Ultra-Broadband NPE-Based Femtosecond Fiber Laser
Abstract
:1. Introduction
2. Experimental Scheme and Results
3. Numerical Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fermann, M.E.; Hartl, I. Ultrafast fibre lasers. Nat. Photon. 2013, 7, 868–874. [Google Scholar] [CrossRef]
- Hoover, E.E.; Squier, J.A. Advances in multiphoton microscopy technology. Nat. Photon. 2013, 7, 93–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B.; Zhang, R.H.; Huo, J.Y.; Ma, C.Y.; Han, Y.; Hou, Q.R.; Deng, F.; Wu, G.; Ge, Y.Q. Generation and categories of solitons in various mode-locked fiber lasers. Optik 2020, 220, 165168. [Google Scholar] [CrossRef]
- Lefrançois, S.; Kieu, K.; Deng, Y.; Kafka, J.D.; Wise, F.W. Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber. Opt. Lett. 2010, 35, 1569–1571. [Google Scholar] [CrossRef] [Green Version]
- Baumgartl, M.; Jansen, F.; Stutzki, F.; Jauregui, C.; Ortaç, B.; Limpert, J.; Tünnermann, A. High average and peak power femtosecond large-pitch photonic-crystal-fiber laser. Opt. Lett. 2011, 36, 244. [Google Scholar] [CrossRef]
- Jauregui, C.; Limpert, J.; Tünnermann, A. High-power fibre lasers. Nat. Photon. 2013, 7, 861–867. [Google Scholar] [CrossRef]
- Liu, Z.; Ziegler, Z.M.; Wright, L.G.; Wise, F.W. Megawatt peak power from a Mamyshev oscillator. Optica 2017, 4, 649. Available online: http://xxx.lanl.gov/abs/1703.09166 (accessed on 5 December 2022). [CrossRef]
- Haig, H.; Sidorenko, P.; Thorne, R.; Wise, F. Megawatt pulses from an all-fiber and self-starting femtosecond oscillator. Opt. Lett. 2022, 47, 762. [Google Scholar] [CrossRef]
- Chong, A.; Buckley, J.R.; Renninger, W.H.; Wise, F.W. All-normal-dispersion femtosecond fiber laser. Opt. Express 2006, 14, 10095–10100. [Google Scholar] [CrossRef]
- Lefrançois, S.; Sosnowski, T.S.; Liu, C.H.; Galvanauskas, A.; Wise, F.W. Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber. Opt. Express 2011, 19, 3464–3470. [Google Scholar] [CrossRef]
- Kharenko, D.S.; Podivilov, E.V.; Apolonski, A.A.; Babin, S.A. 20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator. Opt. Lett. 2012, 37, 4104. [Google Scholar] [CrossRef]
- Kharenko, D.S.; Gonta, V.A.; Babin, S.A. 50 nJ 250 fs all-fibre Raman-free dissipative soliton oscillator. Laser Phys. Lett. 2016, 13, 025107. [Google Scholar] [CrossRef]
- Wang, Z.; Zhan, L.; Fang, X.; Luo, H. Spectral filtering effect on mode-locking regimes transition: Similariton-dissipative soliton fiber laser. J. Opt. Soc. Am. B 2017, 34, 2325. [Google Scholar] [CrossRef]
- Kharenko, D.S.; Shtyrina, O.V.; Yarutkina, I.A.; Podivilov, E.V.; Fedoruk, M.P.; Babin, S.A. Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic-quintic Ginzburg-Landau equation. J. Opt. Soc. Am. B 2011, 28, 2314–2319. [Google Scholar] [CrossRef]
- Ilday, F.O.; Buckley, J.R.; Clark, W.; Wise, F.W. Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 2004, 92, 213902. [Google Scholar] [CrossRef] [Green Version]
- Dudley, J.M.; Finot, C.; Richardson, D.J.; Millot, G. Self-similarity in ultrafast nonlinear optics. Nat. Phys. 2007, 3, 597–603. [Google Scholar] [CrossRef]
- Zhou, X.; Yoshitomi, D.; Kobayashi, Y.; Torizuka, K. Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator. Opt. Express 2008, 16, 7055–7059. [Google Scholar] [CrossRef]
- Nie, B.; Pestov, D.; Wise, F.W.; Dantus, M. Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment. Opt. Express 2011, 19, 12074–12080. [Google Scholar] [CrossRef] [Green Version]
- Iegorov, R.; Teamir, T.; Makey, G.; Ilday, F.Ö. Direct control of mode-locking states of a fiber laser. Optica 2016, 3, 1312. [Google Scholar] [CrossRef] [Green Version]
- Mamyshev, P. All-optical data regeneration based on self-phase modulation effect. In Proceedings of the 24th European Conference on Optical Communication, ECOC ’98 (IEEE Cat. No. 98TH8398) Telefonica, Madrid, Spain, 20–24 September 1998; Volume 1, pp. 475–476. [Google Scholar]
- Liu, W.; Liao, R.; Zhao, J.; Cui, J.; Song, Y.; Wang, C.; Hu, M. Femtosecond Mamyshev oscillator with 10-MW-level peak power. Optica 2019, 6, 194. [Google Scholar] [CrossRef]
