Carwash Oily Wastewater Separated by Ultrafiltration
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Carwash Wastewater
3.2. Membrane Performance
3.3. Ultrafiltration Oil Emulsion with Surfactants
3.4. Carwash Wastewater
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gönder, Z.B.; Balcıoğlu, G.; Vergili, I.; Yasemin Kaya, Y. Electrochemical treatment of carwash wastewater using Fe and Al electrode: Techno-economic analysis and sludge characterization. J. Environ. Manag. 2017, 200, 380–390. [Google Scholar] [CrossRef]
- Jönsson, C.; Jönsson, A.-S. The influence of degreasing agents used at car washes on the performance of ultrafiltration membranes. Desalination 1995, 100, 115–123. [Google Scholar] [CrossRef]
- Fayed, M.; Shewitah, M.A.; Dupont, R.R.; Fayed, M.; Badr, M.M. Treatability study of car wash wastewater using upgraded physical technique with sustainable flocculant. Sustainability 2023, 15, 8581. [Google Scholar] [CrossRef]
- Kuan, W.-H.; Hu, C.-Y.; Ke, L.-W.; Wu, J.-M. A review of on-site carwash wastewater treatment. Sustainability 2022, 14, 5764. [Google Scholar] [CrossRef]
- Wang, B.; Feng, S.; Wang, C.; Liu, X.; Chen, L.; Yan, D. Nanostructure-based oil–water separation: Mechanism and status. Separations 2023, 10, 569. [Google Scholar] [CrossRef]
- Tang, L.; Tan, X.-j.; Cui, F.-y.; Zhou, Q.; Yin, J. Reuse of carwash wastewater with hollow fiber membrane aided by enhanced coagulation and activated carbon treatments. Water Sci. Technol. 2007, 56, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Padaki, M.; Surya Murali, R.; Abdullah, M.S.; Misdan, N.; Moslehyani, A.; Kassim, M.A.; Hilal, N.; Ismail, A.F. Membrane technology enhancement in oil–water separation. A review. Desalination 2015, 357, 197–207. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J. Membr. Sci. 2008, 325, 427–437. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Cross-flow ultrafiltration of stable oil-in-water emulsion using polysulfone membranes. Chem. Eng. J. 2010, 165, 447–456. [Google Scholar] [CrossRef]
- Ahmad, T.; Guria, C.; Mandal, A. A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance. J. Water Process Eng. 2020, 36, 101289. [Google Scholar] [CrossRef]
- Behroozi, A.H.; Ataabadi, M.R. Improvement in microfiltration process of oily wastewater: A comprehensive review over two decades. J. Environ. Chem. Eng. 2021, 9, 104981. [Google Scholar] [CrossRef]
- Mueller, J. Crossflow microfiltration of oily water. J. Membr. Sci. 1997, 129, 221–235. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Tummons, E.; Han, Q.; Tanudjaja, H.J.; Hejase, C.A.; Chew, J.W.; Tarabara, V.V. Membrane fouling by emulsified oil: A review. Sep. Purif. Technol. 2020, 248, 116919. [Google Scholar] [CrossRef]
- Huang, S.; Ras, R.H.A.; Tian, X. Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling. Curr. Opin. Colloid Interface Sci. 2018, 36, 90–109. [Google Scholar] [CrossRef]
- Brinck, J.; Jönsson, A.-S.; Jönsson, B.; Lindau, J. Influence of pH on the adsorptive fouling of ultrafiltration membranes by fatty acid. J. Membr. Sci. 2000, 164, 187–194. [Google Scholar] [CrossRef]
- El-Ashtoukhy, E.-S.Z.; Amin, N.K.; Fouad, Y.O. Treatment of real wastewater produced from Mobil car wash station using electrocoagulation technique. Environ. Monit. Assess. 2015, 187, 628. [Google Scholar] [CrossRef]
- Ahmad, J.; Umar, M.; Karim, S.S.; Amaduddin, M.; Akhtar, K.; Shah, F.; Hussain, A. Design of a car wash waste water treatment process for local car wash stations. J. Pak. Inst. Chem. Eng. 2017, 45, 83–95. [Google Scholar]
- Tanudjaja, H.J.; Chew, J.W. Assessment of oil fouling by oil-membrane interaction energy analysis. J. Membr. Sci. 2018, 560, 21–29. [Google Scholar] [CrossRef]
- Antón, E.; Álvarez, R.J.; Palacio, L.; Prádanos, P.; Hernández, A.; Pihlajamäki, A.; Luque, S. Ageing of polyethersulfone ultrafiltration membranes under long-term exposures to alkaline and acidic cleaning solutions. Chem. Eng. Sci. 2015, 134, 178–195. [Google Scholar] [CrossRef]
- Hu, C.-Y.; Kuan, W.-H.; Ke, L.-W.; Wu, J.-M. A study of car wash wastewater treatment by cyclo-flow filtration. Water 2022, 14, 1476. [Google Scholar] [CrossRef]
- Zaneti, R.N.; Etchepare, R.; Rubio, J. Car wash wastewater treatment and water reuse—A case study. Water Sci. Technol. 2013, 67, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Aryanti, N.; Widiasa, I.N.; Susanto, H. Ultrafiltration of oil-in-water emulsion stabilized with surfactants. IOP Conf. Ser. Mater. Sci. Eng. 2019, 620, 012014. [Google Scholar] [CrossRef]
