Development of Analytical Procedure for the Determination of 17β-Testosterone, 11-Ketotestosterone and 17β-Estradiol in the Sea Trout (Salmo trutta L.) Gonads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Working Solutions
2.3. Fish and Sampling
2.4. Sample Preparation
2.5. LC-MS/MS Conditions
2.6. Method Validation
2.6.1. Selectivity
2.6.2. Linearity
2.6.3. Precision
2.6.4. Recovery
2.6.5. Measurement Uncertainty
2.6.6. Carry-Over
3. Results and Discussion
3.1. LC-MS/MS Method Development
3.2. Sample Preparation
3.3. Validation
3.3.1. Selectivity
3.3.2. Linearity
3.3.3. Precision, Relative Recovery, Matrix Effect
3.3.4. LOD and LOQ
3.3.5. Measurement Uncertainty
3.4. Application to Real Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scholz, S.; Kluver, N. Effects of endocrine disruptors on sexual, gonadal development in fish. Sex Dev. 2009, 3, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Nearns, A.J.; Bissell, M.; Morrison, A.M.; Rempel-Hester, M.A.; Courney, A.; Rutherford, N. Effects of pollution on marine organisms. Water Environ. Res. 2019, 91, 1229–1252. [Google Scholar]
- Milla, S.; Depiereux, S.; Kestemont, P. The effects of estrogenic and androgenic endocrine disrupters on the immune system in fish: A revive. Ecotoxicology 2011, 20, 305–319. [Google Scholar] [CrossRef]
- Cabas, I.; Chaves-Pozo, E.; Mulero, V.; Garcia-Ayala, A. Role of estrogen in fish immunity with special emphasis on GPER1. Dev. Comp. Immunol. 2018, 89, 102–110. [Google Scholar] [CrossRef]
- Jobling, S.; Tyler, C.R. Endocrine disruption, parasites and pollutants in wild freshwater fish. Parasitology 2003, 126, S103–S108. [Google Scholar] [CrossRef]
- Pottinger, T.G. Seasonal variation in specific plasma- and target-tissue binging of androgens, relative to plasma steroid levels in the brown trout, Salmo trutta L. Gen. Comp. Endocrinol. 1988, 70, 334–344. [Google Scholar] [CrossRef]
- Debowski, P. The largest Baltic population of sea trout (Salmo trutta L.): Its decline, restoration attempts, and current status. Fish. Aquat. Life 2018, 26, 81–100. [Google Scholar] [CrossRef]
- Conclin, S.E.; Knezevic, C.E. Advancements in the gold standard: Measuring steroid sex hormones by mass spectrometry. Clin. Biochem. 2020, 82, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, B.; Matraszek-Żuchowska, I.; Żmudzki, J. Determination of 17β-Oestradiol and testosterone in bovine serum with gas chromatography-mass spectrometry. Bull. Vet. Inst. Pulawy 2011, 55, 755–759. [Google Scholar]
- Matraszek-Żuchowska, I.; Woźniak, B.; Posyniak, A. Determination of hormones residues in milk by gas chromatography-mass spectrometry. Food Anal. Methods 2017, 10, 727–739. [Google Scholar] [CrossRef] [Green Version]
- Matraszek-Żuchowska, I.; Woźniak, B.; Sielska, K.; Posyniak, A. Determination of selected testosterone esters in blood serum of slaughter animals by liquid chromatography with tandem mass spectrometry. Steroids 2020, 163, 108723. [Google Scholar] [CrossRef] [PubMed]
- Boggs, A.S.P.; Bowden, J.A.; Galligan, T.M.; Guillette, L.J., Jr.; Kucklick, J.R. Development of a mult-class steroid hormone screen method using liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 4179–4190. [Google Scholar] [CrossRef] [PubMed]
- Gravitte, A.; Archibald, T.; Cobble, A.; Kennard, B.; Brown, S. Liquid chromatography-mass spectrometry applications for quantification of endogenous sex hormones. Biomed. Chromatogr. 2021, 35, e5036. [Google Scholar] [CrossRef] [PubMed]
- Nouri, M.-Z.; Kroll, K.J.; Webb, M.; Denslow, N.D. Quantification of steroid hormones in low volume plasma and tissue homogenates of fish using LC-MS/MS. Gen. Comp. Endocrinol. 2020, 296, 113543. [Google Scholar] [CrossRef]
