The Limited Validity of the Conformable Euler Finite Difference Method and an Alternate Definition of the Conformable Fractional Derivative to Justify Modification of the Method
Abstract
:1. Introduction
- The Euler (ordinary) exponential function is local, whereas the Mittag-Leffler generalized exponential function is non-local (see, e.g., [24]).
- Debye exponential wave patterns, described by and are not fractional, whereas Kohlrausch–Williams–Watts (KWW) stretched exponential wave patterns, described by and are fractional (see, e.g., [25]).
2. The Conformable Euler’s Method
2.1. Derivation of the Conformable Euler’s Method
2.2. Validity of the Conformable Euler’s Method
- (a)
- If , then , so that
- (b)
- If , then , so that
3. The Ordinary Euler’s and Modified Conformable Euler’s Methods
3.1. The Ordinary, Integer-Order Euler’s Method
3.2. The Modified Conformable Euler’s Method
4. Alternative Definition of the CFD and Justification of the MCEM
4.1. An Alternative Definition of the CFD from the ESDDFD Method
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- Ifis first order differentiable, then it also holds that
4.2. Justification of and an Alternative to the Modified Conformable Euler’s Method
5. Comparisons of Discrete Models of the Conformable Relaxation Equation
5.1. Tabular Comparisons of Actual and Relative Errors
5.2. Graphical Comparisons of Actual and Relative Errors
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | conformable fractional derivative |
CEM | conformable Euler method |
OEM | ordinary Euler method |
MCEM | modified conformable Euler method |
NSFD | nonstandard finite difference |
ESDDFD | exact spectral derivative discretization finite difference |
EDM | ESDDFD-based, NSFD Euler method, difference quotient representation |
CRE | conformable relaxation equation |
KWW | Kohlrausch–Williams–Watts |
NID | non-integer derivatives |
NIRE | non-integer relaxation equation |
References
- Mohammadnezhad, V.; Eslami, M.; Rezazadeh, H. Stability analysis of linear conformable fractional differential equations system with time delays. Boletim Soc. Paranaense Mat. 2020, 38, 159–171. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Xin, B.; Peng, W.; Kwon, Y.; Liu, Y. Modeling, discretization, and hyperchaos detection of conformable derivative approach to a financial system with market confidence and ethics risk. Adv. Differ. Equ. 2019, 2019, 138. [Google Scholar] [CrossRef] [Green Version]
- Katugampola, U.N. Correction to “What is a fractional derivative?” by Ortigueira and Machado [Journal of Computational Physics, Volume 293, 15 July 2015, Pages 4–13. Special issue on Fractional PDEs]. J. Comput. Phys. 2016, 2016, 1255–1257. [Google Scholar] [CrossRef] [Green Version]
- Ortigueira, M.D.; Machado, J.T. What is a fractional derivative? J. Comput. Phys. 2015, 293, 4–13. [Google Scholar] [CrossRef]
- Tarasov, V. No Violation of the Leibniz Rule. No Fractional Derivative. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2945–2948. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V. Local Fractional Derivatives of Differentiable Functions are Integer-order Derivatives or Zero. Int. J. Appl. Comput. Math. 2016, 2, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 62, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Abdelhakim, A.A. The flaw in the conformable calculus: It is conformable because it is not fractional. Fract. Calc. Appl. Anal. 2019, 22, 242–254. [Google Scholar] [CrossRef]
- Kiskinov, H.; Petkova, M.; Zahariev, A. Remarks about the existence of conformable derivatives and some consequences. arXiv 2019, arXiv:1907.03486. [Google Scholar]
- Kiskinov, H.; Petkova, M.; Zahariev, A. About the Cauchy Problem for Nonlinear System with Conformable Derivatives and Variable Delays; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 3, p. 050006. [Google Scholar]
- Kiskinov, H.; Petkova, M.; Zahariev, A.; Veselinova, M. Some Results about Conformable Derivatives in Banach Spaces and an Application to the Partial Differential Equations; AIP Publishing LLC: Melville, NY, USA, 2021; Volume 2333, p. 120002. [Google Scholar]
- He, J.-H. A New Fractal Derivation. Therm. Sci. 2011, 15 (Suppl. 1), S145–S147. [Google Scholar] [CrossRef]
- Tuan, N.H.; Ngoc, T.B.; Baleanu, D.; O’Regan, D. On well-posedness of the sub-diffusion equation with conformable derivative model. Commun. Nonlinear Sci. Numer. Simul. 2020, 89, 105332. [Google Scholar] [CrossRef]
