Comparative Characterization of Grain Protein Content and Composition by Chromatography-Based Separation Methods (SE-HPLC and RP-HPLC) of Ten Wheat Varieties Grown in Different Agro-Ecological Zones of Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Growing Condition of the Studied Wheat Varieties
2.2. Chromatographic Quantitative Analyses of Wheat Grain Proteins
2.2.1. Analysis of the Protein Composition of Wheat Grains by SE-HPLC
2.2.2. Analysis of the Composition of Gliadins and Glutenins of Wheat Grains by RP-HPLC
2.3. Statistical Analysis
3. Results and Discussion
3.1. Composition in Gliadins and Glutenins of the Studied Varieties
3.2. Effect of Varieties and of Cultivation Modalities in the Three Environments (SH-SA, SA, and SH) on the Content and Composition of Protein Reserves of Algerian Wheat
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Agriculture and Rural Development. Statistique Agricole, Superficies et Productions, SERIE “B” 2019; Ministry of Agriculture and Rural Development: Algiers, Algeria, 2021; p. 87. [Google Scholar]
- Joubert, M.; Morel, M.H.; Samson, M.-F.; Thomas, R.; Justes, E.; Leygue, J.-P.; Bedoussac, L.; Lullien-Pellerin, V. Impact de La Variabilité de Blés Durs Issus d’itinéraires Techniques Innovants (ITK) Sur Leur Aptitude à La Transformation. In Proceedings of the Phloème-Premières Biennales de l’innovation Céréalière; Editions Quae, Arvalis-Institut du Végétal, Paris, France, 29–30 January 2018; p. 450. [Google Scholar]
- Altenbach, S.B.; Kothari, K.M.; Lieu, D. Environmental Conditions during Wheat Grain Development Alter Temporal Regulation of Major Gluten Protein Genes. Cereal Chem. 2002, 79, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Ames, N.P.; Clarke, J.M.; Marchylo, B.A.; Dexter, J.E.; Woods, S.M. Effect of Environment and Genotype on Durum Wheat Gluten Strength and Pasta Viscoelasticity. Cereal Chem. 1999, 76, 582–586. [Google Scholar] [CrossRef]
- Luo, C.; Branlard, G.; Griffin, W.B.; McNeil, D.L. The Effect of Nitrogen and Sulphur Fertilisation and Their Interaction with Genotype on Wheat Glutenins and Quality Parameters. J. Cereal Sci. 2000, 31, 185–194. [Google Scholar] [CrossRef]
- Kłosok, K.; Welc, R.; Fornal, E.; Nawrocka, A. Effects of Physical and Chemical Factors on the Structure of Gluten, Gliadins and Glutenins as Studied with Spectroscopic Methods. Molecules 2021, 26, 508. [Google Scholar] [CrossRef]
- Dachkevitch, T.; Autran, J.-C. Prediction of Baking Quality of Bread Wheats in Breeding Programs by Size-Exclusion High-Performance Liquid Chromatography. Cereal Chem. 1989, 66, 448–456. [Google Scholar]
- Edwards, N.M.; Gianibelli, M.C.; McCaig, T.N.; Clarke, J.M.; Ames, N.P.; Larroque, O.R.; Dexter, J.E. Relationships between Dough Strength, Polymeric Protein Quantity and Composition for Diverse Durum Wheat Genotypes. J. Cereal Sci. 2007, 45, 140–149. [Google Scholar] [CrossRef]
- Belahcen, L.; Cassan, D.; Canaguier, E.; Robin, M.-H.; Chiffoleau, Y.; Samson, M.-F.; Jard, G. Physicochemical and Sensorial Characterization of Artisanal Pasta from the Occitanie Region in France. Foods 2022, 11, 3208. [Google Scholar] [CrossRef]
- Bar-L’Helgouac’h, C.; Giraud, M.; Cosson, C. La Chromatographie: Un Outil Pour Comprendre La Qualite Des Varietes. Perspect. Agric. 2004, 303, 20–24. [Google Scholar]
