Effects and Mechanism of Fe3+ on Flotation Separation of Feldspar and Epidote with Sodium Oleate at Natural pH
Abstract
:1. Introduction
2. Experiments
2.1. Samples and Reagents
2.2. Flotation Experiments
2.3. Adsorption Measurement
2.4. Zeta Potential Test
2.5. FTIR Analysis
2.6. XPS Investigation
3. Results and Discussion
3.1. Flotation Experiments and Adsorption Measurements
3.2. Calculation Analysis of the Solution
3.3. Zeta Potential Tests
3.4. FTIR Analysis
3.5. XPS Investigation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelmalek, B.; Rekia, B.; Youcef, B.; Lakhdar, B.; Nathalie, F. Mineralogical characterization of Neogene clay areas from the Jijel basin for ceramic purposes (NEAlgeria-Africa). Appl. Clay. Sci. 2017, 136, 176–183. [Google Scholar] [CrossRef]
- Akkal, R.; Ouldhamou, M. Comparative study of mineral processing applied to the local feldspar’s assessment. In Proceedings of the 24th International Mining Congress of Turkey, Antalya, Turkey, 14–17 April 2015; pp. 1135–1143. [Google Scholar]
- Zhang, Y.; Hu, Y.H.; Sun, N.; Liu, R.Q.; Wang, Z.; Wang, L.; Sun, W. Systematic review of feldspar beneficiation and its comprehensive application. Miner. Eng. 2018, 128, 141–152. [Google Scholar] [CrossRef]
- Xu, L.H.; Hu, Y.H.; Tian, J.; Wu, H.Q.; Yang, Y.H.; Zeng, X.B.; Wang, Z.; Wang, J.M. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors. Miner. Eng. 2016, 89, 84–92. [Google Scholar] [CrossRef]
- Zahradník, J.; Jirásek, J.; Starý, J.; Sivek, M. Production, Reserves, and Processing of Feldspar and Feldspathoid Rocks in the Czech Republic from 2005 to 2019—An Overview. Minerals 2020, 10, 722. [Google Scholar] [CrossRef]
- Larsen, E.; Kleiv, R.A. Flotation of quartz from quartz-feldspar mixtures by the HF method. Miner. Eng. 2016, 98, 49–51. [Google Scholar] [CrossRef]
- Liu, J.; Chen, W.Y.; Han, Y.X.; Yuan, H.Q. Study on flotation mechanism of separation of potassium feldspar from quartz with anion and cation mixed collector. In Advanced Materials Research; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2013. [Google Scholar]
- Liu, Z.; Sun, Z.; Yu, J.G. Investigation of dodecylammonium adsorption on mica, albite and quartz surfaces by QM/MM simulation. Mol. Phys. 2015, 113, 3423–3430. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Y.; Qin, Y.; Wu, Z.; Wang, T.; Wang, C. The leaching kinetics of K-feldspar in sulfuric acid with the aid of ultrasound. Ultrason. Sonochem. 2017, 35, 304–312. [Google Scholar] [CrossRef]
- Vapur, H.; Top, S.; Demirci, S. Purification of feldspar from colored impurities using organic acids. Physicochem. Probl. Miner. Process. 2017, 53, 150–160. [Google Scholar]
- Yuan, B.; Li, C.; Liang, B.; Lü, L.; Yue, H.; Sheng, H.; Ye, L.; Xie, H. Extraction of potassium from K-feldspar via the CaCl2 calcination route. Chin. J. Chem. Eng. 2015, 23, 1557–1564. [Google Scholar] [CrossRef]
- Silva Junior, E.F.D.; Guzzo, P.L.; Neumann, R.; Oliveira, J.C.D.S.; Sampaio, J.A. Separação de epídoto pelo fracionamento de estéreis da lavra de scheelita da Província da Borborema (RN). Rem. Rev. Esc. Minas 2008, 61, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Bayat, O.; Arslan, V.; Cebeci, Y. Combined application of different collectors in the floatation concentration of Turkish feldspars. Miner. Eng. 2006, 19, 98–101. [Google Scholar] [CrossRef]
- Demir, C.; Gulgonul, I.; Bentli, I.; Celik, M.S. Differential separation of albite from microcline by monovalent salts in HF medium. Miner. Metall. Proc. 2003, 20, 120–124. [Google Scholar] [CrossRef]
- Gulgonul, I.; Karaguzel, C.; Cinar, M.; Celik, M.S. Interaction of sodium ions with feldspar surfaces and its effect on the selective separation of Na- and K-feldspars. Miner. Process. Extr. Metall. Rev. 2012, 33, 233–245. [Google Scholar] [CrossRef]
- Hacifazlioglu, H.; Kursun, I.; Terzi, M. Beneficiation of low-grade feldspar ore using cyclojet flotation cell, conventional cell and magnetic separator. Physicochem. Probl. Miner. Process. 2012, 48, 381–392. [Google Scholar]
- Heyes, G.W.; Allan, G.C.; Bruckard, W.J.; Sparrow, G.J. Review of flotation of feldspar. Miner. Process. Extr. Metall. Rev. 2013, 121, 72–78. [Google Scholar] [CrossRef]