- Zhang, F.; Bartels, M.J.; Geter, R.D.; Carr, M.S.; McClymount, L.E.; Mario, T.A.; Klecka, G.M. Simultaneous quantitation testosterone, estradiol, ethinyl estradiol, and 11-ketotestorenon in fatheadminnow fish plasma by liquid chromatography/positive atmospheric pressure photoionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 3637–3646. [Google Scholar] [CrossRef]
- Dang, V.D. Simultaneous measured of sex steroid hormones in largemouth bass (Micropterus salmoides) plasma by application of liquid chromatography-tandem mass spectrometry. J. Chromatogr. Sci. 2020, 59, 7–14. [Google Scholar] [CrossRef]
- Errico, S.; Chioccarelli, T.; Moggio, M.; Diano, N.; Cobellis, G. A new LC-MS/MS method of simultaneous and quantitative detection of bisphenol-A and steroids in target tissues: A power tool of characterize the interference of bisphenol-A exposure on steroid levels. Molecules 2020, 25, 48. [Google Scholar] [CrossRef] [Green Version]
- Hoga, C.A.; Almeida, F.L.; Reyes, F.G.R. A review on the use hormones in fish farming: Analytical methods to determine their residues. J. Food 2018, 16, 679–691. [Google Scholar] [CrossRef] [Green Version]
- Yuan, T.-F.; Le, J.; Cui, Y.; Peng, R.; Wang, S.-T.; Li, Y.J. An LC-MS/MS analysis for seven sex hormones in serum. Pharm. Biomed. Anal. 2019, 162, 34–40. [Google Scholar] [CrossRef]
- Blasco, M.; Carrquiriborde, P.; Marino, D.; Ronco, A.E.; Somoza, G.M. A quantitative HPLC-MS for the simultaneous determination of testosterone, 11-ketotestosterone and 11-β hydroxyandrostenedione in fish serum. J. Chromatogr. B 2009, 877, 1509–1515. [Google Scholar] [CrossRef]
- Hoga, C.A.; Reche, V.G.; Almeida, F.L.; Reis, V.R.; Cordeido, R.P.; Anadon, A.; Reyes, F.G.R. Development and validation of an analytical method for the determination of 17β-estradiol residues in muscle of tambaqui (Colossoma macropomum Cuvier, 1818) by LC-MS/MS and its application in samples from a fish sexual reversion study. J. Chromatogr. B 2019, 1128, 121774. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.S.; Napoli, J.L. Quantification of dehydroepiandrosterone, 17β-estradiol, testosterone, and their sulfates in mouse tissues by LC-MS/MS. Anal. Chem. 2019, 91, 14624–14630. [Google Scholar] [CrossRef] [PubMed]
- Navarro, P.; Bustamante, J.; Vallejo, A.; Prieto, A.; Usobiaga, A.; Arrasate, S.; Anakabe, E.; Puy-Azurmendi, E.; Zuloaga, O. Determination of alkylphenols and 17β-estradiol in fish homogenate. Extraction and clean-up strategies. J. Chromatogr. A 2010, 1217, 5890–5895. [Google Scholar] [CrossRef]
- McNamara, K.M.; Harwood, D.T.; Simanainen, U.; Walters, K.A.; Jimenez, M.; Handelsman, D.J. Measurement of sex steroids in murine blood and reproductive tissues by liquid chromatography-tandem mass spectrometry. J. Steriod Biochem. Mol. Biol. 2010, 1211, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.L.; Chu, X.G.C.; Peng, C.F.; Jin, Z.Y.; Wang, L.Y. Development of a faster determination of 10 anabolic steroids residues in animal muscle tissues by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 2006, 41, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.-J.; Stajnbaher, D.; Schenck, F.-J. Fast and easy multi-residue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. JAOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- European Commission. Commission Decision 2002/657/EC. Off. J. Eur. Commun. 2002, L221, 8–36. [Google Scholar]
Parameters | Analyte | ||
---|---|---|---|
17β-T | 11-KT | 17β-E2 | |
Ionisation mode | positive | positive | negative |
Ion spray voltage | 5500 V | 5500 V | 4500 V |
Temperature of ion source | 500 °C | 500 °C | 250 °C |
Curtain gas (N2) pressure | 35 psi | 35 psi | 20 psi |
Collision gas (N2) | medium | medium | medium |
Nebulizing gas (air) pressure | 40 psi | 40 psi | 20 psi |
Drying gas (air) pressure | 40 psi | 40 psi | 25 psi |
