Rapid Determination of Metribuzin and Three Major Transformation Products in Soil and Plant by Gas Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Analysis of Metribuzin and Metabolites in Soil and Plant Leaves
2.3. Chromatographic Analysis
2.4. Soil Treatment with Metribuzin
2.5. Quality Assurance/Quality Control
3. Results and Discussion
3.1. Extraction Procedure
3.1.1. Soil Samples
3.1.2. Plant Samples
3.2. Application to Real Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 2017, 3, 17008. [Google Scholar] [CrossRef] [PubMed]
- Buckwell, A.; De Wachter, E.; Nadeu, E.; Williams, A. Crop Protection & the EU Food System. Where Are They Going? 2020. Available online: https://croplifeeurope.eu/wp-content/uploads/2021/03/RISE_CP_EU_final.pdf (accessed on 3 October 2022).
- Huertas-Pérez, J.F.; Del Olmo Iruela, M.; García-Campaña, A.M.; González-Casado, A.; Sánchez-Navarro, A. Determination of the herbicide metribuzin and its major conversion products in soil by micellar electrokinetic chromatography. J. Chromatogr. A 2006, 1102, 280–286. [Google Scholar] [CrossRef]
- Samir, D.; Mohcem Om Selma, R.; Asma, S. The effect of herbicide metribuzin on environment and human: A Systematic Review. Pharm. Biosci. J. 2020, 8, 10–15. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 Implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as Regards the List of Approved Active Substances. 2011. Available online: http://data.europa.eu/eli/reg_impl/2011/540/oj (accessed on 3 October 2022).
- European Commission. Commission Implementing Regulation (EU) 2022/708 of 5 May 2022. 2022. Available online: http://data.europa.eu/eli/reg_impl/2022/708/oj (accessed on 3 October 2022).
- Papadakis, E.N.; Papadopoulou-Mourkidou, E. Determination of metribuzin and major conversion products in soils by microwave-assisted water extraction followed by liquid chromatographic analysis of extracts. J. Chromatogr. A 2002, 962, 9–20. [Google Scholar] [CrossRef]
- Sanchez-Brunete, C.; Albero, B.; Tadeo, J.L. Multiresidue determination of pesticides in soil by gas chromatography—Mass spectrometry detection. J. Agric. Food Chem. 2004, 52, 1445–1451. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Mastovska, K.; Lightfield, A.R.; Gates, R.A. Multi-analyst, multi-matrix performance of the QuEChERS approach for pesticide residues in foods and feeds using HPLC/MS/MS analysis with different calibration techniques. J. AOAC Int. 2010, 93, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Łozowicka, B.; Jankowska, M.; Rutkowska, E.; Hrynko, I.; Kaczyński, P.; Miciński, J. The evaluation of a fast and simple pesticide multiresidue method in various herbs by gas chromatography. J. Nat. Med. 2014, 68, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Łozowicka, B.; Jankowska, M.; Rutkowska, E.; Kaczyński, P.; Hrynko, I. Comparison of extraction techniques by matrix solid phase dispersion and liquid-liquid for screening 150 pesticides from soil, and determination by gas chromatography. Polish J. Environ. Stud. 2012, 21, 973–992. [Google Scholar]
- Haskis, P.; Mantzos, N.; Hela, D.; Patakioutas, G.; Konstantinou, I. Effect of biochar on the mobility and photodegradation of metribuzin and metabolites in soil-biochar thin-layer chromatography plates. Int. J. Environ. Anal. Chem. 2019, 99, 310–327. [Google Scholar] [CrossRef]
- Henriksen, T.; Svensmark, B.; Juhler, R.K. Analysis of metribuzin and transformation products in soil by pressurized liquid extraction and liquid chromatographic-tandem mass spectrometry. J. Chromatogr. A 2002, 957, 79–87. [Google Scholar] [CrossRef]
- Parker, C.E.; Degen, G.H.; Abusteit, E.O.; Corbin, F.T. The determination of metribuzin and its metabolites by high pressure liquid chromatography. J. Liq. Chromatogr. 1983, 6, 725–742. [Google Scholar] [CrossRef]
- EFSA. Public Consultation on the Active Substance Metribuzin. Available online: https://www.efsa.europa.eu/en/consultations/call/public-consultation-active-substance-metribuzin-1 (accessed on 3 October 2022).