- MacRitchie, F.; Gupta, R. Functionality-Composition Relationships of Wheat Flour as a Result of Variation in Sulfur Availability. Aust. J. Agric. Res. 1993, 44, 1767. [Google Scholar] [CrossRef]
- Jang, Y.-R.; Beom, H.-R.; Altenbach, S.B.; Lee, M.-K.; Lim, S.-H.; Lee, J.-Y. Improved Method for Reliable HMW-GS Identification by RP-HPLC and SDS-PAGE in Common Wheat Cultivars. Molecules 2017, 22, 1055. [Google Scholar] [CrossRef]
- Selmi, R. Fin Du Mythe de l’autosuffisance Alimentaire et Place Aux Avantages Comparatifs. Rev. Afr. Agric. 2000, 280, 30–32. [Google Scholar]
- Wehrle, K.; Seibel, W.; Gerstenkorn, P.; Kuhn, M. Méthodes Rapides d’évaluation Qualitative Du Blé Dur. Première Partie: Etudes Par Spectroscopie NIR. Getreide Mehl Brot 1996, 50, 181–185. [Google Scholar]
- Samson, M.-F.; Mabille, F.; Chéret, R.; Abecassis, J.; Morel, M.-H. Mechanical and Physicochemical Characterization of Vitreous and Mealy Durum Wheat Endosperm. Cereal Chem. 2005, 82, 81–87. [Google Scholar] [CrossRef]
- Sadouki, H.; Cazalis, R.; Azzout, B. Fractionation of Algerian Common Wheat Proteins by HPLC and Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis; Relationship with Technological Quality. LWT—Food Sci. Tech. 2005, 38, 829–841. [Google Scholar] [CrossRef]
- Mahroug, H.; Ribeiro, M.; Rhazi, L.; Bentallah, L.; Zidoune, M.N.; Nunes, F.M.; Igrejas, G. How Microwave Treatment of Gluten Affects Its Toxicity for Celiac Patients? A Study on the Effect of Microwaves on the Structure, Conformation, Functionality and Immunogenicity of Gluten. Food Chem. 2019, 297, 124986. [Google Scholar] [CrossRef]
- Emberger, L. Sur Une Formule Climatique et Ses Applications En Botanique. La Météorol. 1932, 92, 1–10. [Google Scholar]
- FAO. AQUASTAT AQUASTAT—FAO’s Global Information System on Water and Agriculture; FAO: Rome, Italy, 2015; Available online: https://storage.googleapis.com/fao-aquastat.appspot.com/countries_regions/pdf/DZA-map_detailed.pdf (accessed on 26 October 2022).
- Morel, M.-H.; Dehlon, P.; Autran, J.C.; Leygue, J.P.; Bar-L’Helgouac’h, C. Effects of Temperature, Sonication Time, and Power Settings on Size Distribution and Extractability of Total Wheat Flour Proteins as Determined by Size-Exclusion High-Performance Liquid Chromatography. Cereal Chem. 2000, 77, 685–691. [Google Scholar] [CrossRef]
- Wieser, H.; Seilmeier, W. The Influence of Nitrogen Fertilisation on Quantities and Proportions of Different Protein Types in Wheat Flour. J. Sci. Food Agric. 1998, 76, 49–55. [Google Scholar] [CrossRef]
- Gagliardi, A.; Carucci, F.; Masci, S.; Flagella, Z.; Gatta, G.; Giuliani, M.M. Effects of Genotype, Growing Season and Nitrogen Level on Gluten Protein Assembly of Durum Wheat Grown under Mediterranean Conditions. Agronomy 2020, 10, 755. [Google Scholar] [CrossRef]
- Autran, J.C.; Pogna, N.E.; Kudryavtsev, A.M.; Navilov, N.I. Use of Genetic Variation in the Improvement of Quality in Durum Wheat. In Durum Wheat Quality in the Mediterranean Region, Zaragoza; Di Fonzo, N., Kaan, F., Nachit, M., Eds.; CIHEAM: Zaragoza, Spain, 1995; pp. 173–180, (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 22); Available online: https://om.ciheam.org/om/pdf/a22/95605368.pdf (accessed on 15 August 2021).