- Xin, B.; Peng, W.; Guerrini, L. A Continuous Time Bertrand Duopoly Game With Fractional Delay and Conformable Derivative: Modeling, Discretization Process, Hopf Bifurcation, and Chaos. Front. Phys. 2019, 7, 84. [Google Scholar] [CrossRef]
- Morales-Delgado, V.F.; Gómez-Aguilar, J.F.; Escobar-Jiménez, R.F.; Taneco-Hernández, M.A. Fractional conformable derivatives of Liouville–Caputo type with low-fractionality. Phys. A Stat. Mech. Appl. 2018, 503, 424–438. [Google Scholar] [CrossRef]
- Martínez, L.; Rosales, J.J.; Carreño, C.A.; Lozano, J.M. Electrical circuits described by fractional conformable derivative. Int. J. Circuit Theory Appl. 2018, 46, 1091–1100. [Google Scholar] [CrossRef]
- Chung, W.S. Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 2015, 290, 150–158. [Google Scholar] [CrossRef]
- Anderson, D.R.; Ulness, D.J. Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 2015, 56, 063502. [Google Scholar] [CrossRef] [Green Version]
- Jajarmi, A.; Baleanu, D. A new fractional analysis on the interaction of HIV with CD4 + T-cells. Chaos Solit. Fractals 2018, 113, 221–229. [Google Scholar] [CrossRef]
- Açan, Ö.; Al Qurashi, M.M.; Baleanu, D. New exact solution of generalized biological population model. J. Nonlinear Sci. Appl. 2017, 10, 3916–3929. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.W.; Yang, S.; Zhang, S.Q. Conformable derivative approach to anomalous diffusion. Phys. A Stat. Mech. Appl. 2018, 491, 1001–1013. [Google Scholar] [CrossRef]
- Clemence-Mkhope, D. Spectral Non-integer Derivative Representations and the Exact Spectral Derivative Discretization Finite Difference Method for the Fokker-Planck Equation. 2021. Available online: https://ui.adsabs.harvard.edu/link_gateway/2021arXiv210602586C/arxiv:2106.02586 (accessed on 16 July 2021).
- Gorenflo, R.; Mainardi, F.; Rogosin, S. Mittag-Leffler function: Properties and applications. In Handbook of Fractional Calculus with Applications, Basic Theory; De Gruyter: Berlin, Germany, 2019; Volume 1, pp. 269–296. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Mainardi, F. A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients. Mathematics 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T. On Riemann and Caputo fractional differences. Comput. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D. New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Clemence-Mkhope, D. A Comment on the Conformable Euler’s Finite Difference Method. arXiv 2021, arXiv:2105.10385. [Google Scholar]
- Anderson, D.R.; Camrud, E.; Ulness, D.J. On the nature of the conformable derivative and its applications to physics. J. Fract. Calc. Appl. 2019, 10, 92–135. [Google Scholar]
- Mickens, R.E. Nonstandard Finite Difference Schemes: Methodology And Applications; World Scientific Publishing Company: Singapore, 2020. [Google Scholar]
Exact Value | EDM | CEM | MCEM | OEM | |
---|---|---|---|---|---|
0.99 | 0.36 | 0.00 | 5.06 | 1.29 | 1.30 |
0.98 | 0.36 | 0.00 | 8.93 | 1.32 | 1.38 |
0.97 | 0.36 | 0.00 | 12.90 | 1.34 | 1.46 |
0.96 | 0.35 | 0.00 | 16.80 | 1.37 | 1.54 |
0.95 | 0.35 | 0.00 | 20.80 | 1.40 | 1.62 |
0.62 | 0.20 | 0.00 | 99.60 | 4.56 | 7.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clemence-Mkhope, D.P.; Clemence-Mkhope, B.G.B. The Limited Validity of the Conformable Euler Finite Difference Method and an Alternate Definition of the Conformable Fractional Derivative to Justify Modification of the Method. Math. Comput. Appl. 2021, 26, 66. https://doi.org/10.3390/mca26040066
Clemence-Mkhope DP, Clemence-Mkhope BGB. The Limited Validity of the Conformable Euler Finite Difference Method and an Alternate Definition of the Conformable Fractional Derivative to Justify Modification of the Method. Mathematical and Computational Applications. 2021; 26(4):66. https://doi.org/10.3390/mca26040066
Chicago/Turabian StyleClemence-Mkhope, Dominic P., and Belinda G. B. Clemence-Mkhope. 2021. "The Limited Validity of the Conformable Euler Finite Difference Method and an Alternate Definition of the Conformable Fractional Derivative to Justify Modification of the Method" Mathematical and Computational Applications 26, no. 4: 66. https://doi.org/10.3390/mca26040066
APA StyleClemence-Mkhope, D. P., & Clemence-Mkhope, B. G. B. (2021). The Limited Validity of the Conformable Euler Finite Difference Method and an Alternate Definition of the Conformable Fractional Derivative to Justify Modification of the Method. Mathematical and Computational Applications, 26(4), 66. https://doi.org/10.3390/mca26040066