- Xie, Y.L.; Zhao, Z.D.; Zhang, X.L.; Tang, L.; Zhang, Y.; Zhang, C.H. Simultaneous analysis of herbicide metribuzin and its transformation products in tomato using QuEChERS-based gas chromatography coupled to a triple quadrupole mass analyzer. Microchem. J. 2017, 133, 468–473. [Google Scholar] [CrossRef]
- Albero, B.; Tadeo, J.L.; Miguel, E.; Pérez, R.A. Rapid determination of antibiotic residues in cereals by liquid chromatography triple mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 6129–6139. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, M.; Liang, Y.; Li, Y.; Zhong, J.; Lu, L.; Zhang, Z. Role of isotope internal standards and matrix-matched curves in the analysis of metribuzin and its metabolite residues in potato tuber. Food Anal. Methods 2022, 15, 1581–1590. [Google Scholar] [CrossRef]
- Bernal, E. Limit of Detection and Limit of Quantification Determination in Gas Chromatography. In Advances in Gas Chromatography; Guo, X., Ed.; IntechOpen: London, UK, 2014; pp. 57–81. ISBN 978-953-51-1227-3. [Google Scholar]
- Kulshrestha, G.; Singh, S.B. Residual fate of metribuzin on carrot (Daucus carota) crop. Bull. Environ. Contam. Toxicol. 2001, 66, 660–663. [Google Scholar] [CrossRef]
- Kaur, P.; Rani, G.; Bhullar, M.S. Persistence of metribuzin in aridisols as affected by various abiotic factors and its effect on soil enzymes. Int. J. Environ. Anal. Chem. 2022, 1–20. [Google Scholar] [CrossRef]
Compound | Structure | tR (min) | T (CE 1) | Q1 (CE) | Q2 (CE) |
---|---|---|---|---|---|
M-DADK | 5.2 | 127 > 110.1 (5) | 127 > 81.9 (15) | 154 > 83 (10) | |
M-DK | 6.1 | 168 > 55 (20) | 168 > 83 (15) | 168 > 126 (5) | |
M-DA | 7.0 | 199 > 184.2 (10) | 184 > 89 (5) | 184 > 68 (20) | |
M | 7.2 | 198 > 82 (20) | 198 > 110.1 (10) | 198 > 89 (20) |
Compound | Equation | R2 | Spiking Level (mg/kg) | Recovery (%) | RSD (%) | LOD (µg/kg) | LOQ (µg/kg) |
---|---|---|---|---|---|---|---|
M-DADK | y = 34.6x + 180.6 | 0.9982 | 0.25 | 93.5 | 6.7 | 8 | 26 |
1 | 121.4 | 5.3 | |||||
M-DK | y = 16.5x + 27.8 | 0.9996 | 0.25 | 74.4 | 3.4 | 10 | 32 |
1 | 72.6 | 10.6 | |||||
M-DA | y = 5.4x + 27.6 | 0.9998 | 0.25 | 82.7 | 8.3 | 11 | 37 |
1 | 87.7 | 9.1 | |||||
M | y = 132.3x + 2986 | 0.9970 | 0.5 | 84.3 | 10.7 | 5 | 16 |
3 | 81.2 | 6.9 |
Method | Sample | Solvent (Total Volume) | Sorbent (mg) | Analysis | LOD (µg/kg) | Recovery (%) | Ref. |
---|---|---|---|---|---|---|---|
UAE + SPE | Soil (10 g) | MeOH (50 mL) | 200 | MEKC | 19–23 | 78–99 | [4] |
MAWE + SPE | Soil (10 g) | Buffer pH7, MeOH + EtAc (67 mL) | 200 | LC-DAD | 1.25–12.5 | 80–92 | [8] |
PLE | Soil (35–40 g) | MeOH:water (35–40 mL) | LC-MS/MS | 0.6–5.5 | 50–75 | [14] | |
SAESC | Soil (2 g) | EtAc (10 mL) | GC-MS/MS | 5–11 | 73–121 | present work | |
QuEChERS | Tomato slurry (5 g) | ACN (20 mL) | 480 | GC-MS/MS | 2–8 | 71–96 | [17] |
Refluxing | Sugar cane shoot (n.s.) | ACN/water (3:1, v/v) (n.s.) | n.s. | LC-MS/MS | 10 | 70–110 | [16] |
Refluxing or MAE + SPE | Potato (tuber), asparagus (stick), tomato (n.s.) | ACN/water (3:1, v/v) (n.s.) | n.s. | LC-MS/MS | 10 | 70–110 | [16] |
MAE + LLE | Potato tuber (2 g) | ACN/water (3:1, v/v) (12 mL) + DCM (6 mL) | LC-MS/MS | 2.5–3.8 | 66–109 | [19] | |
SAESC + dSPE | Bean plant (0.2 g) | EtAc (10 mL) | 75 | GC-MS/MS | 0.8–5 | 81–106 | present work |
Compound | Equation | R2 | Spiking Level | LOD (µg/kg) | LOQ (µg/kg) | ||
---|---|---|---|---|---|---|---|
0.025 mg/kg | 0.250 mg/kg | 1 mg/kg | |||||
M-DADK | y = 64.5x + 359.9 | 0.9983 | 88.4 (4.1) | 93.5 (5.5) | 88.7 (5.3) | 5 | 18 |
M-DK | y = 42.9x + 43.2 | 0.9999 | 85.2 (6.5) | 81.2 (6.3) | 90.6 (4.7) | 5 | 17 |
M-DA | y = 20.3 x + 210.4 | 0.9998 | 88.3 (2.7) | 83.3 (8.8) | 86.6 (8.9) | 5 | 18 |
M | y = 226.4 x + 13,768.1 | 0.9993 | 96.0 (4.6) | 99.2 (6.5) | 105.9 (4.1) | 0.8 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albero, B.; Fernández, M.D.; García-Gómez, C.; Pérez, R.A. Rapid Determination of Metribuzin and Three Major Transformation Products in Soil and Plant by Gas Chromatography–Tandem Mass Spectrometry. Separations 2022, 9, 386. https://doi.org/10.3390/separations9120386
Albero B, Fernández MD, García-Gómez C, Pérez RA. Rapid Determination of Metribuzin and Three Major Transformation Products in Soil and Plant by Gas Chromatography–Tandem Mass Spectrometry. Separations. 2022; 9(12):386. https://doi.org/10.3390/separations9120386
Chicago/Turabian StyleAlbero, Beatriz, María Dolores Fernández, Concepción García-Gómez, and Rosa Ana Pérez. 2022. "Rapid Determination of Metribuzin and Three Major Transformation Products in Soil and Plant by Gas Chromatography–Tandem Mass Spectrometry" Separations 9, no. 12: 386. https://doi.org/10.3390/separations9120386
APA StyleAlbero, B., Fernández, M. D., García-Gómez, C., & Pérez, R. A. (2022). Rapid Determination of Metribuzin and Three Major Transformation Products in Soil and Plant by Gas Chromatography–Tandem Mass Spectrometry. Separations, 9(12), 386. https://doi.org/10.3390/separations9120386