- Autran, J.C.; Feillet, P. Genetic and Technological Basis of Protein Quality for Durum Wheat in Pasta. In Agriculture Protein Evoluation in Cereals and Legumes; Commission of the European Communities: Mestreech, The Netherlands, 1987; Volume 126, pp. 59–71. [Google Scholar]
- Payne, P.I.; Jackson, E.A.; Holt, L.M. The Association between γ-Gliadin 45 and Gluten Strength in Durum Wheat Varieties: A Direct Causal Effect or the Result of Genetic Linkage? J. Cereal Sci. 1984, 2, 73–81. [Google Scholar] [CrossRef]
- Damidaux, R.; Autran, J.C.; Grignac, P.; Feillet, P. Mise En Evidence de Relations Applicables En Selection Entre l’electrophoregramme Des Gliadines et Les Proprietes Viscoelastiques Du Gluten de Triticum Durum Desf. C. R. Acad. Sci. Paris Ser. D 1978, 287, 701–704. [Google Scholar]
- Pogna, N.; Lafiandra, D.; Feillet, P.; Autran, J.C. Evidence for a Direct Causal Effect of Low Molecular Weight Subunits of Glutenins on Gluten Viscoelasticity in Durum Wheats. J. Cereal Sci. 1988, 7, 211–214. [Google Scholar] [CrossRef]
- Pogna, N.E.; Autran, J.-C.; Mellini, F.; Lafiandra, D.; Feillet, P. Chromosome 1B-Encoded Gliadins and Glutenin Subunits in Durum Wheat: Genetics and Relationship to Gluten Strength. J. Cereal Sci. 1990, 11, 15–34. [Google Scholar] [CrossRef]
- Ruiz, M.; Carrillo, J.M. Separate Effects on Gluten Strength of Gli-1 and Glu-3 Prolamin Genes on Chromosomes 1A and 1B in Durum Wheat. J. Cereal Sci. 1995, 21, 137–144. [Google Scholar] [CrossRef]
- Samson, M.-F.; Morel, M.-H. Heat Denaturation of Durum Wheat Semolina β-Amylase Effects of Chemical Factors and Pasta Processing Conditions. J. Food Sci. 1995, 60, 1313–1320. [Google Scholar] [CrossRef]
- Magallanes-López, A.M.; Ammar, K.; Morales-Dorantes, A.; González-Santoyo, H.; Crossa, J.; Guzmán, C. Grain Quality Traits of Commercial Durum Wheat Varieties and Their Relationships with Drought Stress and Glutenins Composition. J. Cereal Sci. 2017, 75, 1–9. [Google Scholar] [CrossRef]
- Chacón, E.A.; Vázquez, F.J.; Giraldo, P.; Carrillo, J.M.; Benavente, E.; Rodríguez-Quijano, M. Allelic Variation for Prolamins in Spanish Durum Wheat Landraces and Its Relationship with Quality Traits. Agronomy 2020, 10, 136. [Google Scholar] [CrossRef] [Green Version]
- Rekowski, A.; Wimmer, M.A.; Tahmasebi, S.; Dier, M.; Kalmbach, S.; Hitzmann, B.; Zörb, C. Drought Stress during Anthesis Alters Grain Protein Composition and Improves Bread Quality in Field-Grown Iranian and German Wheat Genotypes. Appl. Sci. 2021, 11, 9782. [Google Scholar] [CrossRef]
- De Santis, M.A.; Giuliani, M.M.; Giuzio, L.; De Vita, P.; Lovegrove, A.; Shewry, P.R.; Flagella, Z. Differences in Gluten Protein Composition between Old and Modern Durum Wheat Genotypes in Relation to 20th Century Breeding in Italy. Eur. J. Agron. 2017, 87, 19–29. [Google Scholar] [CrossRef]
