Study on Supermode Control of External Cavity VCSEL Array with Parallel-Coupled Model
Abstract
:1. Introduction
2. Mathematical Model Setting
3. Numerical Simulation and Analysis
3.1. The Influence of Array Distribution on Supermode
3.2. The Influence of Elements’ Transverse Mode on Supermode
3.3. The Influence of Array’s Duty Ratio on Supermode
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lott, J.A. Vertical Cavity Surface Emitting Laser Diodes for Communication, Sensing, and Integration. In Semiconductor Nanophotonics; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Wang, C.; Geske, J.; Garrett, H.; Cardellino, T.; Klemer, D. Large-Area High-Power VCSEL Pump Arrays Optimized for High-Energy Lasers. Laser Technol. Def. Secur. VIII 2012, 8381, 41. [Google Scholar]
- Mateus, C.F.; Barbosa, C.L. Harsh Environment Temperature and Strain Sensor Using Tunable VCSEL and Multiple Fiber Bragg Gratings. In Proceedings of the 2007 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Salvador, Brazil, 29 October–1 November 2007. [Google Scholar]
- Tsai, T.H.; Ahsen, O.O.; Lee, H.C. Ultrahigh Speed Endoscopic Swept Source Optical Coherence Tomography Using a VCSEL Light Source and Micromotor Catheter. Endosc. Microsc. IX Opt. Tech. Pulm. Med. 2014, 8927, 34–39. [Google Scholar]
- Hibbs-Brenner, M.K.; Johnson, K.L.; Bendett, M. VCSEL Technology for Medical Diagnostics and Therapeutics. Photons Neurons 2009, 7180, 14. [Google Scholar]
- Seurin, J.F.; Xu, G.; Khalfin, V.; Miglo, A.; Wynn, J.D.; Pradhan, P.; Ghosh, C.L.; D’Asaro, L.A. Progress in High-Power High-Efficiency VCSEL Arrays. Vert. Cavity Surf. Emit. Lasers XIII 2009, 7229, 19–29. [Google Scholar]
- Wang, C.; Li, C.; Dai, J.; Wang, Z. Study on In-Chip Phase Locked High Brightness Bottom Emitting Talbot-VCSELs Array. In Proceedings of the AOPC 2020: Advanced Laser Technology and Application, Beijing, China, 30 November–2 December 2020; SPIE: Bellingham, WA, USA, 2020. [Google Scholar]
- Ho, E.; Koyama, F.; Iga, K. Effective Reflectivity from Self-Imaging in a Talbot Cavity and Its Effect on the Threshold of a Finite 2-D Surface Emitting Laser Array. Appl. Opt. 1990, 29, 5080–5085. [Google Scholar] [CrossRef]
- Seurin, J.F.; Ghosh, C.L.; Khalfin, V.; Miglo, A.; Xu, G.; Wynn, J.D.; Pradhan, P.; D’Asaro, L.A. High-Power High-Efficiency 2D VCSEL Arrays. Vert. Cavity Surf. Emit. Lasers XII 2008, 6908, 45–58. [Google Scholar]
- Guenter, J.K.; Lei, C.; Zhou, D.; Seurin, J.F.; Xu, G.; Miglo, A.; Li, D.; Wang, Q.; Sundaresh, M.; Wilton, S. Progress on Vertical-Cavity Surface-Emitting Laser Arrays for Infrared Illumination Applications. Ber. Der. Bunsenges. Für. Phys. Chem. 2014, 97, 172–176. [Google Scholar]
- Wei, S.M.; Xu, C.; Deng, J.; Zhu, Y.X.; Mao, M.M.; Xie, Y.Y.; Xu, K.; Cao, T.; Liu, J.C. Single-Fundamental-Mode 850 Nm Surface Relief VCSEL. Chin. Phys. Lett. 2012, 29, 1028–1032. [Google Scholar] [CrossRef]
- Shinada, S.; Koyama, F.; Nishiyama, N.; Arai, M.; Iga, K. Single High-Order Transverse Mode 850 Nm VCSEL with Micromachined Surface Relief. In Proceedings of the Conference on Lasers & Electro-Optics, Baltimore, MD, USA, 11 May 2001. [Google Scholar]
- Alias, M.S.; Shaari, S.; Leisher, P.O.; Choquette, K.D. Single Transverse Mode Control of VCSEL by Photonic Crystal and Trench Patterning. Photonics Nanostruct. 2010, 8, 38–46. [Google Scholar] [CrossRef]
- Kasten, A.M.; Siriani, D.F.; Hibbs-Brenner, M.K.; Johnson, K.L.; Choquette, K.D. Beam Properties of Visible Proton-Implanted Photonic Crystal VCSELs. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1648–1655. [Google Scholar] [CrossRef]
