Application of O3/PMS Advanced Oxidation Technology in the Treatment of Organic Pollutants in Highly Concentrated Organic Wastewater: A Review
Abstract
:1. Introduction
2. Mechanism and Influence Factors of O3/PMS Process
2.1. Reaction Mechanism
2.2. Influence Factors
2.2.1. pH Value
2.2.2. O3 Dosage
2.2.3. PMS Dosage
2.2.4. Ratio of O3 to PMS
2.2.5. Temperature
2.2.6. Inorganic Anions
Inorganic Anions | No. | Reaction | Reaction Rate Constant (L·M−1·s−1) | References |
---|---|---|---|---|
Cl− | 16 | 4.3 × 109 | [68] | |
17 | 6.1 × 109 | [68] | ||
18 | 3.0 × 108 | [69] | ||
19 | 2.5 × 108 | [69] | ||
20 | 8.5 × 109 | [70] | ||
21 | 6.0 × 104 | [71] | ||
22 | 2.1 × 1010 | [68] | ||
23 | 1.0 × 109 | [72] | ||
HCO3− | 24 | 8.6 × 106 | [33] | |
25 | 3.9 × 108 | [73] | ||
CO32− | 26 | 2.8 × 106 | [33] | |
27 | 6.1 × 106 | [74] | ||
NO2− | 28 | None | [75] | |
29 | None | [75] | ||
30 | None | [76] | ||
31 | None | [76] | ||
HPO42− | 32 | 1.5 × 105 | [35] | |
33 | 2.0 × 104 | [35] | ||
34 | 1.2 × 106 | [77] | ||
35 | 5.0 × 104 | [77] |
2.2.7. NOM
3. Research Status of the O3/PMS Process on Highly Concentrated Wastewater
4. Evaluation of O3/PMS Process Operation Characteristics
5. Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOPs | advanced oxidation processes |
ASA | aspirin |
BCPMW | biotreated Chinese patent medicine wastewater |
BOD | biochemical oxygen demand |
BTA | benzotriazole |
COD | chemical oxygen demand |
CMIT | chloro-methyl-isothiazolinone |
DBPs | disinfection byproducts |
DOC | dissolved organic carbon |
DOM | dissolved organic matter |
EEM | excitation-emission matrix |
MCFNs | magnetic copper ferrite nanoparticles |
MIT | methyl-isothiazolinone |
NZVI | nanoscale zerovalent iron |
NOM | natural organic matter |
OBPs | oxidation byproducts |
O3 | ozone |
PMS | peroxymonosulfate |
PMT | prometon |
PNT | phenacetin |
PFS | polymerised ferric sulfate |
PWLL | polluted water with landfill leachate |
Rct, •R | total radical formation value |
ROCL | reverse osmosis concentrated leachate |
ROS | reactive oxygen species |
TOC | total organic carbon |
TON | total organic nitrogen |
TrOCs | refractory trace organic compounds |
UBAF | upflow biological aerated filter |
US | ultrasound |
UV | ultraviolet |
WWTP | wastewater treatment plant |
2,4-D | 2,4-dichlorophenoxyacetic |
References
- Jungclaus, G.A.; Lopez-Avila, V.; Hites, R.A. Organic compounds in an industrial wastewater: A case study of their environmental impact. Environ. Sci. Technol. 1978, 12, 88–96. [Google Scholar] [CrossRef]
- Wang, J.; Shen, J.; Ye, D.; Yan, X.; Zhang, Y.J.; Yang, W.J.; Li, X.W.; Wang, J.Q.; Zhang, L.B.; Pan, L.J. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus disease 2019 (COVID-19) pandemic in China. Environ. Pollut. 2020, 262, 114665. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ai, S.L.; Zhou, Y.Y.; Luo, Z.R.; Dai, C.H.; Yang, Y.; Zhang, J.C.; Huang, H.L.; Luo, S.; Luo, L. Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalised magnetic nanoparticles. J. Environ. Chem. Eng. 2018, 6, 6468–6478. [Google Scholar] [CrossRef]
- Damayanti, A.; Ujang, Z.; Salim, M.R.; Olsson, G. The effect of mixed liquor suspended solids (MLSS) on biofouling in a hybrid membrane bioreactor for the treatment of high concentration organic wastewater. Water Sci. Technol. 2011, 63, 1701–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogbonna, J.C.; Yoshizawa, H.; Tanaka, H. Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J. Appl. Phycol. 2000, 12, 277–284. [Google Scholar] [CrossRef]
- Zhu, Q.S.; Guo, S.H.; Guo, C.M.; Dai, D.; Jiao, X.K.; Ma, T.Q.; Chen, J.F. Stability of Fe–C micro-electrolysis and biological process in treating ultra-high concentration organic wastewater. Chem. Eng. J. 2014, 255, 535–540. [Google Scholar] [CrossRef]
- Paíga, P.; Correia, M.; Fernandes, M.J.; Silva, A.; Carvalho, M.; Vieira, J.; Jorge, S.; Silva, J.G.; Freire, C.; Delerue-Matos, C. Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Sci. Total Environ. 2019, 648, 582–600. [Google Scholar] [CrossRef]
- Wang, R.M.; Ji, M.; Zhai, H.Y.; Guo, Y.J.; Liu, Y. Occurrence of antibiotics and antibiotic resistance genes in WWTP effluent-receiving water bodies and reclaimed wastewater treatment plants. Sci. Total Environ. 2021, 796, 148919. [Google Scholar] [CrossRef]