- Mefleh, M.; Motzo, R.; Samson, M.-F.; Morel, M.-H.; Giunta, F. N Partitioning between Gluten Fractions in a Set of Italian Durum Wheat Cultivars: Role of the Grain N Content. Foods 2020, 9, 1684. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Sanzone, E.; Testa, G.; Patanè, C.; Anastasi, U.; Scordia, D. Does Post-anthesis Heat Stress Affect Plant Phenology, Physiology, Grain Yield and Protein Content of Durum Wheat in a Semi-arid Mediterranean Environment? J. Agron. Crop Sci. 2019, 205, 309–323. [Google Scholar] [CrossRef]
- DuPont, F.M.; Hurkman, W.J.; Vensel, W.H.; Chan, R.; Lopez, R.; Tanaka, C.K.; Altenbach, S.B. Differential Accumulation of Sulfur-Rich and Sulfur-Poor Wheat Flour Proteins Is Affected by Temperature and Mineral Nutrition during Grain Development. J. Cereal Sci. 2006, 44, 101–112. [Google Scholar] [CrossRef]
- Tatham, A.S.; Shewry, P.R. The S-Poor Prolamins of Wheat, Barley and Rye. J. Cereal Sci. 1995, 22, 1–16. [Google Scholar] [CrossRef]
Varieties | Characteristics |
---|---|
var 1: Waha | High productivity—semi-dwarf |
var 2: GTA/Dur | High productivity—good quality |
var 3: Stk/Haul/Heca-1 | Mexican Cross—good quality |
var 4: Ammar-8 | Intensive advanced lineage |
var 5: Msbi-1/Quarmal | Semi-dwarf—productive |
var 6: Azeghar-1/6/Zna-1/5/Awl 1/4/Ruff//jo/Cr/3/F9.3 | Crossover ICARDA—good adaptation |
var 7: Ville mur/3/Lahn//Gs/Stk/4/Dra2/Bcr/5/Bcr/Lks4/4/ | Advanced lineage—Cross. ICARDA-CIMMYT |
var 8: Gsb/1/4/D68-1-93A1A//RuFF/Fg/3/Mtl5/5/Wdz6/Gi/4 | Var. CIMMYT—Adapted. |
var 9: Lahaucan | Adapted to water stress |
var 10: Da-6Black awns/3/Bcr//Memo/God | Good production—good adaptation |
Variables | SE-HPLC Protein Fractions (% of the Total Protein Content) | UPP (%) | Glia/Glu | Protein (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | Fi | ||||||
Variety | var 1 | mean | 4.9 a | 16.9 b | 11.9 a | 41.1 a | 15.5 a | 9.7 bc | 31.0 ab | 1.31 a | 13.3 a |
CV | 3.5 | 8.9 | 8.6 | 6.1 | 10.9 | 8.8 | 7.4 | 16.6 | 12.2 | ||
var 2 | mean | 6.9 a | 20.1 a | 10.0 b | 38.5 bc | 14.9 a | 9.7 bc | 26.4 bc | 1.05 b | 12.4 a | |
CV | 10.2 | 2.8 | 3.2 | 3.5 | 11.4 | 9.4 | 9.7 | 11.1 | 2.4 | ||
var 3 | mean | 5.6 a | 18.8 ab | 9.5 b | 37.8 bc | 14.9 a | 13.4 ab | 35.5 ab | 1.00 c | 12.2 a | |
CV | 3.7 | 1.9 | 7.9 | 2.1 | 8.1 | 8.8 | 6.2 | 9.9 | 1.7 | ||
var 4 | mean | 6.5 a | 19.6 a | 9.4 b | 36.6 c | 14.9 a | 13.0 ab | 33.3 abc | 0.94 d | 11.7 a | |
CV | 20.5 | 5.9 | 9.1 | 7.4 | 11.1 | 7.4 | 6.2 | 14.9 | 13.4 | ||
var 5 | mean | 5.3 a | 18.9 ab | 9.9 b | 37.6 bc | 14.5 a | 13.7 ab | 36.1 ab | 0.99 d | 12.6 a | |