- Okur, S. High-Power VCSEL Arrays with Customized Beam Divergence for 3D-Sensing Applications. Vert. Cavity Surf. Emit. Lasers XXIII 2019, 10938, 61–67. [Google Scholar]
- Kandidov, V.P.; Kondrat’ev, A.V. Collective Modes of Laser Arrays in Talbot Cavities of Various Geometries. Quantum Electron. 1997, 27, 234. [Google Scholar] [CrossRef]
- Kandidov, V.P.; Kondrat’ev, A.V. Influence of the Talbot Cavity Selectivity on the Evolution of Collective Operation of Diffraction-Coupled Laser Arrays. Quantum Electron. 1998, 28, 972. [Google Scholar] [CrossRef]
- Kandidov, V.P.; Kondrat’ev, A.V.; Surovitskii, M.B. Collective Modes of Two-Dimensional Laser Arrays in a Talbot Cavity. Quantum Electron. 2007, 28, 692. [Google Scholar] [CrossRef]
- Kandidov, V.P.; Kondrat’ev, A.V.; Surovitskii, M.B. Collective Modes of 2D Laser Array with Diffraction Coupling. In 6th International Conference on Industrial Lasers and Laser Applications ‘98; SPIE: Bellingham, WA, USA, 1999; Volume 3688, pp. 24–31. [Google Scholar]
- Ma, Y.; Lan, T.; Wang, X.; Ruan, R.; Cao, Y.; Dai, J.; Wang, Z. Phase-Locking Dynamics of a 2D VCSEL Hexagonal Array with an Integrated Talbot Cavity. Opt. Express 2022, 30, 9892–9903. [Google Scholar] [CrossRef]
- Shichijo, T.; Miyamoto, T. Rate Equation-Based Numerical Analysis of Mutual Injection for Phase Locked 2D-VCSEL Array Using Talbot Effect. Jpn. J. Appl. Phys. 2019, 58, SJJC01. [Google Scholar] [CrossRef]
- Khajavikhan, M.; Leger, J.R. Modal Theory of Coupled Resonators for External Cavity Beam Combining. In Coherent Laser Beam Combining; Wiley-VCH Verlag: Weinheim, Germany, 2013. [Google Scholar]
- Leger, J.R. Lateral Mode Control of an AlGaAs Laser Array in a Talbot Cavity. Appl. Phys. Lett. 1989, 55, 334–336. [Google Scholar] [CrossRef]
- Butler, J.K.; Ackley, D.E.; Botez, D. Coupled-Mode Analysis of Phase-Locked Injection Laser Arrays. Appl. Phys. Lett. 1984, 44, 935. [Google Scholar] [CrossRef] [Green Version]
- Mehuys, D.; Streifer, W.; Waarts, R.G.; Welch, D.F. Modal Analysis of Linear Talbot-Cavity Semiconductor Lasers. Opt. Lett. 1991, 16, 823–825. [Google Scholar] [CrossRef]
- Fader, W.J.; Palma, G.E. Palma Normal Modes of N Coupled Lasers. Opt. Lett. 1985, 10, 381–383. [Google Scholar] [CrossRef]
- Michalzik, R. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer Series in Optical Sciences); Springer: Berlin/Heidelberg, Germany, 2013; Volume 166, ISBN 978-3-642-24985-3. [Google Scholar]
- Zhou, D.; Seurin, J.F.; Xu, G.; Pu, Z.; Ghosh, C. Progress on High-Power High-Brightness VCSELs and Applications. Vert. Cavity Surf. Emit. Lasers XIX 2015, 9381, 91–102. [Google Scholar]
Parameter | Value |
---|---|
Wavelength (μm) | 0.98 |
Γ | 2.055 |
α (cm−1) | 4000 |
Rt | 0.995 |
Rb | 0.999 |
Rex | 0.85 |
p (μm) | 65 |
Leff (μm) | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, C.; Li, W.; Dai, J.; Ma, S.; Wang, Z. Study on Supermode Control of External Cavity VCSEL Array with Parallel-Coupled Model. Photonics 2023, 10, 115. https://doi.org/10.3390/photonics10020115
Wen C, Li W, Dai J, Ma S, Wang Z. Study on Supermode Control of External Cavity VCSEL Array with Parallel-Coupled Model. Photonics. 2023; 10(2):115. https://doi.org/10.3390/photonics10020115
Chicago/Turabian StyleWen, Congyang, Wei Li, Jingjing Dai, Shufang Ma, and Zhiyong Wang. 2023. "Study on Supermode Control of External Cavity VCSEL Array with Parallel-Coupled Model" Photonics 10, no. 2: 115. https://doi.org/10.3390/photonics10020115
APA StyleWen, C., Li, W., Dai, J., Ma, S., & Wang, Z. (2023). Study on Supermode Control of External Cavity VCSEL Array with Parallel-Coupled Model. Photonics, 10(2), 115. https://doi.org/10.3390/photonics10020115