002% * | 0.03918% | 0.05183% * | 1.091% | 1.302% * | |
%area main 2 | Week 1, day 1 | 22.61% | 22.13% * | 22.52–22.71% | 21.95–22.30% * | 0.1363% | 0.1909% * | 0.6027% | 0.8626% * |
Week 1, day 2 | 22.77% | 21.84% | 22.66–22.88% | 21.74–21.95% | 0.1509% | 0.04445% | 0.6626% | 0.6435% | |
Week 2 | 22.45% | 21.70% * | 22.33–22.57% | 21.61–21.79% * | 0.1644% | 0.1172% * | 0.7323% | 0.5400% * | |
Week 1 and 2 | 22.61% | 21.87% * | 22.54–22.68% | 21.78–21.96% * | 0.1972% | 0.2217% * | 0.8722% | 1.013% * | |
%area acidic | Week 1, day 1 | 48.04% | 49.49% * | 47.89–48.18% | 49.23–49.75% * | 0.2054% | 0.2817% * | 0.4277% | 0.5693% * |
Week 1, day 2 | 48.14% | 49.91% | 47.96–48.31% | 49.85–49.96% | 0.2443% | 0.07524% | 0.5075% | 0.1508% | |
Week 2 | 48.67% | 50.60% * | 48.52–48.82% | 50.47–50.73% * | 0.2116% | 0.1693% * | 0.4347% | 0.3345% * | |
Week 1 and 2 | 48.28% | 50.04% * | 48.15–48.41% | 49.84–50.23% * | 0.3526% | 0.4869% * | 0.7303% | 0.9732% * | |
P/V acidic | Week 1, day 1 | 1.784 | 2.084 * | 1.754–1.814 | 2.046–2.121 * | 0.04204 | 0.04075 * | 2.356% | 1.956% * |
Week 1, day 2 | 1.746 | 2.115 | 1.717–1.775 | 2.072–2.158 | 0.04083 | 0.06051 | 2.338% | 2.861% | |
Week 2 | 1.907 | 2.155 * | 1.880–1.933 | 2.094–2.216 * | 0.03727 | 0.07875 * | 1.955% | 3.654% * | |
Week 1 and 2 | 1.812 | 2.120 * | 1.783–1.842 | 2.093–2.148 * | 0.07970 | 0.06722 * | 4.397% | 3.170% * |
Parameter | Time Interval | Mean | 95% CI | SD | RSD | ||||
---|---|---|---|---|---|---|---|---|---|
UV | LEDIF | UV | LEDIF | UV | LEDIF | UV | LEDIF | ||
Migration time | Week 1, day 1 | 18.57 min | 17.35 min | 18.49 min–18.65 min | 17.32 min–17.38 min | 0.1076 min | 0.03669 min | 0.5793% | 0.2115% |
Week 1, day 2 | 18.31 min | 17.35 min | 18.27 min–18.35 min | 17.34 min–17.37 min | 0.05050 min | 0.01996 min | 0.2758% | 0.1150% | |
Week 2 | 18.81 min | 17.52 min | 18.79 min–18.84 min | 17.50 min–17.54 min | 0.03821 min | 0.02855 min | 0.2031% | 0.1630% | |
Week 1 and 2 | 18.57 min | 17.41 min | 18.48 min–18.65 min | 17.37 min–17.44 min | 0.2208 min | 0.08464 min | 1.189% | 0.4863% | |
%area basic | Week 1, day 1 | 16.91% | 15.01% | 16.84–16.97% | 14.87–15.15% | 0.09029% | 0.1927% | 0.5340% | 1.284% |
Week 1, day 2 | 16.55% | 15.61% | 16.45–16.65% | 15.45–15.78% | 0.1350% | 0.2297% | 0.8159% | 1.471% | |
Week 2 | 14.81% | 14.97% | 14.74–14.87% | 14.70–15.24% | 0.09175% | 0.3762% | 0.6196% | 2.513% | |
Week 1 and 2 | 16.09% | 15.20% | 15.74–16.44% | 15.05–15.35% | 0.9385% | 0.4014% | 5.834% | 2.641% | |
%area main | Week 1, day 1 | 67.18% | 67.01% | 67.02–67.34% | 66.74–67.28% | 0.2236% | 0.3794% | 0.3328% | 0.5662% |
Week 1, day 2 | 67.74% | 66.83% | 67.62–67.86% | 66.57–67.08% | 0.1689% | 0.3602% | 0.2494% | 0.5390% | |
Week 2 | 69.26% | 67.44% | 69.10–69.42% | 67.20–67.67% | 0.2212% | 0.3305% | 0.3193% | 0.4901% | |