- Helbling, D.E.; Johnson, D.R.; Honti, M.; Fenner, K. Micropollutant biotransformation kinetics associate with WWTP process parameters and microbial community characteristics. Environ. Sci. Technol. 2012, 46, 10579–10588. [Google Scholar] [CrossRef]
- Shin, J.Y.; Choi, S.K.; Park, C.M.; Wang, J.H.; Kim, Y.M. Reduction of antibiotic resistome in influent of a wastewater treatment plant (WWTP) via a chemically enhanced primary treatment (CEPT) process. Chemosphere 2022, 286, 131569. [Google Scholar] [CrossRef]
- Albolafio, S.; Marín, A.; Allende, A.; García, F.J.; Simon-Andreu, P.; Soler, M.A.; Gil, M.I. Strategies for mitigating chlorinated disinfection byproducts in wastewater treatment plants. Chemosphere 2022, 288, 132583. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.R.; Zeng, X.H.; Bernard, S.; He, Z. Data-driven prediction of neutralizer pH and valve position towards precise control of chemical dosage in a wastewater treatment plant. J. Clean. Prod. 2022, 348, 131360. [Google Scholar] [CrossRef]
- Wang, J.W.; Chen, Y.; Cai, P.G.; Gao, Q.; Zhong, H.H.; Sun, W.L.; Chen, Q. Impacts of municipal wastewater treatment plant discharge on microbial community structure and function of the receiving river in Northwest Tibetan Plateau. J. Hazard. Mater. 2022, 423, 127170. [Google Scholar] [CrossRef] [PubMed]
- Collado, N.; Rodriguez-Mozaz, S.; Gros, M.; Rubirola, A.; Barceló, D.; Comas, J.; Rodriguez-Roda, I.; Buttiglieri, G. Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system. Environ. Pollut. 2014, 185, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Manna, M.; Sen, S. Advanced oxidation process: A sustainable technology for treating refractory organic compounds present in industrial wastewater. Environ. Sci. Pollut. Res. 2022, 14, 1–29. [Google Scholar] [CrossRef]
- Rice, R.G. Applications of ozone for industrial wastewater treatment—A review. Ozone-Sci. Eng. 1996, 18, 477–515. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, J.; Lu, X.L.; Ma, J.; Liu, Y.Z. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process. Environ. Sci. Technol. 2015, 49, 7330–7339. [Google Scholar] [CrossRef]
- Ge, D.M.; Zeng, Z.Q.; Arowo, M.; Zou, H.K.; Chen, J.F.; Shao, L. Degradation of methyl orange by ozone in the presence of ferrous and persulfate ions in a rotating packed bed. Chemosphere 2016, 146, 413–418. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef]
- Zhang, B.T.; Zhang, Y.; Teng, Y.G.; Fan, M.H. Sulfate radical and its application in decontamination technologies. Crit. Rev. Environ. Sci. Tec. 2014, 45, 1756–1800. [Google Scholar] [CrossRef]
- Sharma, J.; Mishra, I.M.; Dionysiou, D.D.; Kumar, V. Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway. Chem. Eng. J. 2015, 276, 193–204. [Google Scholar] [CrossRef]
- Shabiimam, M.A.; Dikshit, A.K. Treatment of municipal landfill leachate by oxidants. Ame. J. Environ. Eng. 2012, 2, 1–5. [Google Scholar]
- Yang, S.Y.; Yang, X.; Shao, X.T.; Niu, R.; Wang, L.L. Activated carbon catalysed persulfate oxidation of azo dye acid orange 7 at ambient temperature. J. Hazard. Mater. 2011, 186, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Cong, J.; Wen, G.; Huang, T.L.; Deng, L.Y.; Ma, J. Study on enhanced ozonation degradation of para-chlorobenzoic acid by peroxymonosulfate in aqueous solution. Chem. Eng. J. 2015, 264, 399–403. [Google Scholar] [CrossRef]
- Deniere, E.; Alagappan, R.P.; Langenhove, H.V.; Hulle, S.V.; Demeestere, K. The ozone-activated peroxymonosulfate process (O3/PMS) for removal of trace organic contaminants in natural and wastewater: Effect of the (in)organic matrix composition. Chem. Eng. J. 2022, 430, 133000. [Google Scholar] [CrossRef]
- Yuan, Z.; Sui, M.H.; Yuan, B.J.; Li, P.; Wang, J.Y.; Qin, J.; Xu, G.Y. Degradation of ibuprofen using ozone combined with peroxymonosulfate. Environ. Sci. Water Res. Technol. 2017, 3, 960–969. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Moreno-Andrés, J.; Morillo-Ponce, J.; Ibáñez-López, M.E.; Acevedo-Merino, A.; García-Morales, J.L. Disinfection enhancement of single ozonation by combination with peroxymonosulfate salt. J. Environ. Chem. Eng. 2020, 8, 104335. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.L. Degradation and mineralization of ofloxacin by ozonation and peroxone (O3/H2O2) process. Chemosphere 2021, 269, 128775. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, E.; Wang, J.; Zhang, X.Y.; Huang, H.O.; Yu, G.; Wang, Y.Y. Comparison of emerging contaminant abatement by conventional ozonation, catalytic ozonation, O3/H2O2 and electro-peroxone processes. J. Hazard. Mater. 2020, 389, 121829. [Google Scholar] [CrossRef]
