Finding the Conjectured Sequence of Largest Small n-Polygons by Numerical Optimization
Abstract
:1. Introduction
2. Revised LSP Optimization Model
- (i)
- We postulate bounds on the angle differences, for even :
- (ii)
- We postulate the symmetry of the LSP configuration to be found, for even :
3. Numerical Results for Even Values
4. LSP(n) Regression Model for Even
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reinhardt, K. Extremale polygone gegebenen durchmessers. Jahresber. Dtsch. Math. Ver. 1922, 31, 251–270. [Google Scholar]
- Graham, R.L. The largest small hexagon. J. Comb. Theory Ser. A 1975, 18, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Audet, C.; Hansen, P.; Messine, F.; Xiong, J. The largest small octagon. J. Comb. Theory Ser. A 2002, 98, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Audet, C.; Hansen, P.; Svrtan, D. Using symbolic calculations to determine largest small polygons. J. Glob. Optim. 2021, 81, 261–268. [Google Scholar] [CrossRef]
- Henrion, D.; Messine, F. Finding largest small polygons with GloptiPoly. J. Glob. Optim. 2013, 56, 1017–1028. [Google Scholar] [CrossRef] [Green Version]
- Mossinghoff, M.J. Isodiametric problems for polygons. Discret. Comput. Geom. 2006, 36, 363–379. [Google Scholar] [CrossRef] [Green Version]
- Bingane, C. Largest small polygons: A sequential convex optimization approach. arXiv 2020, arXiv:2009.07893. Available online: https://arxiv.org/abs/2009.07893 (accessed on 14 January 2022).
- Pintér, J.D. Largest small n-polygons: Numerical optimum estimates for n ≥ 6. In Recent Developments in Numerical Analysis and Optimization (NAO-V, Muscat, Oman, January 2020); Al-Baali, M., Grandinetti, L., Purnama, A., Eds.; Springer Nature: New York, NY, USA, 2021; pp. 231–247. [Google Scholar]
- Wolfram Research. Mathematica, Current Release 13.0 (as of January 2022); Wolfram Research: Champaign, IL, USA, 2022. [Google Scholar]
- Wächter, A.; Laird, C. IPOPT (Interior Point Optimizer), an Open Source Software Package for Large-Scale Nonlinear Optimization. Available online: https://github.com/coin-or/Ipopt (accessed on 14 January 2022).
- Wolfram Research (2022b), Optimizing with IPOPT. Available online: https://reference.wolfram.com/language/IPOPTLink/tutorial/OptimizingWithIPOPT.html (accessed on 14 January 2022).
- Bingane, C. Tight bounds on the maximal area of small polygons: Improved Mossinghoff polygons. Discret. Comput. Geom. 2022. [Google Scholar] [CrossRef]
- Foster, J.; Szabo, T. Diameter graphs of polygons and the proof of a conjecture of Graham. J. Comb. Theory Ser. A 2007, 114, 1515–1525. [Google Scholar] [CrossRef] [Green Version]
- Castillo, I.; Kampas, F.J.; Pintér, J.D. Solving circle packing problems by global optimization: Numerical results and industrial applications. Eur. J. Oper. Res. 2008, 191, 786–802. [Google Scholar] [CrossRef]
- Pintér, J.D.; Kampas, F.J.; Castillo, I. Globally optimized packings of non-uniform size spheres in Rd: A computational study. Optim. Lett. 2017, 12, 585–613. [Google Scholar] [CrossRef]
- Kampas, F.J.; Castillo, I.; Pintér, J.D. Optimized ellipse packings in regular polygons. Optim. Lett. 2019, 13, 1583–1613. [Google Scholar] [CrossRef]
- Kampas, F.J.; Pintér, J.D.; Castillo, I. Packing ovals in optimized regular polygons. J. Glob. Optim. 2020, 77, 175–196. [Google Scholar] [CrossRef] [Green Version]
Decision Variables | Constraints | Runtime (Seconds) | Objective Function | Maximum Violation | |
---|---|---|---|---|---|
4 | 6 | 5 | 0.03 | 0.500000 | 9.9636 × 10−9 |
6 | 10 | 14 | 0.03 | 0.674981 † | 9.9432 × 10−9 |
8 | 14 | 27 | 0.05 | 0.726868 † | 9.9236 × 10−9 |
10 | 18 | 44 | 0.06 | 0.749137 † | 9.9046 × 10−9 |
12 | 22 | 65 | 0.08 | 0.760730 † | 9.8855 × 10−9 |
14 | 26 | 90 | 0.11 | 0.767531 † | 9.8663 × 10−9 |