CV | 3.3 | 4.3 | 6.1 | 4.3 | 10.0 | 12.1 | 9.8 | 12.4 | 5.3 | ||
var 6 | mean | 5.2 a | 18.0 ab | 10.0 b | 39.1 abc | 15.0 a | 12.7 ab | 35.3 ab | 1.09 c | 13.2 a | |
CV | 25.0 | 12.8 | 2.6 | 2.3 | 7.6 | 27.9 | 28.0 | 11.8 | 2.4 | ||
var 7 | mean | 6.7 a | 19.8 a | 9.9 b | 40.3 ab | 15.2 a | 8.0 c | 23.1 c | 1.17 b | 12.5 a | |
CV | 9.5 | 2.1 | 6.1 | 5.8 | 11.8 | 27.1 | 23.5 | 21.6 | 9.2 | ||
var 8 | mean | 5.1 a | 17.8 ab | 10.1 b | 37.6 bc | 14.7 a | 14.6 a | 38.8 a | 1.00 d | 12.8 a | |
CV | 3.4 | 4.8 | 3.0 | 5.8 | 16.0 | 8.7 | 7.7 | 17.5 | 4.6 | ||
var 9 | mean | 5.6 a | 18.6 ab | 10.2 b | 37.2 c | 15.6 a | 13.0 ab | 34.9 ab | 1.00 d | 11.6 a | |
CV | 5.4 | 1.2 | 3.5 | 6.2 | 13.0 | 4.9 | 2.8 | 17.8 | 7.3 | ||
var 10 | mean | 6.1 a | 18.7 ab | 10.2 b | 38.6 bc | 16.1 a | 10.2 bc | 29.2 abc | 1.10 c | 11.5 a | |
CV | 2.5 | 1.1 | 1.7 | 5.5 | 13.8 | 5.0 | 4.5 | 18.9 | 4.7 | ||
Environment | SH-SA | mean | 5.7 a | 18.3 a | 10.3 a | 40.4 a | 13.3 b | 11.9 a | 32.8 a | 1.13 a | 14.1 a |
CV | 19.0 | 7.8 | 9.2 | 5.5 | 7.6 | 21.9 | 18.5 | 8.9 | 13.3 | ||
SA | mean | 5.9 a | 18.5 a | 9.7 a | 37.5 b | 16.0 a | 12.3 a | 33.3 a | 1.03 b | 10.6 c | |
CV | 9.5 | 3.7 | 3.7 | 2.6 | 3.7 | 13.7 | 11.7 | 7.8 | 5.9 | ||
SH | mean | 5.7 a | 19.3 a | 10.2 a | 37.4 b | 16.0 a | 11.2 a | 31.0 a | 1.03 b | 12.5 b | |
CV | 16.7 | 8.1 | 10.0 | 4.2 | 3.6 | 26.6 | 22.8 | 5.9 | 12.9 | ||
General means | 5.8 | 18.7 | 10.1 | 38.4 | 15.1 | 11.8 | 32.4 | 12.4 | 1.07 | ||
General CV | 12.1 | 5.2 | 5.2 | 2.7 | 5.5 | 13.7 | 12.9 | 6.7 | 5.9 |
Sum of Squares Factor/Total Sum of Squares (%) | Protein Fraction | Protein | Glia/Glu | ||||||
---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | Fi | UPP | |||
Variety | 60 | 54 | 65 | 40 | 9 | 71 | 65 | 12 | 70 |
Environment | 2 | 11 | 10 | 45 | 73 | 3 | 3 | 73 | 14 |
Residuals | 38 | 35 | 25 | 15 | 18 | 26 | 32 | 15 | 16 |
Gliadin Classes (% of Total Gliadin) | Glutenin Classes (% of Total Glutenins) | ||||||
---|---|---|---|---|---|---|---|
Omega | Alpha/Beta | Gamma | HMW-GS | LMW-GS | HMW/LMW | ||
Variety | |||||||
var 1 | Mean | 25.5 a | 33.9 b | 40.7 ab | 16.9 a | 83.1 b | 0.21 a |
CV | 12.8 | 10.3 | 3.7 | 12.1 | 2.4 | 15.5 | |
var 2 | mean | 20.6 b | 39.2 a | 40.3 ab | 13.7 ab | 86.3 ab | 0.16 ab |
CV | 3.4 | 2.2 | 1.1 | 19.9 | 3.1 | 24.1 | |
var 3 | mean | 22.0 b | 35.5 b | 42.6 a | 14.3 ab | 85.7 ab | 0.17 ab |
CV | 3.5 | 5.8 | 3.1 | 11.7 | 1.9 | 12.5 | |
var 4 | mean | 21.0 b | 38.5 a | 40.5 ab | 13.7 ab | 86.3 ab | 0.16 ab |
CV | 4.5 | 4.3 | 3.1 | 27.0 | 4.3 | 31.2 | |
var 5 | mean | 20.1 b | 39.4 a | 40.5 ab | 12.9 b | 87.1 a | 0.15 ab |
CV | 8.1 | 3.5 | 0.6 | 23.6 | 3.5 | 29.0 | |
var 6 | mean | 21.2 b | 38.7 a | 40.1 ab | 13.7 ab | 86.3 ab | 0.16 ab |
CV | 6.4 | 4.1 | 1.3 | 14.8 | 2.4 | 16.5 | |