- Gunten, U.V. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef] [PubMed]
- Gunten, U.V. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003, 37, 1469–1487. [Google Scholar] [CrossRef] [PubMed]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution. J. Phys. Chem. Ref. Data. 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Sonntag, C.V.; Gunten, U.V. Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications; IWA Publishing: London, UK, 2012; pp. 23–64. [Google Scholar]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data. 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Lutze, H.; Bircher, S.; Rapp, I.; Kerlin, N.; Bakkour, R.; Geisler, M.; Sonntag, C.; Schmidt, T.C. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter. Environ. Sci. Technol. 2015, 49, 1673–1680. [Google Scholar] [CrossRef]
- Li, X.Y.; Jie, B.R.; Lin, H.D.; Deng, J.P.; Qian, J.Y.; Yang, Y.Q.; Zhang, X.D. Application of sulfate radicals-based advancedoxidation technology in degradation of trace organic contaminants (TrOCs): Recent advances and prospects. J. Environ. Manag. 2022, 308, 114664. [Google Scholar] [CrossRef]
- Monteagudo, J.M.; El-taliawy, H.; Durán, A.; Caro, G.; Bester, K. Sono-activated persulfate oxidation of diclofenac:Degradation, kinetics, pathway and contribution of the different radicals involved. J. Hazard. Mater. 2018, 357, 457–465. [Google Scholar] [CrossRef]
- Dong, J.Y.; Yang, P.Z.; Liu, G.Q.; Kong, D.Y.; Ji, Y.F.; Lu, J.H. Transformation of amino acids and formation of nitrophenolic byproducts in sulfate radical oxidation processes. J. Hazard. Mater. 2022, 431, 128648. [Google Scholar] [CrossRef]
- Sun, B.; Zheng, Y.Z.; Shang, C.; Yin, R. Concentration-dependant chloride effect on radical distribution and micropollutant degradation in the sulfate radical-based AOPs. J. Hazard. Mater. 2022, 430, 128450. [Google Scholar] [CrossRef]
- Lei, X.; Lei, Y.; Guan, J.M.; Westerhoff, P.; Yang, X. Kinetics and Transformations of Diverse Dissolved Organic Matter Fractions with Sulfate Radicals. Environ. Sci. Technol. 2022, 56, 4457–4466. [Google Scholar] [CrossRef]
- Gara, P.M.D.; Bosio, G.N.; Gonzalez, M.C.; Martire, D.O. Kinetics of the sulfate radical-mediated photo-oxidation of humic substances. Int. J. Chem. Kinet. 2007, 40, 19–24. [Google Scholar] [CrossRef]
- Mao, Y.X.; Dong, H.Y.; Liu, S.G.; Zhang, L.P.; Qiang, Z.M. Accelerated oxidation of iopamidol by ozone/peroxymonosulfate (O3/PMS) process: Kinetics, mechanism, and simultaneous reduction of iodinated disinfection by-product formation potential. Water Res. 2020, 173, 115615. [Google Scholar] [CrossRef]
- Lind, J.; Merényi, G.; Johansson, E.; Brinck, T. Reaction of peroxyl radicals with ozone in water. J. Phys. Chem. A. 2003, 107, 676–681. [Google Scholar] [CrossRef]
- Fischbacher, A.; Sonntag, J.V.; Sonntag, C.V.; Schmidt, T.C. The •OH radical yield in the H2O2 + O3 (peroxone) reaction. Environ. Sci. Technol. 2013, 47, 9959–9964. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Huang, J.; Li, X.K.; Li, L.S. The relation of interface electron transfer and PMS activation by the H-bonding interaction between composite metal and MCM-48 during sulfamethazine ozonation. Chem. Eng. J. 2020, 398, 125529. [Google Scholar] [CrossRef]
- Ghanbari, F.; Khatebasreh, M.; Mahdavianpour, M.; Lin, K.A. Oxidative removal of benzotriazole using peroxymonosulfate/ozone/ultrasound: Synergy, optimisation, degradation intermediates and utilising for real wastewater. Chemosphere 2020, 244, 125326. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.B.; Ma, W.X.; Wang, J.Y.; Xu, H.N.; Li, K.; Huang, T.L.; Ma, J.; Wen, G. Adding CuCo2O4-GO to inhibit bromate formation and enhance sulfamethoxazole degradation during the ozone/peroxymonosulfate process: Efficiency and mechanism. Chemosphere 2022, 286, 131829. [Google Scholar] [CrossRef]