16 | 30 | 119 | 0.15 | 0.771861 † | 9.8472 × 10−9 |
18 | 34 | 152 | 0.17 | 0.774788 † | 9.8296 × 10−9 |
20 | 38 | 189 | 0.23 | 0.776859 † | 9.8101 × 10−9 |
24 | 46 | 275 | 0.32 | 0.779524 † | 9.7801 × 10−9 |
28 | 54 | 377 | 0.45 | 0.781111 † | 9.7647 × 10−9 |
32 | 62 | 495 | 0.68 | 0.782133 † | 9.8456 × 10−9 |
36 | 70 | 629 | 0.82 | 0.782828 † | 9.6522 × 10−9 |
40 | 78 | 779 | 1.05 | 0.783323 † | 9.6132 × 10−9 |
44 | 86 | 945 | 1.34 | 0.783687 † | 9.5741 × 10−9 |
48 | 94 | 1127 | 1.53 | 0.783964 † | 9.5352 × 10−9 |
52 | 102 | 1325 | 1.85 | 0.784178 † | 9.4967 × 10−9 |
56 | 110 | 1539 | 3.04 | 0.784252 * | 9.6754 × 10−9 |
60 | 118 | 1769 | 3.34 | 0.784408 * | 9.6548 × 10−9 |
70 | 138 | 2414 | 3.92 | 0.784729 † | 9.3199 × 10−9 |
80 | 158 | 3159 | 4.98 | 0.784886 † | 9.2227 × 10−9 |
90 | 178 | 4004 | 7.59 | 0.784994 † | 9.1242 × 10−9 |
100 | 198 | 4949 | 9.44 | 0.785072 † | 9.0264 × 10−9 |
110 | 218 | 5994 | 11.18 | 0.785129 † | 8.9291 × 10−9 |
120 | 238 | 7139 | 14.21 | 0.785172 † | 8.8306 × 10−9 |
130 | 258 | 8384 | 17.52 | 0.785205 | 8.7330 × 10−9 |
140 | 278 | 9729 | 21.39 | 0.785232 | 8.7013 × 10−9 |
150 | 298 | 11,174 | 25.11 | 0.785254 | 8.8048 × 10−9 |
160 | 318 | 12,719 | 29.16 | 0.785271 | 8.4389 × 10−9 |
180 | 358 | 16,109 | 52.43 | 0.785298 | 8.2424 × 10−9 |
200 | 398 | 19,899 | 51.31 | 0.785317 | 8.0460 × 10−9 |
220 | 438 | 24,089 | 64.43 | 0.785331 | 7.8491 × 10−9 |
240 | 478 | 28,679 | 81.60 | 0.785342 | 7.6515 × 10−9 |
260 | 518 | 33,669 | 97.73 | 0.785350 | 7.6285 × 10−9 |
280 | 558 | 39,059 | 118.77 | 0.785357 | 7.2925 × 10−9 |
300 | 598 | 44,849 | 142.19 | 0.785362 | 7.0879 × 10−9 |
320 | 638 | 51,039 | 170.00 | 0.785367 | 6.8695 × 10−9 |
340 | 678 | 57,629 | 202.27 | 0.785370 | 6.6526 × 10−9 |
360 | 718 | 64,619 | 235.11 | 0.785373 | 6.4506 × 10−9 |
380 | 758 | 72,009 | 269.55 | 0.785376 | 6.2473 × 10−9 |
400 | 798 | 79,799 | 316.30 | 0.785378 | 6.0432 × 10−9 |
420 | 838 | 87,989 | 363.92 | 0.785380 | 5.8990 × 10−9 |
440 | 878 | 96,579 | 393.75 | 0.785381 | 5.6483 × 10−9 |
460 | 918 | 105,569 | 464.32 | 0.785383 | 5.4201 × 10−9 |
480 | 958 | 114,959 | 514.01 | 0.785384 | 5.2503 × 10−9 |
500 | 998 | 124,749 | 577.96 | 0.785385 | 5.0971 × 10−9 |
550 | 1098 | 150,974 | 739.51 | 0.785387 | 4.4905 × 10−9 |
600 | 1198 | 179,699 | 948.26 | 0.785389 | 4.0205 × 10−9 |
650 | 1298 | 210,924 | 1228.83 | 0.785391 | 3.4442 × 10−9 |
700 | 1398 | 244,649 | 1460.31 | 0.785392 | 2.9080 × 10−9 |
750 | 1498 | 280,874 | 1857.58 | 0.785392 | 2.3883 × 10−9 |
800 | 1598 | 319,599 | 2342.02 | 0.785393 | 1.8715 × 10−9 |
850 | 1698 | 360,824 | 3177.43 | 0.785394 | 1.3518 × 10−9 |
900 | 1798 | 404,549 | 3846.06 | 0.785394 | 8.2861 × 10−10 |
950 | 1898 | 450,774 | 3721.68 | 0.785395 * | 3.0161 × 10−10 |
1000 | 1998 | 499,499 | 5417.51 | 0.785395 * | 0.0000 × 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintér, J.D.; Kampas, F.J.; Castillo, I. Finding the Conjectured Sequence of Largest Small n-Polygons by Numerical Optimization. Math. Comput. Appl. 2022, 27, 42. https://doi.org/10.3390/mca27030042
Pintér JD, Kampas FJ, Castillo I. Finding the Conjectured Sequence of Largest Small n-Polygons by Numerical Optimization. Mathematical and Computational Applications. 2022; 27(3):42. https://doi.org/10.3390/mca27030042
Chicago/Turabian StylePintér, János D., Frank J. Kampas, and Ignacio Castillo. 2022. "Finding the Conjectured Sequence of Largest Small n-Polygons by Numerical Optimization" Mathematical and Computational Applications 27, no. 3: 42. https://doi.org/10.3390/mca27030042
APA StylePintér, J. D., Kampas, F. J., & Castillo, I. (2022). Finding the Conjectured Sequence of Largest Small n-Polygons by Numerical Optimization. Mathematical and Computational Applications, 27(3), 42. https://doi.org/10.3390/mca27030042