New Approach for Trace Thallium Removal in High Purity Ammonium Rhenate Solution by P204 Extraction
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.1.1. Ammonium Perrhenate Solution
2.1.2. Solvent Extraction System
2.2. Solvent Extraction Method
2.3. Analysis
2.4. Mechanism of P204 Extraction Metals
3. Results and Discussion
3.1. Effects of Factor Variables on Tl Removal
3.1.1. Saponification Degree of P204 on Tl Removal
3.1.2. P204 Concentration on Tl Removal
3.1.3. HCl Concentration on Tl Stripping
3.2. McCabe-Thiele Extraction-Stripping Equilibrium Isotherms
3.2.1. Tl Extraction Equilibrium Isotherms
3.2.2. Tl Stripping Equilibrium Isotherms
3.3. Saturation Capacity of Thallium in Organic Phase
3.4. Mechanism of Thallium Removal by Solvent Extraction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nguyen, V.N.; Ho, K.H. The melting curves of tin, uranium, cadmium, thallium and indium metals under pressure. Chem. Phys. 2022, 553, 111389. [Google Scholar]
- Keith, L.; Telliard, W. ES&T special report: Priority pollutants: I a perspective view. Environ. Sci. Technol. 1979, 13, 416–423. [Google Scholar]
- Casiot, C.; Egal, M.; Bruneel, O.; Verma, N.; Parmentier, M.; Elbaz-Poulichet, F. Predominance of aqueous Tl(I) species in the river system downstream from the abandoned Carnoulès mine (Southern France). Environ. Sci. Technol. 2011, 45, 2056–2064. [Google Scholar] [CrossRef]
- Xiong, Y.L. The aqueous geochemistry of thallium: Speciation and solubility of thallium in low temperature systems. Environ. Chem. 2009, 6, 44–451. [Google Scholar] [CrossRef]
- Shirai, M. Electronic structure of thallium copper chalcogenides T1Cu2S2 and TICu2Se2. Synth. Met. 1995, 71, 1857–1858. [Google Scholar] [CrossRef]
- Rader, S.T.; Mazdab, F.K.; Barton, M.D. Minera logical thallium geochemistry and isotope variations from igneous, metamorphic, and metasomatic systems. Geochim. Cosmochim. Acta 2018, 243, 42–65. [Google Scholar] [CrossRef]
- George, L.L.; Biagioni, C.; Lepore, G.O.; Lacalamita, M.; Agrosì, G.; Capitani, G.C.; Bonaccorsi, E.; D’Acapito, F. The speciation of thallium in (Tl,Sb,As)-rich pyrite. Ore Geol. Rev. 2019, 107, 364–380. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Dong, X.; Yin, M.; Tsang, D.C.; Sun, J.; Liu, J.; Song, G.; Liu, Y. Temporal sedimentary record of thallium pollution in an urban lake: An emerging thallium pollution source from copper metallurgy. Chemosphere 2020, 242, 125–172. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.L.; Ning, R. Experimental study on thallium removal from ammonium perrhenate. Nonferr. Metals Sci. Eng. 2019, 10, 21–25. [Google Scholar]
- Shuang, G.A.O.; Hou, J.S.; Guo, Y.A.; Zhou, L.Z. Phase precipitation behavior and tensile properties of as-cast Ni-based superalloy during heat treatment. Trans. Nonferr. Metal. SOC 2018, 28, 1735–1744. [Google Scholar]
- Wei, Z.; Zhang, L.; Li, X.; Long, Y.; Qu, X. Effect of grain size on deformation behavior of pure rhenium. Mater. Sci. Eng. A 2022, 829, 142–170. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, T.; Lu, F.; Cao, K.; Wang, D.; Zhang, J.; Zhang, J.; Su, H.; Liu, L. The effect of rhenium on the microstructure stability and γ/γ′ interfacial characteristics of Ni-based single crystal superalloys during long-term aging. J. Alloys Compd. 2021, 876, 160114. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Ai, C. Nickel-Based Superalloys, Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Li, H.; Chen, Y.; Long, J.; Li, X.; Jiang, D.; Zhang, P.; Qi, J.; Huang, X.; Liu, J.; Xu, R.; et al. Removal of thallium from aqueous solutions using Fe-Mn binary oxides. J. Hazard. Mater. 2017, 338, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Su, M.; Chen, D.; Zhu, L.; Pang, Y.; Chen, Y. Highly-efficient and easy separation of hexahedral sodium dodecyl sulfonate/δ-FeOOH colloidal particles for enhanced removal of aqueous thallium and uranium ions: Synergistic effect and mechanism study. J. Hazard. Mater. 2021, 402, 123800. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, P.; Borthwick, A.G.; Chen, H.; Ni, J. Adsorption mechanisms of thallium(I) and thallium(III) by titanate nanotubes: Ion-exchange and coprecipitation. J. Colloid Interface Sci. 2014, 423, 67–75. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Long, J.; Jiang, D.; Liu, J.; Li, S.; Qi, J.; Zhang, P.; Wang, J.; Gong, J.; et al. Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins. J. Hazard. Mater. 2017, 333, 179–185. [Google Scholar] [CrossRef]