- Yang, N.; Cui, J.X.; Zhang, L.Y.; Xiao, W.; Alshawabkeh, A.N.; Mao, X.H. Iron electrolysisassisted peroxymono-sulfate chemical oxidation for the remediation of chlorophenol-contaminated groundwater. J. Chem. Technol. Biotechnol. 2016, 91, 938–947. [Google Scholar] [CrossRef]
- Chen, Q.K.; Ji, F.Y.; Liu, T.Y.; Yan, P.; Guan, W.; Xu, X. Synergistic effect of bifunctional Co-TiO2 catalyst on degradation of Rhodamine B: Fenton-Photo hybrid process. Chem. Eng. J. 2013, 229, 57–65. [Google Scholar] [CrossRef]
- Deniere, E.; Hulle, S.V.; Langenhove, H.V.; Demeestere, K. Advanced oxidation of pharmaceuticals by the ozone-activated peroxymonosulfate process: The role of different oxidative species. J. Hazard. Mater. 2018, 360, 204–213. [Google Scholar] [CrossRef]
- Li, Y.Y.; Lu, C.; Zhu, N.L.; Chao, J.; Hu, W.J.; Zhang, Z.Y.; Wang, Y.J.; Liang, L.C.; Chen, J.K.; Xu, D.D.; et al. Mobilization and methylation of mercury with sulfur addition in paddy soil: Implications for integrated water-sulfur management in controlling Hg accumulation in rice. J. Hazard. Mater. 2022, 430, 128447. [Google Scholar] [CrossRef] [PubMed]
- Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Okolie, J.A.; Mackay, W.; Rateb, M.; Yaseen, M. Ozone application in different industries: A review of recent developments. Chem. Eng. J. 2023, 454, 140188. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Wang, G.J.; Ge, D.D.; Dong, Y.T.; Wang, H.; Wang, Y.H.; Zhu, N.W.; Yuan, H.P. Enhanced waste activated sludge dewaterability by the ozone-peroxymonosulfate oxidation process: Performance, sludge characteristics, and implication. Sci. Total Environ. 2022, 807, 151025. [Google Scholar] [CrossRef] [PubMed]
- Wen, G.; Wang, S.B.; Wang, T.; Feng, Y.B.; Chen, Z.H.; Lin, W.; Huang, T.L.; Ma, J. Inhibition of bromate formation in the O3/ PMS process by adding low dosage of carbon materials: Efficiency and mechanism. Chem. Eng. J. 2020, 402, 126207. [Google Scholar] [CrossRef]
- Luo, Y.Y.; Liu, C.; Mehmood, T.; Zhang, M.Y.; Ren, Y.Y. Activation of permonosulfate by Co-Fe3O4 composite catalyst for amino acid removal: Performance and mechanism of Co-Fe3O4 nanoparticles. J. Environ.Chem. Eng. 2021, 9, 106036. [Google Scholar] [CrossRef]
- Wu, G.Y.; Qin, W.L.; Sun, L.; Yuan, X.J.; Xia, D.S. Role of peroxymonosulfate on enhancing ozonation for micropollutant degradation: Performance evaluation, mechanism insight and kinetics study. Chem. Eng. J. 2019, 360, 115–123. [Google Scholar] [CrossRef]
- Akbari, S.; Ghanbari, F.; Moradi, M. Bisphenol A degradation in aqueous solutions by electrogenerated ferrous ion activated ozone, hydrogen peroxide and persulfate: Applying low current density for oxidation mechanism. Chem. Eng. J. 2016, 294, 298–307. [Google Scholar] [CrossRef]
- Liu, X.Y.; Hong, Y.T.; Ding, S.K.; Wei, J.; Dong, S.K.; Xiao, R.; Chu, W.H. Transformation of antiviral ribavirin during ozone/PMS intensified disinfection amid COVID-19 pandemic. Sci. Total Environ. 2021, 790, 148030. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, X.J.; Zhou, J.Z.; Huang, Z.F.; Liu, S.; Qian, G.R.; Gao, N.Y. Bromate inhibition by reduced graphene oxide in thermal/PMS process. Water Res. 2017, 122, 701–707. [Google Scholar] [CrossRef]
- Wang, L.; Jing, K.; Hu, B.W.; Lu, J.H. Hydrogen peroxide suppresses the formation of brominated oxidation by-products in heat-activated peroxydisulfate oxidation process. Chem. Eng. J. 2021, 417, 129138. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, J. Mechanism of the Impact of Inorganic Anions on Thpical Organic Contaminant Degradations by •OH and SO4•−; Harbin Institute of Technology: Harbin, China, 2015. (In Chinese) [Google Scholar]
- Wang, L.; Guan, J.; Han, H.; Yao, M.Y.; Kang, J.; Peng, M.; Wang, D.S.; Xu, J.Y.; Hao, J.M. Enhanced photocatalytic removal of ozone by a new chlorine-radical-mediated strategy. Appl. Catal. B Environ. 2022, 306, 121–130. [Google Scholar] [CrossRef]
