The Phosphorus Adsorption and Recovery of Mg/Fe-LDHs Mulberry Rod Biochar Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.3. Adsorption Experiment
2.3.1. Effect of Solution pH on Adsorption
2.3.2. Isothermal Adsorption Experiment
2.3.3. Adsorption Kinetics Experiment
2.3.4. Adsorption Thermodynamic Experiments
2.4. Phosphorus Recovery Experiment
3. Results and Discussion
3.1. Characterization of MFBCs
3.1.1. Specific Surface Area Analysis
3.1.2. Zeta Analysis
3.1.3. SEM Analysis
3.1.4. FT-IR Analysis
3.1.5. XRD Analysis
3.1.6. XPS Analysis
3.2. Effect of Solution pH on Adsorption
3.3. Isothermal Adsorption Lines
3.4. Adsorption Kinetic Modeling
3.5. Adsorption Thermodynamic Parameters
3.6. Phosphorus Recovery Studies
3.6.1. Effect of Calcium–Phosphorus Ratio on Phosphorus Recovery
3.6.2. Characterization of Recovered Phosphorus Products
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De-Bashan, L.E.; Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer. Water Res. 2004, 38, 4222–4246. [Google Scholar] [PubMed]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar]
- Melia, P.M.; Cundy, A.B.; Sohi, S.P.; Hooda, P.S.; Busquets, R. Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere 2017, 186, 381–395. [Google Scholar]
- Xing, C.; Wen, J.; Li, W.; Shi, J.; Wang, S.; Xu, Z. Integrating the Fe2+/H2O2− strengite method in airlift reactor for phosphorus removal and recovery from organic phosphorus wastewater. Chem. Eng. J. 2023, 475, 146093. [Google Scholar]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar]
- Chen, B.; Chen, Z.; Lv, S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol. 2011, 102, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, B.; Wu, T.; Sun, D.; Li, X.; Wang, B.; Lu, F. Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Res. 2009, 43, 3067–3075. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhang, N.; Chen, N.; Lei, Z.; Shimizu, K.; Zhang, Z. Efficient phosphate removal from wastewater by MgAl-LDHs modified hydrochar derived from tobacco stalk. Bioresour. Technol. Rep. 2019, 8, 100348. [Google Scholar]
- Peng, Y.; Sun, Y.; Hanif, A.; Shang, J.; Shen, Z.; Hou, D.; Zhou, Y.; Chen, Q.; Ok, Y.S.; Tsang, D.C. Design and fabrication of exfoliated Mg/Al layered double hydroxides on biochar support. J. Clean. Prod. 2021, 289, 125142. [Google Scholar]
- Iftekhar, S.; Küçük, M.E.; Srivastava, V.; Repo, E.; Sillanpää, M. Application of zinc-aluminium layered double hydroxides for adsorptive removal of phosphate and sulfate: Equilibrium, kinetic and thermodynamic. Chemosphere 2018, 209, 470–479. [Google Scholar] [PubMed]
- Lin, H.; Wang, Y.; Dong, Y. A review of methods, influencing factors and mechanisms for phosphorus recovery from sewage and sludge from municipal wastewater treatment plants. J. Environ. Chem. Eng. 2023, 12, 111657. [Google Scholar]
- Yu, X.; Nakamura, Y.; Otsuka, M.; Omori, D.; Haruta, S. Development of a novel phosphorus recovery system using incinerated sewage sludge ash (ISSA) and phosphorus-selective adsorbent. Waste Manag. 2020, 120, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Long, X.; Zeng, G.; Ouyang, Y.; Lei, B.; Zeng, R.; Wang, J.; Zhou, Z. Efficiency Recycling and Utilization of Phosphate from Wastewater Using LDHs-Modified Biochar. Int. J. Environ. Res. Public Health 2023, 20, 3051. [Google Scholar] [PubMed]
- Guo, H.; Liu, Y.; Lv, Y.; Liu, Y.; Lin, Y.; Liu, M. Nitrogen doped sinocalamus oldhami lignin-based activated biochar with high specific surface area: Preparation and its adsorption for malachite green contaminant. Process Saf. Environ. Prot. 2024, 183, 992–1001. [Google Scholar] [CrossRef]