Analyte and IS | Precursor Ion (m/z) | Product Ions | CE (eV) | DP (V) |
---|---|---|---|---|
17β-T | 289 | 109 * 97 | 29 29 | 110 110 |
11-KT | 302 | 145 121 * | 40 34 | 100 100 |
17β-T-d2 | 291 | 111 * 99 | 30 30 | 110 110 |
17β-E2 | 271 | 145 * 183 | 55 54 | 195 195 |
17β-E2-d3 | 274 | 145 | 54 | 180 |
Matrix | Analyte | Linear range, ng/g | Slope ± sb | y-Intercept ± sa | Correlation Coefficient | Standard Error |
---|---|---|---|---|---|---|
Female gonad | 17β-T | 0–50 | 1.9592 ± 1.0969 | −0.3236 ± 0.6267 | 0.9998 | 0.6853 |
11-KT | 0–30 | 0.0716 ± 0.0277 | −0.0182 ± 0.0151 | 0.9998 | 0.0196 | |
17β-E2 | 0–5.0 | 0.6057 ± 0.2378 | 0.1587 ± 0.1163 | 0.9999 | 0.1704 | |
Male gonad | 17β-T | 0–50 | 1.0894 ± 0.1034 | 0.7385 ± 0.3950 | 0.9987 | 1.0815 |
11-KT | 0–30 | 0.0544 ± 0.0008 | 0.0202 ± 0.0232 | 0.9997 | 0.0154 | |
17β-E2 | 0–50 | 0.8186 ± 0.0234 | 0.1587 ± 0.0159 | 0.9956 | 0.1739 |
Added, ng/g | Analyte | |||
---|---|---|---|---|
11-KT | 17β-T | 17β-E2 | ||
Repeatability, R.S.D., % | 1.0 | 16.0 | 11.2 | 27.2 |
2.0 | 11.0 | 7.2 | 4.1 | |
5.0 | 11.6 | 1.7 | 5.0 | |
Within-lab reproducibility, R.S.D., % | 1.0 | 22.0 | 15.7 | 37.1 |
2.0 | 14.9 | 9.7 | 5.9 | |
5.0 | 15.9 | 2.2 | 7.6 | |
Relative recovery, % | 1.0 | 109.1 | 94.0 | 95.0 |
2.0 | 107.5 | 110.0 | 109.5 | |
5.0 | 109.3 | 98.8 | 97.2 |
Added, ng/g | Analyte | |||
---|---|---|---|---|
11-KT | 17β-T | 17β-E2 | ||
Repeatability, R.S.D., % | 1.0 | 12.0 | 10.2 | 12.2 |
2.0 | 11.7 | 10.6 | 14.9 | |
5.0 | 11.7 | 2.0 | 2.8 | |
Within–lab reproducibility, R.S.D., % | 1.0 | 20.2 | 13.8 | 16.4 |
2.0 | 17.0 | 14.3 | 20.1 | |
5.0 | 15.9 | 2.7 | 3.7 | |
Relative recovery, % | 1.0 | 78.0 | 99.0 | 100.7 |
2.0 | 98.3 | 101.0 | 103.5 | |
5.0 | 103.1 | 100.0 | 99.0 |
Matrix | Analyte | LOD, ng/g | LOQ, ng/g |
---|---|---|---|
Male gonad | 11-KT | 0.26 | 0.76 |
17β-T | 0.28 | 0.41 | |
17β-E2 | 0.15 | 0.49 | |
Female gonad | 11-KT | 0.24 | 0.64 |
17β-T | 0.15 | 0.32 | |
17β-E2 | 0.21 | 0.47 |
Matrix | Analyte | Uncertainty, (U, k = 2, %) |
---|---|---|
Male gonad | 11-KT | 38.0 |
17β-T | 21.2 | |
17β-E2 | 41.2 | |
Female gonad | 11-KT | 37.7 |
17β-T | 22.2 | |
17β-E2 | 30.6 |
Matrix | Analyte | Mean ± sd, ng/g | Range, ng/g |
---|---|---|---|
Male gonad (n = 22) | 17β-T | 6.53 ± 3.78 | 1.9–16.6 |
11-KT | 11.34 ± 8.65 | 7.4–36.2 | |
17β-E2 | - | - | |
Female gonad (n = 8) | 17β-T | 3.47 ± 2.45 | 2.1–9.6 |
11-KT | 5.63 ± 2.67 | 3.4–9.2 | |
17β-E2 | 16.42 ± 7.84 | 9.4–40.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matraszek-Żuchowska, I.; Kłopot, A.; Witek, S.; Pękala-Safińska, A.; Posyniak, A. Development of Analytical Procedure for the Determination of 17β-Testosterone, 11-Ketotestosterone and 17β-Estradiol in the Sea Trout (Salmo trutta L.) Gonads. Separations 2022, 9, 293. https://doi.org/10.3390/separations9100293
Matraszek-Żuchowska I, Kłopot A, Witek S, Pękala-Safińska A, Posyniak A. Development of Analytical Procedure for the Determination of 17β-Testosterone, 11-Ketotestosterone and 17β-Estradiol in the Sea Trout (Salmo trutta L.) Gonads. Separations. 2022; 9(10):293. https://doi.org/10.3390/separations9100293
Chicago/Turabian StyleMatraszek-Żuchowska, Iwona, Alicja Kłopot, Sebastian Witek, Agnieszka Pękala-Safińska, and Andrzej Posyniak. 2022. "Development of Analytical Procedure for the Determination of 17β-Testosterone, 11-Ketotestosterone and 17β-Estradiol in the Sea Trout (Salmo trutta L.) Gonads" Separations 9, no. 10: 293. https://doi.org/10.3390/separations9100293
APA StyleMatraszek-Żuchowska, I., Kłopot, A., Witek, S., Pękala-Safińska, A., & Posyniak, A. (2022). Development of Analytical Procedure for the Determination of 17β-Testosterone, 11-Ketotestosterone and 17β-Estradiol in the Sea Trout (Salmo trutta L.) Gonads. Separations, 9(10), 293. https://doi.org/10.3390/separations9100293