- Moazzem, S.; Wills, J.; Fan, L.; Roddick, F.; Jegatheesan, V. Performance of ceramic ultrafiltration and reverse osmosis membranes in treating car wash wastewater for reuse. Environ. Sci. Pollut. Res. 2018, 25, 8654–8668. [Google Scholar] [CrossRef]
- Traczek, C. Reclaim your losses. Natl. Pet. News 2000, 92, 36–38. [Google Scholar]
- Weis, A.; Bird, M.R.; Nyström, M. The chemical cleaning of polymeric UF membranes fouled with spent sulphite liquor over multiple operational cycles. J. Membr. Sci. 2003, 216, 67–79. [Google Scholar] [CrossRef]
- Weis, A.; Bird, M.R. The influence of multiple fouling and cleaning cycles upon the membrane processing of lignosulphonates. Food Bioprod. Process. 2001, 79, 184–187. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. Long-term performance of ultrafiltration membranes: Corrosion fouling aspect. Materials 2023, 16, 1673. [Google Scholar] [CrossRef]
- Gryta, M.; Woźniak, P. Polyethersulfone membrane fouling mitigation during ultrafiltration of wastewaters from car washes. Desalination 2024, 574, 117254. [Google Scholar] [CrossRef]
- Omidvar, A.; Masoumi, S.; Monsefi, M.; Jafarzadeh, Y.; ·Nasiri, M.; Hazrati, H. PVC/PMMA blend ultrafiltration membranes for oil-in-water emulsion separation. Polym. Bull. 2023, 80, 9275–9295. [Google Scholar] [CrossRef]
- Fazullin, D.D.; Mavrin, G.V. Effect of the pH of emulsion on ultrafiltration of oil products and nonionic surfactants. Pet. Chem. 2017, 57, 969–973. [Google Scholar] [CrossRef]
- Shi, L.; Lei, Y.; Huang, J.; Shi, Y.; Yi, K.; Zhou, H. Ultrafiltration of oil-in-water emulsions using ceramic membrane: Roles played by stabilized surfactants. Colloids Surf. A 2019, 583, 123948. [Google Scholar] [CrossRef]
- Zhang, X.; Li, F.; Zhao, X. Treatment of surfactants with concentrations below critical micelle concentration by ultrafiltration: A mini-review. Water Cycle 2022, 3, 50–55. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. The application of polyethersulfone ultrafiltration membranes for separation of car wash wastewaters: Experiments and modelling. Membranes 2023, 13, 321. [Google Scholar] [CrossRef] [PubMed]
- Tummons, E.N.; Chew, J.W.; Fane, A.G.; Tarabara, V.V. Ultrafiltration of saline oil-inwater emulsions stabilized by an anionic surfactant: Effect of surfactant concentration and divalent counterions. J. Membr. Sci. 2017, 537, 384–395. [Google Scholar] [CrossRef]
- Camilleri-Rumbau, M.S.; Popovic, O.; Briceno, K.; Errico, M.; Fjerbæk Søtoft, L.; Christensen, K.V.; Norddahl, B. Ultrafiltration of separated digestate by tubular membranes: Influence of feed pretreatment on hydraulic performance and heavy metals removal. J. Environ. Manag. 2019, 250, 109404. [Google Scholar] [CrossRef]
Parameter | Manual 1 | Manual 2 |
---|---|---|
COD [mg/L] | 240 | 181 |
BOD [mg/L] | 30 | 16 |
Turbidity [NTU] | 28.2 | 19.1 |
pH | 7.9 | 7.6 |
N total [mg/L] | 3.92 | 3.52 |
P total [mg/L] | 3.95 | 4.61 |
Anionic surfactants [mg/L] | 3.12 | 1.96 |
Oil [mg/L] | 9.3 | 7.6 |
Element | Manual 1 | Manual 2 | Automatic |
---|---|---|---|
Na | 455.02 | 431.52 | 147.36 |
K | 11.86 | 10.95 | 17.63 |
Ca | 67.85 | 90.24 | 77.58 |
Mg | 10.68 | 19.66 | 19.89 |
Fe | 9.83 | 9.46 | 1.49 |
P | 0.62 | 0.22 | 1.22 |
Ba | 7.32 | 5.26 | 0.46 |
Cs | 11.56 | 8.36 | 0.74 |
Mn | 0.42 | 0.85 | 0.23 |
Sr | 0.37 | 1.13 | 0.55 |
Pt | 0.21 | 0.34 | 0.33 |
Al | 0.19 | 0.35 | 0.39 |
Elements | UE10 | UE50 | FP100 |
---|---|---|---|
Na | 2.5 | 3.3 | 1.6 |
K | 6.3 | 7.1 | 6.4 |
Ca | 3.3 | 3.3 | 0.8 |
Mg | 1.5 | 1.5 | 0.1 |
Fe | 59.2 | 61.2 | 27.1 |
P | 50.0 | 54.7 | 23.3 |
Ba | 23.5 | 23.5 | 8.2 |
Cs | 23.8 | 23.8 | 9.1 |
Mn | 30.4 | 30.4 | 12.1 |
Sr | 6.8 | 6.8 | 6.3 |
Pt | 0.5 | 0.5 | 0.1 |
Al | 56.1 | 55.1 | 40.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, P.; Gryta, M. Carwash Oily Wastewater Separated by Ultrafiltration. Separations 2024, 11, 164. https://doi.org/10.3390/separations11060164
Woźniak P, Gryta M. Carwash Oily Wastewater Separated by Ultrafiltration. Separations. 2024; 11(6):164. https://doi.org/10.3390/separations11060164
Chicago/Turabian StyleWoźniak, Piotr, and Marek Gryta. 2024. "Carwash Oily Wastewater Separated by Ultrafiltration" Separations 11, no. 6: 164. https://doi.org/10.3390/separations11060164
APA StyleWoźniak, P., & Gryta, M. (2024). Carwash Oily Wastewater Separated by Ultrafiltration. Separations, 11(6), 164. https://doi.org/10.3390/separations11060164