- Fan, Y.A.; Sz, A.; Ys, B.; Tsang, D.C.; Cheng, K.; Ok, Y.S. Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery—ScienceDirect. J. Hazard. Mater. 2019, 365, 665–673. [Google Scholar]
- Wu, L.; Xu, D.; Li, B.; Wu, D.; Yang, H. Enhanced removal efficiency of nitrogen and phosphorus from swine wastewater using MgO modified pig manure biochar. J. Environ. Chem. Eng. 2024, 12, 111793. [Google Scholar]
- Liao, T.; Li, T.; Su, X.; Song, H.; Zhu, Y.; Zhang, Y. La(OH)3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal. Bioresour. Technol. 2018, 263, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Daud, M.; Mckay, G.; Shehzad, F.; Al-Harthi, M.A. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci. 2017, 143, 279–292. [Google Scholar]
- Yang, Y.; Tan, X.; Almatrafi, E.; Ye, S.; Song, B.; Chen, Q.; Tan, X.; Yang, H.; Fu, Q.; Deng, Y.; et al. Alfalfa biochar supported Mg-Fe layered double hydroxide as filter media to remove trace metal (loid) s from stormwater. Sci. Total Environ. 2022, 844, 156835. [Google Scholar] [CrossRef] [PubMed]
- Alagha, O.; Manzar, M.; Zubair, M.; Anil, I.; Mu’azu, N.D.; Qureshi, A. Magnetic Mg-Fe/LDH Intercalated Activated Carbon Composites for Nitrate and Phosphate Removal from Wastewater: Insight into Behavior and Mechanisms. Nanomaterials 2020, 10, 1361. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Xu, L.; Wu, D.; Li, Q.; Ai, Y.; Liu, W.; Li, D.; Zhang, B.; Guo, N.; et al. EDTA functionalized Mg/Al hydroxides modified biochar for Pb (II) and Cd (II) removal: Adsorption performance and mechanism. Sep. Purif. Technol. 2023, 333, 126199. [Google Scholar] [CrossRef]
- Huang, W.; Li, D.; Liu, Z.Q.; Tao, Q.; Zhu, Y.; Yang, J.; Zhang, Y.M. Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents. Chem. Eng. J. 2014, 236, 191–201. [Google Scholar]
- Triantafyllidis, K.S.; Peleka, E.N.; Komvokis, V.G.; Mavros, P.P. Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents. J. Colloid Interface Sci. 2010, 342, 427–436. [Google Scholar] [CrossRef]
- Wu, X.; Zhan, R.; Liu, L.; Lan, J.; Zhao, N.; Wang, Z. Phosphorus Adsorption on Blast Furnace Slag with Different Magnetism and Its Potential for Phosphorus Recovery. Water 2022, 14, 2452. [Google Scholar] [CrossRef]
- Benyoucef, S.; Amrani, M. Adsorption of phosphate ions onto low cost Aleppo pine adsorbent. Desalination 2011, 275, 231–236. [Google Scholar]
- Jia, Z.; Hao, S.; Lu, X. Exfoliated Mg-Al-Fe layered double hydroxides/polyether sulfone mixed matrix membranes for adsorption of phosphate and fluoride from aqueous solutions. J. Environ. Sci. 2017, 70, 63–73. [Google Scholar] [CrossRef]
- Yang, K.; Yan, L.G.; Yang, Y.M.; Yu, S.J.; Shan, R.R.; Yu, H.Q.; Zhu, B.C.; Du, B. Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: Kinetics, isotherms and mechanisms. Sep. Purif. Technol. 2014, 124, 36–42. [Google Scholar]
- Wang, L.; Wang, J.; He, C.; Lyu, W.; Zhang, W.; Yan, W.; Yang, L. Development of rare earth element doped magnetic biochars with enhanced phosphate adsorption performance. Colloids Surf. A Physicochem. Eng. Asp. 2019, 561, 236–243. [Google Scholar]
- Xiao, J.; Hu, R.; Chen, G.; Xing, B. Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles: Physicochemical properties, heavy metals sorption behavior and mechanism. J. Hazard. Mater. 2020, 399, 123067. [Google Scholar] [PubMed]