Week 1 and 2 | 68.06% | 67.09% | 67.71–68.40% | 66.93–67.25% | 0.9169% | 0.4319% | 1.347% | 0.6438% | |
%area acidic | Week 1, day 1 | 15.92% | 17.98% | 15.79–16.05% | 17.60–18.36% | 0.1822% | 0.5298% | 1.144% | 2.947% |
Week 1, day 2 | 15.71% | 17.56% | 15.62–15.81% | 17.37–17.75% | 0.1312% | 0.2611% | 0.8347% | 1.487% | |
Week 2 | 15.93% | 17.59% | 15.81–16.05% | 17.46–17.72% | 0.1682% | 0.1818% | 1.056% | 1.033% | |
Week 1 and 2 | 15.85% | 17.71% | 15.78–15.92% | 17.56–17.86% | 0.1869% | 0.3947% | 1.179% | 2.229% | |
P/V acidic | Week 1, day 1 | 1.353 | 1.405 | 1.311–1.396 | 1.400–1.411 | 0.05928 | 0.007960 | 4.380% | 0.5663% |
Week 1, day 2 | 1.356 | 1.418 | 1.352–1.359 | 1.413–1.423 | 0.005266 | 0.007310 | 0.3885% | 0.5155% | |
Week 2 | 1.385 | 1.424 | 1.379–1.390 | 1.421–1.427 | 0.007782 | 0.004245 | 0.5620% | 0.2982% | |
Week 1 and 2 | 1.365 | 1.416 | 1.351–1.378 | 1.412–1.420 | 0.03646 | 0.01011 | 2.672% | 0.7138% |
mAb | Parameter | Equivalence at 2% | Equivalence at 5% |
---|---|---|---|
Waters mAb | Migration time | Yes | - |
%area basic | - | No | |
%area main 1 | - | Yes | |
%area mid | - | No | |
%area main 2 | - | Yes | |
%area acidic | - | Yes | |
P/V | - | No | |
NISTmAb | Migration time | No | - |
%area basic | - | No | |
%area main | - | Yes | |
%area acidic | - | No | |
P/V | - | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagst, H.; Hartung, S.; Menges, D.-M.; Wittmann, A.; Wätzig, H. Capillary Zone Electrophoresis with Light-Emitting Diode-Induced Fluorescence Detection for the Analysis of Monoclonal Antibodies: Detector Optimization through Design of Experiments and Comparison to UV Detection. Separations 2023, 10, 320. https://doi.org/10.3390/separations10050320
Zagst H, Hartung S, Menges D-M, Wittmann A, Wätzig H. Capillary Zone Electrophoresis with Light-Emitting Diode-Induced Fluorescence Detection for the Analysis of Monoclonal Antibodies: Detector Optimization through Design of Experiments and Comparison to UV Detection. Separations. 2023; 10(5):320. https://doi.org/10.3390/separations10050320
Chicago/Turabian StyleZagst, Holger, Sophie Hartung, Dina-Mareike Menges, Antonia Wittmann, and Hermann Wätzig. 2023. "Capillary Zone Electrophoresis with Light-Emitting Diode-Induced Fluorescence Detection for the Analysis of Monoclonal Antibodies: Detector Optimization through Design of Experiments and Comparison to UV Detection" Separations 10, no. 5: 320. https://doi.org/10.3390/separations10050320
APA StyleZagst, H., Hartung, S., Menges, D. -M., Wittmann, A., & Wätzig, H. (2023). Capillary Zone Electrophoresis with Light-Emitting Diode-Induced Fluorescence Detection for the Analysis of Monoclonal Antibodies: Detector Optimization through Design of Experiments and Comparison to UV Detection. Separations, 10(5), 320. https://doi.org/10.3390/separations10050320