- Ejtemaeia, M.; Irannajad, M.; Gharabaghi, M. Role of dissolved mineral species in selective flotation of smithsonite from quartz using oleate as collector. Int. J. Miner. Process. 2012, 114–117, 40–47. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Yu, F.-S. Effects of metallic ions on the flotation of spodumene and beryl. J. China Univ. Min. Technol. 2007, 17, 35–39. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Pradip. Zeta potentials in the flotation of oxide and silicate minerals. Adv. Colloid Interface Sci. 2005, 114–115, 9–26. [Google Scholar] [CrossRef]
- Fornasiero, D.; Ralston, J. Cu(II) and Ni(II) activation in the flotation of quartz, lizardite and chlorite. Int. J. Miner. Process. 2005, 76, 75–81. [Google Scholar] [CrossRef]
- Tian, J.; Xu, L.H.; Wu, H.Q.; Fang, S.; Deng, W.; Peng, T.F.; Sun, W.; Hu, Y.H. A novel approach for flotation recovery of spodumene, mica and feldspar from a lithium pegmatite ore. J. Clean. Prod. 2018, 174, 625–633. [Google Scholar] [CrossRef]
- Xie, R.; Zhu, Y.; Li, Y.; Han, Y. Flotation behavior and mechanism of a new mixed collector on separation of spodumene from feldspar. Colloids Surf. A Physicochem. Eng. Asp. 2020, 599, 124932. [Google Scholar] [CrossRef]
- Xie, R.; Zhu, Y.; Liu, J.; Wang, X.; Li, Y. Differential collecting performance of a new complex of decyloxy-propyl-amine and α-bromododecanoic acid on flotation of spodumene and feldspar. Miner. Eng. 2020, 153, 106377. [Google Scholar] [CrossRef]
- Vidyadhar, A.; Rao, K.H. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system. J. Colloid Interface Sci. 2007, 306, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Wade, L.G. Organic Chemistry: International Edition, 8th ed.; Pearson Schweiz Ag: Zug, Switzerland, 2012. [Google Scholar]
- Shanghai Institute of Organic Chemistry of CAS. Chemistry Database [DB/OL] 1978–2019. Available online: http://www.organchem.csdb.cn (accessed on 20 December 2021).
- Shchukarev, A.; Sjoberg, S. XPS with fast-frozen samples: A renewed approach to study the real mineral/solution interface. Surf. Sci. 2005, 584, 106–112. [Google Scholar] [CrossRef]
- Yin, W.-Z.; Sun, C.-Y. X-ray photoelectron spectrometric analysis on surface property of silicate minerals. J. Northeast. Univ. Nat. Sci. 2002, 23, 156–159. [Google Scholar]
- Tan, P. Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane. J. Catal. 2016, 338, 21–29. [Google Scholar] [CrossRef]
- Lv, H.; Zhao, H.; Cao, T.; Qian, L.; Wang, Y.; Zhao, G. Efficient degradation of high concentration azo-dye wastewater byheterogeneous Fenton process with iron-based metal-organicframework. J. Mol. Catal. A Chem. 2015, 400, 81–89. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.; Gerson, A.R.; Smart, R.S.C. Smart Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
Na2O | K2O | SiO2 | Al2O3 | CaO | Fe2O3 | |
---|---|---|---|---|---|---|
Feldspar | 10.17 | 0.87 | 70.26 | 17.8 | 0.16 | 0.06 |
Epidote | - | - | 40.58 | 23.96 | 25.11 | 9.65 |
Mineral | Binding Energy/eV | ||||
---|---|---|---|---|---|
C1s | O1s | Fe2p | Al2p | Si2p | |
feldspar | 284.8 | 531.79 | 74.48 | 102.78 | |
feldspar + FeCl3 | 284.8 | 531.87 | 710.82 | 74.57 | 102.9 |
feldspar + NaOL | 284.8 | 532.02 | 74.59 | 102.8 | |
epidote | 284.8 | 531.7 | 712.01 | 74.4 | 102.54 |
epidote + FeCl3 | 284.8 | 531.64 | 711.83 | 74.39 | 102.67 |
epidote + NaOL | 291.5 | 535.5 | 738.1 | 77.0 | 105.2 |
Mineral | Relative Amount/% | ||||
---|---|---|---|---|---|
C1s | O1s | Fe2p | Al2p | Si2p | |
feldspar | 15.67 | 58.20 | 6.68 | 17.28 | |
feldspar + FeCl3 | 22.92 | 49.54 | 2.88 | 4.01 | 12.18 |
feldspar + NaOL | 56.09 | 31.78 | 10.78 | 1.35 | |
epidote | 12.20 | 61.93 | 3.29 | 6.07 | 16.37 |
epidote + FeCl3 | 19.96 | 51.25 | 4.36 | 2.99 | 12.82 |
epidote + NaOL | 53.96 | 32.12 | 0.53 | 8.64 | 4.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, W.; Zhang, G.; Shi, Q.; Ou, L. Effects and Mechanism of Fe3+ on Flotation Separation of Feldspar and Epidote with Sodium Oleate at Natural pH. Separations 2022, 9, 110. https://doi.org/10.3390/separations9050110
Zeng W, Zhang G, Shi Q, Ou L. Effects and Mechanism of Fe3+ on Flotation Separation of Feldspar and Epidote with Sodium Oleate at Natural pH. Separations. 2022; 9(5):110. https://doi.org/10.3390/separations9050110
Chicago/Turabian StyleZeng, Weiwei, Guofan Zhang, Qing Shi, and Leming Ou. 2022. "Effects and Mechanism of Fe3+ on Flotation Separation of Feldspar and Epidote with Sodium Oleate at Natural pH" Separations 9, no. 5: 110. https://doi.org/10.3390/separations9050110
APA StyleZeng, W., Zhang, G., Shi, Q., & Ou, L. (2022). Effects and Mechanism of Fe3+ on Flotation Separation of Feldspar and Epidote with Sodium Oleate at Natural pH. Separations, 9(5), 110. https://doi.org/10.3390/separations9050110