- Kılıç, M.; Yazıcı, H.; Solak, M. A comprehensive study on removal and recovery of copper (II) from aqueous solutions by NaOH-pretreated Marrubium globosum ssp. globosum leaves powder: Potential for utilizing the copper (II) condensed desorption solutions in agricultural applications. Bioresour. Technol. 2009, 100, 2130–2137. [Google Scholar] [CrossRef]
- Kim, T.H.; Lundehj, L.; Nielsen, U.G. An investigation of the phosphate removal mechanism by MgFe layered double hydroxides. Appl. Clay Sci. 2020, 189, 105521. [Google Scholar]
- Blanco, I.; Molle, P.; de Miera, L.E.; Ansola, G. Basic oxygen furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands. Water Res. 2016, 89, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.; Guo, J.; Ma, J.; Loo, S.C.J. Synthesis of high surface area mesostructured calcium phosphate particles. Acta Biomater. 2010, 6, 3772–3781. [Google Scholar] [CrossRef]
- Wang, F.; Li, M.S.; Lu, Y.P.; Qi, Y.X.; Liu, Y.X. Synthesis and microstructure of hydroxyapatite nanofibers synthesized at 37 °C. Mater. Chem. Phys. 2006, 95, 145–149. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Liu, H.; He, Z.; Show, P.L.; Vasseghian, Y.; Wang, C. Biochar/layered double hydroxides composites as catalysts for treatment of organic wastewater by advanced oxidation processes: A review. Environ. Res. 2023, 234, 116534. [Google Scholar] [PubMed]
- Manoukian, L.; Metson, G.S.; Hernández, E.M.; Vaneeckhaute, C.; Frigon, D.; Omelon, S. Forging a cohesive path: Integrating life cycle assessments of primary-origin phosphorus fertilizer production and secondary-origin recovery from municipal wastewater. Resour. Conserv. Recycl. 2023, 199, 107260. [Google Scholar]
Material | Specific Surface Area /m2·g−1 | Average Pore Diameter /nm | Total Pore Volume /cm3·g−1 |
---|---|---|---|
BC | 51.91 | 2.2449 | 0.029 |
MFBCs | 70.93 | 22.1980 | 0.394 |
T/K | qexp/mg·g−1 | Langmuir Equation | Freundlich Equation | ||||
---|---|---|---|---|---|---|---|
qcal/mg·g−1 | b | R2 | K | 1/n | R2 | ||
298 | 29.311 | 29.682 | 0.0324 | 0.9994 | 12.354 | 0.2906 | 0.8875 |
308 | 28.097 | 29.121 | 0.0605 | 0.9998 | 9.864 | 0.3392 | 0.8289 |
318 | 27.207 | 28.417 | 0.0660 | 0.9998 | 9.449 | 0.3413 | 0.8209 |
Initial Phosphorus Concentration /mg·g−1 | qexp/mg·g−1 | Pseudo-First-Order-Kinetics | Pseudo-Second-Order Kinetics | ||||
---|---|---|---|---|---|---|---|
qcal/mg·g−1 | K1 | R2 | qcal/mg·g−1 | K2 | R2 | ||
50 | 22.906 | 1.300 | 0.1213 | 0.6855 | 22.96 | 1.009 | 1 |
100 | 30.254 | 4.21 | 0.1676 | 0.8863 | 30.43 | 0.151 | 0.999 |
T/K | KL/L·mg−1 | ΔG0/KJ·mol−1 | ΔS0/KJ·(mol·K)−1 | ΔH0/KJ·mol−1 |
---|---|---|---|---|
298 | 1.039 | −0.094 | −0.088 | −26.104 |
308 | 0.567 | 1.453 | ||
318 | 0.533 | 1.665 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, M.; Wu, Z.; Cao, H.; Dong, K.; Bai, S.; Wang, D. The Phosphorus Adsorption and Recovery of Mg/Fe-LDHs Mulberry Rod Biochar Composite. Separations 2024, 11, 86. https://doi.org/10.3390/separations11030086
Liang M, Wu Z, Cao H, Dong K, Bai S, Wang D. The Phosphorus Adsorption and Recovery of Mg/Fe-LDHs Mulberry Rod Biochar Composite. Separations. 2024; 11(3):86. https://doi.org/10.3390/separations11030086
Chicago/Turabian StyleLiang, Meina, Zimeng Wu, Haiyan Cao, Kun Dong, Shaoyuan Bai, and Dunqiu Wang. 2024. "The Phosphorus Adsorption and Recovery of Mg/Fe-LDHs Mulberry Rod Biochar Composite" Separations 11, no. 3: 86. https://doi.org/10.3390/separations11030086
APA StyleLiang, M., Wu, Z., Cao, H., Dong, K., Bai, S., & Wang, D. (2024). The Phosphorus Adsorption and Recovery of Mg/Fe-LDHs Mulberry Rod Biochar Composite. Separations, 11(3), 86. https://doi.org/10.3390/separations11030086