- Hendy, C.M.; Smith, G.C.; Xu, Z.H.; Lian, T.Q.; Jui, N.T. Radical Chain Reduction via Carbon Dioxide Radical Anion (CO2•−). J. AM. Chem. Soc. 2021, 143, 8987–8992. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.M.; Guo, Z.Y.; Wang, J.Q.; Zhang, L.L.; Guo, Y.C.; Yoshimura, C.; Niu, J.F. Photodegradation of acebutolol in natural waters: Important roles of carbonate radical and hydroxyl radical. Chemosphere 2022, 287, 132318. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.A.; Coeur, C.; Houzel, N.; Bouya, H.; Tomas, A.; Romanias, M.N. Rate Coefficients for the Gas-Phase Reactions of Nitrate Radicals with a Series of Furan Compounds. J. Phys. Chem. A. 2022, 126, 8674–8681. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Schmidhammer, U.; Mostafavi, M. Picosecond Pulse Radiolysis of Highly Concentrated Phosphoric Acid Solutions: Mechanism of Phosphate Radical Formation. J. Phys. Chem. B. 2014, 349, 91405. [Google Scholar] [CrossRef]
- Jayson, G.G.; Parsons, B.J.; Swallow, A.J. Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter. J. Chem. Soc. Faraday Trans. 1973, 1, 1597–1607. [Google Scholar] [CrossRef]
- Das, T.N. Reactivity and Role of SO5•− Radical in Aqueous Medium Chain Oxidation of Sulfite to Sulfate and Atmospheric Sulfuric Acid Generation. J. Phys. Chem. A 2001, 105, 9142–9155. [Google Scholar] [CrossRef]
- Yu, X.Y.; Barker, J.R. Hydrogen Peroxide Photolysis in Acidic Aqueous Solutions Containing Chloride Ions. II. Quantum Yield of Ho Center Dot(Aq) Radicals. J. Phys. Chem. A 2003, 107, 1325–1332. [Google Scholar]
- Wu, D.; Wong, D.; Dibartolo, B. Evolution of Cl2− in Aqueous Nacl Solutions. J. Photochem. 1980, 14, 303–310. [Google Scholar] [CrossRef]
- Grigorev, A.E.; Makarov, I.E.; Pikaev, A.K. Formation of Cl2− in the Bulk Solution During the Radiolysis of Concentrated Aqueous-Solutions of Chlorides. High Energ. Chem. 1987, 21, 99–102. [Google Scholar]
- Huie, R.E.; Clifton, C.L. Temperature Dependence of the Rate Constants for Reactions of the Sulfate Radical, SO4−, with Anions. J. Phy. Chem. 1990, 94, 8561–8567. [Google Scholar] [CrossRef]
- Zuo, Z.H.; Cai, Z.L.; Katsumura, Y.; Chitose, N.; Muroya, Y. Reinvestigation of the Acid-Base Equilibrium of the (bi)Carbonate Radical and Ph Dependence of Its Reactivity with Inorganic Reactants. Radiat. Phy. Chem. 1999, 55, 15–23. [Google Scholar] [CrossRef]
- Jaafarzadeh, N.; Ghanbari, F.; Ahmadi, M. Efficient degradation of 2, 4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: A novel combination of advanced oxidation processes. Chem. Eng. J. 2017, 320, 436–447. [Google Scholar] [CrossRef]
- Naumov, S.; Mark, G.; Jarocki, A.; von Sonntag, C. The reactions of nitrite ion with ozone in aqueous solution–new exper-imental data and quantum-chemical considerations. Ozone Sci. Eng. 2010, 32, 430–434. [Google Scholar] [CrossRef]
- Crittenden, J.C.; Hu, S.; Hand, D.W.; Green, S.A. A Kinetic Model for H2O2/UV Process in a Completely Mixed Batch Reactor. Water Res. 1999, 33, 2315–2328. [Google Scholar] [CrossRef]
- Keen, O.S.; Mckay, G.; Mezyk, S.P.; Linden, K.G.; Rosario-Ortiz, F.L. Identifying the Factors That Influence the Reactivity of Effluent Organic Matter with Hydroxyl Radicals. Water Res. 2014, 50, 408–419. [Google Scholar] [CrossRef]
- Buffle, M.O.; Gunten, U.V. Phenols and Amine Induced HO• Generation During the Initial Phase of Natural Water Ozonation. Environ. Sci. Technol. 2006, 40, 3057–3063. [Google Scholar] [CrossRef]
- Asghar, A.; Lutze, H.V.; Tuerk, J.; Schmidt, T.C. Influence of water matrix on the degradation of organic micropollutants by ozone based processes: A review on scavenging mechanism. J. Hazard. Mater. 2022, 429, 128189. [Google Scholar] [CrossRef]
- Shao, Y.; Pang, Z.C.; Wang, L.L.; Liu, X.W. Efficient degradation of acesulfame by ozone/peroxy-monosulfate advanced oxidation process. Molecules 2019, 24, 2874. [Google Scholar] [CrossRef] [Green Version]
- Matthew, B.M.; Anastasio, C. A chemical probe technique for the determination of reactive halogen species in aqueous solution: Part 1—Bromide solutions. Atmos. Chem. Phys. 2006, 6, 2423–2437. [Google Scholar] [CrossRef] [Green Version]
- Grebel, J.E.; Pignatello, J.J.; Mitch, W.A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environ. Sci. Technol. 2010, 44, 6822–6828. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Yang, W.P.; Liu, Y.; Zhang, W.X.; Wang, Z.H.; Nie, J.X.; Li, G.B.; Liang, H. Removal of manganese, ferrous and antibiotics from groundwater simultaneously ussing peroxymonosulfate-assisted in-situ oxidation/coagulation integrated with ceramic membrane process. Sep. Purif. Technol. 2020, 252, 117492. [Google Scholar] [CrossRef]
- Glaze, W.H.; Kang, J.W.; Chapin, D.H. The chemistry of water treatment processes involving o-zone, hydrogen peroxide and ultraviolet radiation. Ozone-Sci. Eng. 1987, 9, 335–352. [Google Scholar] [CrossRef]