- Tian, C.; Zhang, B.; Borthwick, A.G.; Li, Y.; Liu, W. Electrochemical oxidation of thallium(I) in groundwater by employing single-chamber microbial fuel cells as renewable power sources. Int. J. Hydrogen Energy 2017, 42, 29454–29462. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wang, X.; Huang, Z.; Xu, C.; Yang, T.; Zhao, X.; Qi, J.; Ma, J. Highly efficient removal of trace thallium from contaminated source waters with ferrate: Role of in situ formed ferric nanoparticle. Water Res. 2017, 124, 149–157. [Google Scholar] [CrossRef]
- Tereshatov, E.E.; Mazan, V.; Boltoeva, M.; Folden, C.M. Effect of hydrophobic ionic liquids aqueous solubility on metal extraction from hydrochloric acid media: Mathematical modelling and trivalent thallium behavior. Sep. Purif. Technol. 2021, 255, 117650. [Google Scholar] [CrossRef]
- Escudero, L.B.; Wuilloud, R.G.; Olsina, R.A. Sensitive determination of thallium species in drinking and natural water by ionic liquid-assisted ion-pairing liquid–liquid microextraction and inductively coupled plasma mass spectrometry. J. Hazard. Mater. 2013, 244, 380–386. [Google Scholar] [CrossRef]
- Sato, T.; Yasumura, H.; Mizuno, Y.; Nishimura, T. Solvent extraction of trivalent gallium, indium, and thallium from hydrochloric acid solutions by TOPO and TBP. Talanta 1996, 59, 905–912. [Google Scholar]
- Zhao, Z.; Xiong, Y.; Cheng, X.; Hou, X.; Yang, Y.; Tian, Y.; You, J.; Xu, L. Adsorptive removal of trace thallium(I) from wastewater: A review and new perspectives. J. Hazard. Mater. 2020, 393, 122378. [Google Scholar] [CrossRef] [PubMed]
- Belova, V.V.; Petyaeva, M.M.; Tsareva, J.V.; Kostanyan, A.E. Solvent extraction of lanthanides(III) from chloride and nitrate media with di(2-ethylhexyl) phosphoric acid and ionic liquids in three-component biphasic solvent systems. Hydrometallurgy 2021, 199, 105526. [Google Scholar] [CrossRef]
- Ghosh, A.; Datta, D.; Uslu, H.; Bamufleh, H.S.; Kumar, S. Separation of copper ion (Cu2+) from aqueous solution using tri-n-butyl phosphate and di-2-ethylhexyl phosphoric acid as extractants. J. Mol. Liq. 2018, 258, 147–154. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Xiao, T.; Chen, Y.; Long, J.; Zhang, G.; Zhang, P.; Li, C.; Zhuang, L.; Li, K. Efficient removal of thallium(I) from wastewater using flower-like manganese dioxide coated magnetic pyrite cinder. Chem. Eng. J. 2018, 353, 867–877. [Google Scholar] [CrossRef]
- Peter, A.L.J.; Viraraghavan, T. Thallium: A review of public health and environmental concerns. Environ. Int. 2005, 31, 493–501. [Google Scholar] [CrossRef]
- YS/T 1017–2015; Rhenium Powder. Standardization Administration of China: Beijing, China, 2015.
- Le, T.; Xiao, B.; Ju, S.; Peng, J.; Jiang, F. Separation of indium from impurities in T-type microreactor with D2EHPA. Hydrometallurgy 2018, 183, 79–86. [Google Scholar] [CrossRef]
Sample | Re/% | Tl/% | K/% | Other Metals/% | Sum (N, H, O, S, P, C)/% |
---|---|---|---|---|---|
Content | 69.06 | 0.0142 | 0.0048 | <0.001 | 30.9191 |
Sample | Re/gL−1 | Tl/mgL−1 | K/mgL−1 |
---|---|---|---|
Concentration | 20.23 | 3.27 | 1.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, A.; Liu, Y.; Lu, X.; Chen, S.; Jiang, H.; Shao, C.; Yuan, X.; Yin, Y. New Approach for Trace Thallium Removal in High Purity Ammonium Rhenate Solution by P204 Extraction. Separations 2022, 9, 221. https://doi.org/10.3390/separations9080221
Yi A, Liu Y, Lu X, Chen S, Jiang H, Shao C, Yuan X, Yin Y. New Approach for Trace Thallium Removal in High Purity Ammonium Rhenate Solution by P204 Extraction. Separations. 2022; 9(8):221. https://doi.org/10.3390/separations9080221
Chicago/Turabian StyleYi, Aifei, Ying Liu, Xingwu Lu, Song Chen, Honglin Jiang, Chuanbing Shao, Xuetao Yuan, and Yanxi Yin. 2022. "New Approach for Trace Thallium Removal in High Purity Ammonium Rhenate Solution by P204 Extraction" Separations 9, no. 8: 221. https://doi.org/10.3390/separations9080221
APA StyleYi, A., Liu, Y., Lu, X., Chen, S., Jiang, H., Shao, C., Yuan, X., & Yin, Y. (2022). New Approach for Trace Thallium Removal in High Purity Ammonium Rhenate Solution by P204 Extraction. Separations, 9(8), 221. https://doi.org/10.3390/separations9080221