var 7 | mean | 22.2 b | 40.3 a | 37.5 c | 14.2 ab | 85.8 ab | 0.17 ab |
CV | 8.4 | 3.2 | 2.9 | 13.8 | 2.3 | 15.1 | |
var 8 | mean | 21.3 b | 40.2 a | 38.5 bc | 13.4 ab | 86.6 ab | 0.16 ab |
CV | 14.8 | 5.6 | 3.7 | 11.1 | 1.7 | 13.3 | |
var 9 | Mean | 20.4 b | 38.7 a | 41.0 ab | 14.6 ab | 85.5 ab | 0.17 ab |
CV | 7.5 | 2.8 | 1.3 | 9.9 | 1.7 | 11.8 | |
var 10 | mean | 21.6 b | 40.0 a | 38.4 bc | 13.3 ab | 86.7 ab | 0.16 ab |
CV | 8.0 | 3.9 | 1.4 | 10.5 | 1.6 | 13.3 | |
Environment | |||||||
SH-SA | Mean | 23.4 a | 36.9 b | 39.7 a | 16.2 a | 83.8 b | 0.19 a |
CV | 9.8 | 6.8 | 5.2 | 5.7 | 1.10 | 6.5 | |
SA | Mean | 20.9 b | 38.9 a | 40.2 a | 12.8 b | 87.3 a | 0.15 b |
CV | 8.3 | 7.5 | 4.3 | 17.5 | 2.5 | 21.9 | |
SH | Mean | 20.4 b | 39.5 a | 40.1 a | 13.2 b | 86.8 a | 0.15 b |
CV | 5.4 | 3.7 | 2.9 | 8.9 | 1.4 | 9.8 | |
General means | 21.6 | 38.4 | 40.0 | 14.1 | 85.9 | 0.16 | |
General CV | 5.0 | 3.4 | 2.5 | 9.4 | 1.5 | 11.2 |
Sum of Squares Factor/Total Sum of Squares (%) | Gliadin Classes | Glutenin Classes | ||||
Omega | Alpha/Beta | Gamma | HMW-GS | LMW-GS | HMW/LMW | |
Variety | 47 | 64 | 75 | 25 | 25 | 27 |
Environment | 37 | 20 | 1 | 52 | 53 | 54 |
Residuals | 15 | 16 | 24 | 23 | 22 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hacini, N.; Djelloul, R.; Hadef, A.; Samson, M.-F.; Desclaux, D. Comparative Characterization of Grain Protein Content and Composition by Chromatography-Based Separation Methods (SE-HPLC and RP-HPLC) of Ten Wheat Varieties Grown in Different Agro-Ecological Zones of Algeria. Separations 2022, 9, 443. https://doi.org/10.3390/separations9120443
Hacini N, Djelloul R, Hadef A, Samson M-F, Desclaux D. Comparative Characterization of Grain Protein Content and Composition by Chromatography-Based Separation Methods (SE-HPLC and RP-HPLC) of Ten Wheat Varieties Grown in Different Agro-Ecological Zones of Algeria. Separations. 2022; 9(12):443. https://doi.org/10.3390/separations9120443
Chicago/Turabian StyleHacini, Nesrine, Radia Djelloul, Ahmed Hadef, Marie-Françoise Samson, and Dominique Desclaux. 2022. "Comparative Characterization of Grain Protein Content and Composition by Chromatography-Based Separation Methods (SE-HPLC and RP-HPLC) of Ten Wheat Varieties Grown in Different Agro-Ecological Zones of Algeria" Separations 9, no. 12: 443. https://doi.org/10.3390/separations9120443
APA StyleHacini, N., Djelloul, R., Hadef, A., Samson, M. -F., & Desclaux, D. (2022). Comparative Characterization of Grain Protein Content and Composition by Chromatography-Based Separation Methods (SE-HPLC and RP-HPLC) of Ten Wheat Varieties Grown in Different Agro-Ecological Zones of Algeria. Separations, 9(12), 443. https://doi.org/10.3390/separations9120443