- Lu, H.; Li, Q.P.; Feng, W.H. Application progress of O3/UV advanced oxidation technology in the treatment of organic pollutants in water. Sustainability 2022, 14, 1556. [Google Scholar] [CrossRef]
- Neta, P.; Madhavan, V.; Zemel, H.; Fessenden, R.W. Rate constants and mechanism of reaction of SO4•− with aromatic compounds. J. Am. Chem. Soc. 1977, 99, 163–164. [Google Scholar] [CrossRef]
- Cidlinová, A.; Wittlingerová, Z.; Zimová, M.; Chrobáková, T.; Petruželková, A. Ecotoxicity of wastewater from medical facilities: A review. Environ. Sci. 2018, 49, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Al-Najar, H.; Ghourab, A.; Eid, R.; Farhouda, H. Medical wastewater characterisation in the gaza strip: Al-shifa medical complex as a case study. Health Scope. 2018, 7, 14513. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, J.; Guisasola, A.; Vilanova, R.; Baeza, J.A. Improving the performance of a wwtp control system by model-based setpoint optimisation. Environ. Modell. Softw. 2011, 26, 492–497. [Google Scholar] [CrossRef]
- Chen, X.P.; Lei, L.; Liu, S.T.; Han, J.; Li, R.W.; Men, J.; Li, L.; Wei, L.; Sheng, Y.Q.; Yang, L.H.; et al. Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan, China. Sci. Total Environ. 2021, 792, 148352. [Google Scholar] [CrossRef]
- Mathon, B.; Coquery, M.; Liu, Z.; Penru, Y.; Guillon, A.; Esperanza, M.; Miege, C.; Choubert, J.M. Ozonation of 47 organic micropollutants in secondary treated municipal effluents: Direct and indirect kinetic reaction rates and modelling. Chemosphere 2021, 262, 127969. [Google Scholar] [CrossRef]
- Xiao, R.Y.; Luo, Z.H.; Wei, Z.S.; Luo, S.; Spinney, R.; Yang, W.C.; Dionysiou, D.D. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advancedoxidation technologies. Curr. Opin. Chem. Eng. 2018, 19, 51–58. [Google Scholar] [CrossRef]
- Deniere, E.; Chys, M.; Audenaert, W.; Nopens, I.; Langenhove, H.V.; Hulle, S.V.; Demeestere, K. Status and needs for online control of tertiary ozone-based water treatment: Use of surrogate correlation models for removal of trace organic contaminants. Rev. Environ. Sci. Biotechnol. 2021, 20, 297–331. [Google Scholar] [CrossRef]
- Ghanbari, F.; Khatebasreh, M.; Mahdavianpour, M.; Mashayekh-Salehi, A.; Aghayani, E.; Lin, K.A.; Noredinvand, B.K. Evaluation of peroxymonosulfate/O3/UV process on a real polluted water zwith landfill leachate: Feasibility and comparative study. Korean J. Chem. Eng. 2021, 38, 1416–1424. [Google Scholar] [CrossRef]
- Wang, H.W.; Xiao, W.S.; Zhang, C.; Sun, Y.J.; Wang, Y.N.; Gong, Z.G.; Zhan, M.L.; Fu, Y.X.; Liu, K.Q. Effective removal of refractory organic contaminants from reverse osmosis concentrated leachate using PFS-nZVI/PMS/O3 process. Waste Manag. 2021, 128, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.Q.; Cui, X.X.; Sun, K.C.; Xiang, H.M.; Du, E.D.; Deng, L.; Gao, H.Y. Kinetic mechanism of ozone activated peroxymonosulfate system for enhanced removal of anti-inflammatory drugs. Sci. Total Environ. 2020, 733, 139250. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.W.; Wang, W.L.; Lee, M.Y.; Wu, Q.Y.; Guan, Y.T. Synergistic effects of ozone/peroxy-monosulfate for isothiazolinone biocides degradation: Kinetics, synergistic performance and influencing factors. Environ. Pollut. 2022, 294, 118626. [Google Scholar] [CrossRef]
- Tang, G.M.; Zhang, Y.B.; Wei, Y.J.; Wang, S.; Liu, P.; Jia, Z.H.; Yu, X.M.; Ma, F. Advanced treatment of bio-treated Chinese patent medicine wastewater using ozone/peroxymonosulfate-upflow biological aerated filter. Chem. Eng. J. 2020, 390, 124527. [Google Scholar] [CrossRef]
- Elovitz, M.S.; Gunten, U.V.; Kaiser, H. Hydroxyl Radical/Ozone Ratios During Ozonation Processes.Ⅱ. The Effect of Temperature, pH, Alkalinity, and DOM Properties. Ozone-Sci. Eng. 2008, 22, 123–150. [Google Scholar] [CrossRef]
- Buffle, M.O.; Schumacher, J.; Meylan, S.; Jekel, M.; Gunten, U.V. Ozonation and Advanced Oxidation of Wastewater: Effect of O3 Dose, pH, DOM and HO•-Scavengers on Ozone Decomposition and HO• Generation. Ozone-Sci. Eng. 2006, 28, 247–259. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, Z.T.; Li, K.; Huang, T.L.; Ma, J.; Wen, G. Degradation of Micropollutants and Formation of Oxidation By-Products during the Ozone/Peroxymonosulfate System: A Critical Review. Water 2021, 13, 3126. [Google Scholar] [CrossRef]