- Ma, C.; Khanolkar, A.; Zang, Y.; Chong, A. Ultrabroadband, few-cycle pulses directly from a Mamyshev fiber oscillator. Photonics Res. 2020, 8, 65. Available online: http://xxx.lanl.gov/abs/1905.10049 (accessed on 5 December 2022). [CrossRef] [Green Version]
- Chong, A.; Renninger, W.H.; Wise, F.W. Route to the minimum pulse duration in normal-dispersion fiber lasers. Opt. Lett. 2008, 33, 2638–2640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharenko, D.S.; Shtyrina, O.V.; Yarutkina, I.A.; Podivilov, E.V.; Fedoruk, M.P.; Babin, S.A. Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser. Laser Phys. Lett. 2012, 9, 662–668. [Google Scholar] [CrossRef]
- Zhdanov, I.S.; Bednyakova, A.E.; Volosi, V.M.; Kharenko, D.S. Energy scaling of an erbium-doped mode-locked fiber laser oscillator. OSA Contin. 2021, 4, 2663. [Google Scholar] [CrossRef]
- Nyushkov, B.; Kobtsev, S.; Antropov, A.; Kolker, D.; Pivtsov, V. Femtosecond 78-nm Tunable Er:Fibre Laser Based on Drop-Shaped Resonator Topology. J. Light. Technol. 2019, 37, 1359–1363. [Google Scholar] [CrossRef]
- Nyushkov, B.N.; Kobtsev, S.M.; Koliada, N.A.; Antropov, A.A.; Pivtsov, V.S.; Yakovlev, A.V. Mode-locked fibre lasers with an adjustable drop-shaped cavity. Laser Phys. Lett. 2017, 14, 115101. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, A.G.; Kharenko, D.S.; Babin, S.A. Amplification of dissipative solitons with a polarisation-maintaining tapered fibre amplifier. Quantum Electron. 2018, 48, 1105–1108. [Google Scholar] [CrossRef]
- Kieu, K.; Renninger, W.H.; Chong, A.; Wise, F.W. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Opt. Lett. 2009, 34, 593–595. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.H.; Wang, D.; Lin, K.H. High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity. Laser Phys. Lett. 2011, 8, 66–70. [Google Scholar] [CrossRef]
- Yokokawa, S.; Jin, L.; Set, S.Y.; Yamashita, S. Coherent light source with 106 nm broadband spectrum generated directly from Yb-doped fiber oscillator. In Fiber Lasers XVII Technology and Systems; Dong, L., Zervas, M.N., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume 11260, p. 112601L. [Google Scholar]
- Trebino, R.; DeLong, K.W. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. 1997, 68, 3277–3295. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics, 4th ed.; Elsevier: Amsteradm, The Netherlands, 2006. [Google Scholar]
- Hollenbeck, D.; Cantrell, C.D. Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function. J. Opt. Soc. Am. B 2002, 19, 2886–2892. [Google Scholar] [CrossRef]
- Pyofss: Python-Based Optical Fibre System Simulator. 2021. Available online: https://github.com/galilley/pyofss (accessed on 5 December 2022).
- Bednyakova, A.E.; Babin, S.A.; Kharenko, D.S.; Podivilov, E.V.; Fedoruk, M.P.; Kalashnikov, V.L.; Apolonski, A. Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering. Opt. Express 2013, 21, 20556–20564. [Google Scholar] [CrossRef] [PubMed]
- Bednyakova, A.E.; Kharenko, D.S.; Yarovikov, A.P. Numerical analysis of the transmission function of the NPE-based saturable absorber in a mode-locked fiber laser. J. Opt. Soc. Am. B 2020, 37, 2763. [Google Scholar] [CrossRef]
- Kruglov, V.I.; Thomsen, B.C.; Dudley, J.M.; Harvey, J.D. Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 2000, 84, 6010–6013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdrakhmanov, S.I.; Efremov, V.D.; Kuznetsov, A.G.; Kharenko, D.S.; Babin, S.A. Ultra-Broadband NPE-Based Femtosecond Fiber Laser. Photonics 2023, 10, 85. https://doi.org/10.3390/photonics10010085
Abdrakhmanov SI, Efremov VD, Kuznetsov AG, Kharenko DS, Babin SA. Ultra-Broadband NPE-Based Femtosecond Fiber Laser. Photonics. 2023; 10(1):85. https://doi.org/10.3390/photonics10010085
Chicago/Turabian StyleAbdrakhmanov, Sergei I., Vladislav D. Efremov, Alexey G. Kuznetsov, Denis S. Kharenko, and Sergey A. Babin. 2023. "Ultra-Broadband NPE-Based Femtosecond Fiber Laser" Photonics 10, no. 1: 85. https://doi.org/10.3390/photonics10010085
APA StyleAbdrakhmanov, S. I., Efremov, V. D., Kuznetsov, A. G., Kharenko, D. S., & Babin, S. A. (2023). Ultra-Broadband NPE-Based Femtosecond Fiber Laser. Photonics, 10(1), 85. https://doi.org/10.3390/photonics10010085