- Merle, T.; Pronk, W.; Gunten, U.V. MEMBRO3X, a Novel Combination of a Membrance Contactor with Advanced Oxidation (O3/H2O2) for Simultaneous Micropollutant Abatement and Bromate Minimization. Environ. Sci. Technol. Lett. 2017, 4, 180–185. [Google Scholar] [CrossRef]
- Song, Y.; Feng, S.; Qin, W.; Li, J.; Guan, C.T.; Zhou, Y.; Gao, Y.; Zhang, Z.; Jin, J. Formation mechanism and control strategies of N-nitrosodimethylamine (NDMA) formation during ozonation. Sci. Total Environ. 2022, 823, 153679. [Google Scholar] [CrossRef] [PubMed]
- Aziz, K.H.H. Application of different advanced oxidation processes for the removal of chloroacetic acids using a planar falling film reactor. Chemosphere 2019, 228, 377–383. [Google Scholar] [CrossRef]
- Parsaee, F.; Senarathna, M.C.; Kannangara, P.B.; Alexander, S.N.; Arche, P.D.E.; Welin, E.R. Radical philicity and its role in selective organic transformations. Nat. Rev. Chem. 2021, 5, 486–499. [Google Scholar] [CrossRef]
- Liu, Z.; Wen, G.; Ni, Y.L.; Wang, S.B.; Wang, S.; Yu, Y.; Huang, T.L.; Ma, J. Inhibition of bromate formation in the ozone/peroxymonosulfate process by ammonia, ammonia-chlorine and chlorine-ammonia pretreatment: Comparisons with ozone alone. Sep. Purif. Technol. 2022, 278, 119600. [Google Scholar] [CrossRef]
- Wen, G.; Wang, S.J.; Ma, J.; Huang, T.L.; Liu, Z.Q.; Zhao, L.; Su, J.F. Enhanced ozonation degradation of di-n-butyl phthalate by zero-valent zinc in aqueous solution: Performance and mechanism. J. Hazard. Mater. 2014, 265, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Song, W.H.; Yan, S.W.; Cooper, J.W.; Dionysiou, D.D.; O’Shea, K.E. Hydroxyl Radical Oxidation of Cylindrospermopsin (Cyanobacterial Toxin) and Its Role in the Photochemical Transformation. Environ. Sci. Technol. 2012, 46, 12608–12615. [Google Scholar] [CrossRef]
- Antoniou, M.G.; Cruz, A.A.D.L.; Dionysiou, D.D. Intermediates and reaction pathways from the degradation of microcystin-lr with sulfate radicals. Environ. Sci. Technol. 2010, 44, 7238–7244. [Google Scholar] [CrossRef]
- Méndez-Díaz, J.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Canonica, S.; Gunten, U.V. Advanced oxidation of the surfactant SDBS by means of hydroxyl and sulphate radicals. Chem. Eng. J. 2010, 163, 300–306. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Dong, G.H.; Chen, B.; Liu, B.; Hounjet, L.J.; Cao, Y.Q.; Stoyanov, S.R.; Yang, M.; Zhang, B.Y. Advanced oxidation processes in microreactors for water and wastewater treatment: Development, challenges, and opportunities. Water Res. 2022, 211, 118047. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Fan, X.Q.; Gu, M.B.; Gagnetta, G.; Huang, J.; Yu, G. Confined-space strategy for anchoring catalytic nanoparticles on Si-OH by ball milling for enhanced O3/PMS oxidation of ciprofloxacin. Chem. Eng. J. 2022, 429, 132318. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, N.; Lv, G.C.; Zhang, Y.L.; Chen, Y.Q.; Liu, X.Y.; Sun, X.M.; Zhu, F.P. Experimental and theoretical insight into the transformation behaviors and risk assessment of Flutamide in UV/O3/PMS system. J. Clean. Prod. 2022, 375, 134167. [Google Scholar] [CrossRef]
- Park, J.; Bae, S.J.; Choi, Y.J.; Choe, J.K. Rh-Pd/TiO2 as bilateral catalysts for reductive and oxidative degradation of fluorinated pharmaceutical contaminants. Appl. Catal. B Environ. 2023, 322, 122089. [Google Scholar] [CrossRef]
No. | Reaction | Reaction Rate Constant | References |
---|---|---|---|
1 | 2.12 × 104 | [17] | |
2 | none | [17] | |
3 | none | [17] | |
4 | none | [43] | |
5 | none | [43] | |
6 | 1.6 × 105 M−1·s−1 | [43,44] | |
7 | 2.1 × 108 M−1·s−1 | [43,44] | |
8 | 2.2 × 108 M−1·s−1 | [43,44] | |
9 | <3 × 103 M−1·s−1 | [36,43] | |
10 | 7.3 × 107 M−1·s−1 | [36,43] |
No. | Reaction | Reaction Rate Constant | References |
---|---|---|---|
11 | none | [17] | |
12 | none | [44] | |
13 | none | [45] | |
14 | (6.5 ± 1.0) × 107 M−1·s−1 | [46] | |
15 | <3 × 103 M−1·s−1 | [44] |
Influence Factors | Performance | References | ||
---|---|---|---|---|
pH | pH = 6→7 | pH = 7→9.4 | pH > 9.4 | [17,47,48,49,50,51] |
|
|
| ||
O3 dosage |
| [17,52,53,54] | ||
PMS dosage |
| [42,55,56] | ||
O3: PMS |
| [57,58,59] | ||
Temperature |
| [60,61] | ||
Inorganic anions |
| [62,63,64,65,66,67] | ||
NOM |
| [69,79,80,81,82,83,84] |
Application Scenario | Process Category | Research Findings | Ref. |
---|---|---|---|
High-concentration organic wastewater | O3/PMS | At pH = 7.0, the degradation efficiency of MIT and CMIT increased to 91.0% and 81.8%, respectively, within 90 s. Rct, •R of the O3/PMS process was 24.6 times that of ozonation alone. | [63] |
After O3 preoxidation, the toxicity of DBPs in the system reduced from 6.63 × 10−2 min−1 to 5.27 × 10−2 min−1. However, the increase in pH value could significantly promote the degradation of the two TrOCs, and the kobs values of ASA and PNT increased by 3.3 × 10−2 min−1 and 8.3 × 10−2 min−1, respectively. | [62] | ||
PMS/O3/UV | Under the optimal conditions of pH = 7, PMS = 5.7 g/L and O3 = 1.7 mg/min, the removal rates of TOC, chromaticity, ammonia, COD and BOD by PMS/O3/UV at 75 min were 74%, 98%, 93% and 69%, respectively. | [59] | |
NZVI/PMS/O3 | Under the optimal conditions of 8 g/L FPS, 100 mg/min O3, 1.71 mg/L PMS and 5.58 g/L NZVI, the maximum removal rates of COD and TOC were 89.1% and 83.2%, respectively, and the biodegradability index (BOD5/COD) was increased from 0.02 to 0.32. | [60] | |
PMS/MCFNs/O3 | The biodegradability of activated sludge containing 2,4-D increased from 8.3% to 58.9%, the toxicity decreased from 76.5% to 3.8%, the removal rate of TOC was 67.3% and the removal rate of 2,4-D was 42.7%. | [61] | |
O3/PMS-UBAF | After O3/PMS/UBAF treatment, the COD load was less than 48 mg·L−1, and the BCPMW chromaticity grade was lower than 25. In addition, the overall removal rate and biodegradation rate of DOM in BCPMW were improved by O3/PMS oxidation. | [64] | |
O3/PMS/US | Hydroxyl radical was the main oxidant of BTA oxidation by the O3/PMS/US combined process. The inhibition of anions on BTA removal was NO2− > HCO3− > Cl− > NO3− > SO42−. | [36] |
Scheme | Advantages | Disadvantages |
---|---|---|
Enhancing reactor [113] | It can enable a rapid consumption of O3 to produce free radicals. On the one hand, it can reduce the production of OBPs in the system and the toxicity of secondary effluent. On the other hand, it can reduce the consumption of O3, thereby reducing energy consumption and cost. | It increases equipment costs. |
Adding catalyst [114] | The addition of a catalyst can increase the formation rate of two free radicals by adding metal ions such as Fe2+, M2+ or other catalysts. | The catalyst can react with other inorganic ions or NOM in the system to form DBPs. |
Integrating with other processes [115] | Integration with UV, US and other processes can increase the generation rate of the two free radicals. | Currently, this scheme does not qualitatively improve the degradation efficiency of the O3/PMS process but increases the cost. |
Preremoval of inorganic ions and NOM [116] | Inorganic ions with adverse effects in the system can be removed in advance, or the concentration of NOM can be controlled by biosorption or sludge method. | The cost increases, and the degradation process becomes complex and lengthy. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, B.; Li, Q.; Chen, X.; Deng, H.; Feng, W.; Lu, H. Application of O3/PMS Advanced Oxidation Technology in the Treatment of Organic Pollutants in Highly Concentrated Organic Wastewater: A Review. Separations 2022, 9, 444. https://doi.org/10.3390/separations9120444
Yan B, Li Q, Chen X, Deng H, Feng W, Lu H. Application of O3/PMS Advanced Oxidation Technology in the Treatment of Organic Pollutants in Highly Concentrated Organic Wastewater: A Review. Separations. 2022; 9(12):444. https://doi.org/10.3390/separations9120444
Chicago/Turabian StyleYan, Bojiao, Qingpo Li, Xinglin Chen, Huan Deng, Weihao Feng, and Hai Lu. 2022. "Application of O3/PMS Advanced Oxidation Technology in the Treatment of Organic Pollutants in Highly Concentrated Organic Wastewater: A Review" Separations 9, no. 12: 444. https://doi.org/10.3390/separations9120444
APA StyleYan, B., Li, Q., Chen, X., Deng, H., Feng, W., & Lu, H. (2022). Application of O3/PMS Advanced Oxidation Technology in the Treatment of Organic Pollutants in Highly Concentrated Organic Wastewater: A Review. Separations, 9(12), 444. https://doi.org/10.3390/separations9120444